1dc505c1ed932f1ba4bac2bc70a328b6c84497b4
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <netinet/in.h>
40 #include <netinet/ip.h>
41 #include <string.h>
42 #include <sys/queue.h>
43 #include <stdarg.h>
44 #include <errno.h>
45 #include <getopt.h>
46
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_eal.h>
51 #include <rte_launch.h>
52 #include <rte_atomic.h>
53 #include <rte_cycles.h>
54 #include <rte_prefetch.h>
55 #include <rte_lcore.h>
56 #include <rte_per_lcore.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_interrupts.h>
59 #include <rte_pci.h>
60 #include <rte_random.h>
61 #include <rte_debug.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_mempool.h>
65 #include <rte_mbuf.h>
66 #include <rte_acl.h>
67 #include <rte_lpm.h>
68 #include <rte_hash.h>
69 #include <rte_jhash.h>
70 #include <rte_cryptodev.h>
71
72 #include "ipsec.h"
73
74 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
75
76 #define MAX_JUMBO_PKT_LEN  9600
77
78 #define MEMPOOL_CACHE_SIZE 256
79
80 #define NB_MBUF (32000)
81
82 #define CDEV_MAP_ENTRIES 1024
83 #define CDEV_MP_NB_OBJS 2048
84 #define CDEV_MP_CACHE_SZ 64
85 #define MAX_QUEUE_PAIRS 1
86
87 #define OPTION_CONFIG           "config"
88 #define OPTION_SINGLE_SA        "single-sa"
89 #define OPTION_EP0              "ep0"
90 #define OPTION_EP1              "ep1"
91
92 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
93
94 #define NB_SOCKETS 4
95
96 /* Configure how many packets ahead to prefetch, when reading packets */
97 #define PREFETCH_OFFSET 3
98
99 #define MAX_RX_QUEUE_PER_LCORE 16
100
101 #define MAX_LCORE_PARAMS 1024
102
103 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
104
105 /*
106  * Configurable number of RX/TX ring descriptors
107  */
108 #define IPSEC_SECGW_RX_DESC_DEFAULT 128
109 #define IPSEC_SECGW_TX_DESC_DEFAULT 512
110 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
111 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
112
113 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
114 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
115         (((uint64_t)((a) & 0xff) << 56) | \
116         ((uint64_t)((b) & 0xff) << 48) | \
117         ((uint64_t)((c) & 0xff) << 40) | \
118         ((uint64_t)((d) & 0xff) << 32) | \
119         ((uint64_t)((e) & 0xff) << 24) | \
120         ((uint64_t)((f) & 0xff) << 16) | \
121         ((uint64_t)((g) & 0xff) << 8)  | \
122         ((uint64_t)(h) & 0xff))
123 #else
124 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
125         (((uint64_t)((h) & 0xff) << 56) | \
126         ((uint64_t)((g) & 0xff) << 48) | \
127         ((uint64_t)((f) & 0xff) << 40) | \
128         ((uint64_t)((e) & 0xff) << 32) | \
129         ((uint64_t)((d) & 0xff) << 24) | \
130         ((uint64_t)((c) & 0xff) << 16) | \
131         ((uint64_t)((b) & 0xff) << 8) | \
132         ((uint64_t)(a) & 0xff))
133 #endif
134 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
135
136 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
137                 addr.addr_bytes[0], addr.addr_bytes[1], \
138                 addr.addr_bytes[2], addr.addr_bytes[3], \
139                 addr.addr_bytes[4], addr.addr_bytes[5], \
140                 0, 0)
141
142 /* port/source ethernet addr and destination ethernet addr */
143 struct ethaddr_info {
144         uint64_t src, dst;
145 };
146
147 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
148         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
149         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
150         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
151         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
152 };
153
154 /* mask of enabled ports */
155 static uint32_t enabled_port_mask;
156 static uint32_t unprotected_port_mask;
157 static int32_t promiscuous_on = 1;
158 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
159 static int32_t ep = -1; /**< Endpoint configuration (0 or 1) */
160 static uint32_t nb_lcores;
161 static uint32_t single_sa;
162 static uint32_t single_sa_idx;
163
164 struct lcore_rx_queue {
165         uint8_t port_id;
166         uint8_t queue_id;
167 } __rte_cache_aligned;
168
169 struct lcore_params {
170         uint8_t port_id;
171         uint8_t queue_id;
172         uint8_t lcore_id;
173 } __rte_cache_aligned;
174
175 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
176
177 static struct lcore_params *lcore_params;
178 static uint16_t nb_lcore_params;
179
180 static struct rte_hash *cdev_map_in;
181 static struct rte_hash *cdev_map_out;
182
183 struct buffer {
184         uint16_t len;
185         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
186 };
187
188 struct lcore_conf {
189         uint16_t nb_rx_queue;
190         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
191         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
192         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
193         struct ipsec_ctx inbound;
194         struct ipsec_ctx outbound;
195         struct rt_ctx *rt_ctx;
196 } __rte_cache_aligned;
197
198 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
199
200 static struct rte_eth_conf port_conf = {
201         .rxmode = {
202                 .mq_mode        = ETH_MQ_RX_RSS,
203                 .max_rx_pkt_len = ETHER_MAX_LEN,
204                 .split_hdr_size = 0,
205                 .header_split   = 0, /**< Header Split disabled */
206                 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
207                 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
208                 .jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
209                 .hw_strip_crc   = 0, /**< CRC stripped by hardware */
210         },
211         .rx_adv_conf = {
212                 .rss_conf = {
213                         .rss_key = NULL,
214                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
215                                 ETH_RSS_TCP | ETH_RSS_SCTP,
216                 },
217         },
218         .txmode = {
219                 .mq_mode = ETH_MQ_TX_NONE,
220         },
221 };
222
223 static struct socket_ctx socket_ctx[NB_SOCKETS];
224
225 struct traffic_type {
226         const uint8_t *data[MAX_PKT_BURST * 2];
227         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
228         uint32_t res[MAX_PKT_BURST * 2];
229         uint32_t num;
230 };
231
232 struct ipsec_traffic {
233         struct traffic_type ipsec4;
234         struct traffic_type ipv4;
235 };
236
237 static inline void
238 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
239 {
240         uint8_t *nlp;
241
242         if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
243                 rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
244                 nlp = rte_pktmbuf_mtod_offset(pkt, uint8_t *,
245                                 offsetof(struct ip, ip_p));
246                 if (*nlp == IPPROTO_ESP)
247                         t->ipsec4.pkts[(t->ipsec4.num)++] = pkt;
248                 else {
249                         t->ipv4.data[t->ipv4.num] = nlp;
250                         t->ipv4.pkts[(t->ipv4.num)++] = pkt;
251                 }
252         } else {
253                 /* Unknown/Unsupported type, drop the packet */
254                 rte_pktmbuf_free(pkt);
255         }
256 }
257
258 static inline void
259 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
260                 uint16_t nb_pkts)
261 {
262         int32_t i;
263
264         t->ipsec4.num = 0;
265         t->ipv4.num = 0;
266
267         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
268                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
269                                         void *));
270                 prepare_one_packet(pkts[i], t);
271         }
272         /* Process left packets */
273         for (; i < nb_pkts; i++)
274                 prepare_one_packet(pkts[i], t);
275 }
276
277 static inline void
278 prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port)
279 {
280         pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
281         pkt->l3_len = sizeof(struct ip);
282         pkt->l2_len = ETHER_HDR_LEN;
283
284         struct ether_hdr *ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt,
285                         ETHER_HDR_LEN);
286
287         ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
288         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
289                         sizeof(struct ether_addr));
290         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
291                         sizeof(struct ether_addr));
292 }
293
294 static inline void
295 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port)
296 {
297         int32_t i;
298         const int32_t prefetch_offset = 2;
299
300         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
301                 rte_prefetch0(pkts[i + prefetch_offset]->cacheline1);
302                 prepare_tx_pkt(pkts[i], port);
303         }
304         /* Process left packets */
305         for (; i < nb_pkts; i++)
306                 prepare_tx_pkt(pkts[i], port);
307 }
308
309 /* Send burst of packets on an output interface */
310 static inline int32_t
311 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
312 {
313         struct rte_mbuf **m_table;
314         int32_t ret;
315         uint16_t queueid;
316
317         queueid = qconf->tx_queue_id[port];
318         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
319
320         prepare_tx_burst(m_table, n, port);
321
322         ret = rte_eth_tx_burst(port, queueid, m_table, n);
323         if (unlikely(ret < n)) {
324                 do {
325                         rte_pktmbuf_free(m_table[ret]);
326                 } while (++ret < n);
327         }
328
329         return 0;
330 }
331
332 /* Enqueue a single packet, and send burst if queue is filled */
333 static inline int32_t
334 send_single_packet(struct rte_mbuf *m, uint8_t port)
335 {
336         uint32_t lcore_id;
337         uint16_t len;
338         struct lcore_conf *qconf;
339
340         lcore_id = rte_lcore_id();
341
342         qconf = &lcore_conf[lcore_id];
343         len = qconf->tx_mbufs[port].len;
344         qconf->tx_mbufs[port].m_table[len] = m;
345         len++;
346
347         /* enough pkts to be sent */
348         if (unlikely(len == MAX_PKT_BURST)) {
349                 send_burst(qconf, MAX_PKT_BURST, port);
350                 len = 0;
351         }
352
353         qconf->tx_mbufs[port].len = len;
354         return 0;
355 }
356
357 static inline void
358 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
359                 struct ipsec_traffic *traffic)
360 {
361         struct rte_mbuf *m;
362         uint16_t idx, nb_pkts_in, i, j;
363         uint32_t sa_idx, res;
364
365         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts,
366                         traffic->ipsec4.num, MAX_PKT_BURST);
367
368         /* SP/ACL Inbound check ipsec and ipv4 */
369         for (i = 0; i < nb_pkts_in; i++) {
370                 idx = traffic->ipv4.num++;
371                 m = traffic->ipsec4.pkts[i];
372                 traffic->ipv4.pkts[idx] = m;
373                 traffic->ipv4.data[idx] = rte_pktmbuf_mtod_offset(m,
374                                 uint8_t *, offsetof(struct ip, ip_p));
375         }
376
377         rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx,
378                         traffic->ipv4.data, traffic->ipv4.res,
379                         traffic->ipv4.num, DEFAULT_MAX_CATEGORIES);
380
381         j = 0;
382         for (i = 0; i < traffic->ipv4.num - nb_pkts_in; i++) {
383                 m = traffic->ipv4.pkts[i];
384                 res = traffic->ipv4.res[i];
385                 if (res & ~BYPASS) {
386                         rte_pktmbuf_free(m);
387                         continue;
388                 }
389                 traffic->ipv4.pkts[j++] = m;
390         }
391         /* Check return SA SPI matches pkt SPI */
392         for ( ; i < traffic->ipv4.num; i++) {
393                 m = traffic->ipv4.pkts[i];
394                 sa_idx = traffic->ipv4.res[i] & PROTECT_MASK;
395                 if (sa_idx == 0 || !inbound_sa_check(ipsec_ctx->sa_ctx,
396                                         m, sa_idx)) {
397                         rte_pktmbuf_free(m);
398                         continue;
399                 }
400                 traffic->ipv4.pkts[j++] = m;
401         }
402         traffic->ipv4.num = j;
403 }
404
405 static inline void
406 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
407                 struct ipsec_traffic *traffic)
408 {
409         struct rte_mbuf *m;
410         uint16_t idx, nb_pkts_out, i, j;
411         uint32_t sa_idx, res;
412
413         rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx,
414                         traffic->ipv4.data, traffic->ipv4.res,
415                         traffic->ipv4.num, DEFAULT_MAX_CATEGORIES);
416
417         /* Drop any IPsec traffic from protected ports */
418         for (i = 0; i < traffic->ipsec4.num; i++)
419                 rte_pktmbuf_free(traffic->ipsec4.pkts[i]);
420
421         traffic->ipsec4.num = 0;
422
423         j = 0;
424         for (i = 0; i < traffic->ipv4.num; i++) {
425                 m = traffic->ipv4.pkts[i];
426                 res = traffic->ipv4.res[i];
427                 sa_idx = res & PROTECT_MASK;
428                 if ((res == 0) || (res & DISCARD))
429                         rte_pktmbuf_free(m);
430                 else if (sa_idx != 0) {
431                         traffic->ipsec4.res[traffic->ipsec4.num] = sa_idx;
432                         traffic->ipsec4.pkts[traffic->ipsec4.num++] = m;
433                 } else /* BYPASS */
434                         traffic->ipv4.pkts[j++] = m;
435         }
436         traffic->ipv4.num = j;
437
438         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec4.pkts,
439                         traffic->ipsec4.res, traffic->ipsec4.num,
440                         MAX_PKT_BURST);
441
442         for (i = 0; i < nb_pkts_out; i++) {
443                 idx = traffic->ipv4.num++;
444                 m = traffic->ipsec4.pkts[i];
445                 traffic->ipv4.pkts[idx] = m;
446         }
447 }
448
449 static inline void
450 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
451                 struct ipsec_traffic *traffic)
452 {
453         uint16_t nb_pkts_in, i;
454
455         /* Drop any IPv4 traffic from unprotected ports */
456         for (i = 0; i < traffic->ipv4.num; i++)
457                 rte_pktmbuf_free(traffic->ipv4.pkts[i]);
458
459         traffic->ipv4.num = 0;
460
461         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts,
462                         traffic->ipsec4.num, MAX_PKT_BURST);
463
464         for (i = 0; i < nb_pkts_in; i++)
465                 traffic->ipv4.pkts[i] = traffic->ipsec4.pkts[i];
466
467         traffic->ipv4.num = nb_pkts_in;
468 }
469
470 static inline void
471 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
472                 struct ipsec_traffic *traffic)
473 {
474         uint16_t nb_pkts_out, i;
475
476         /* Drop any IPsec traffic from protected ports */
477         for (i = 0; i < traffic->ipsec4.num; i++)
478                 rte_pktmbuf_free(traffic->ipsec4.pkts[i]);
479
480         traffic->ipsec4.num = 0;
481
482         for (i = 0; i < traffic->ipv4.num; i++)
483                 traffic->ipv4.res[i] = single_sa_idx;
484
485         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipv4.pkts,
486                         traffic->ipv4.res, traffic->ipv4.num,
487                         MAX_PKT_BURST);
488
489         traffic->ipv4.num = nb_pkts_out;
490 }
491
492 static inline void
493 route_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
494 {
495         uint32_t hop[MAX_PKT_BURST * 2];
496         uint32_t dst_ip[MAX_PKT_BURST * 2];
497         uint16_t i, offset;
498
499         if (nb_pkts == 0)
500                 return;
501
502         for (i = 0; i < nb_pkts; i++) {
503                 offset = offsetof(struct ip, ip_dst);
504                 dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i],
505                                 uint32_t *, offset);
506                 dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]);
507         }
508
509         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts);
510
511         for (i = 0; i < nb_pkts; i++) {
512                 if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) {
513                         rte_pktmbuf_free(pkts[i]);
514                         continue;
515                 }
516                 send_single_packet(pkts[i], hop[i] & 0xff);
517         }
518 }
519
520 static inline void
521 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
522                 uint8_t nb_pkts, uint8_t portid)
523 {
524         struct ipsec_traffic traffic;
525
526         prepare_traffic(pkts, &traffic, nb_pkts);
527
528         if (single_sa) {
529                 if (UNPROTECTED_PORT(portid))
530                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
531                 else
532                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
533         } else {
534                 if (UNPROTECTED_PORT(portid))
535                         process_pkts_inbound(&qconf->inbound, &traffic);
536                 else
537                         process_pkts_outbound(&qconf->outbound, &traffic);
538         }
539
540         route_pkts(qconf->rt_ctx, traffic.ipv4.pkts, traffic.ipv4.num);
541 }
542
543 static inline void
544 drain_buffers(struct lcore_conf *qconf)
545 {
546         struct buffer *buf;
547         uint32_t portid;
548
549         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
550                 buf = &qconf->tx_mbufs[portid];
551                 if (buf->len == 0)
552                         continue;
553                 send_burst(qconf, buf->len, portid);
554                 buf->len = 0;
555         }
556 }
557
558 /* main processing loop */
559 static int32_t
560 main_loop(__attribute__((unused)) void *dummy)
561 {
562         struct rte_mbuf *pkts[MAX_PKT_BURST];
563         uint32_t lcore_id;
564         uint64_t prev_tsc, diff_tsc, cur_tsc;
565         int32_t i, nb_rx;
566         uint8_t portid, queueid;
567         struct lcore_conf *qconf;
568         int32_t socket_id;
569         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
570                         / US_PER_S * BURST_TX_DRAIN_US;
571         struct lcore_rx_queue *rxql;
572
573         prev_tsc = 0;
574         lcore_id = rte_lcore_id();
575         qconf = &lcore_conf[lcore_id];
576         rxql = qconf->rx_queue_list;
577         socket_id = rte_lcore_to_socket_id(lcore_id);
578
579         qconf->rt_ctx = socket_ctx[socket_id].rt_ipv4;
580         qconf->inbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_in;
581         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_in;
582         qconf->inbound.cdev_map = cdev_map_in;
583         qconf->outbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_out;
584         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_out;
585         qconf->outbound.cdev_map = cdev_map_out;
586
587         if (qconf->nb_rx_queue == 0) {
588                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
589                 return 0;
590         }
591
592         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
593
594         for (i = 0; i < qconf->nb_rx_queue; i++) {
595                 portid = rxql[i].port_id;
596                 queueid = rxql[i].queue_id;
597                 RTE_LOG(INFO, IPSEC,
598                         " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
599                         lcore_id, portid, queueid);
600         }
601
602         while (1) {
603                 cur_tsc = rte_rdtsc();
604
605                 /* TX queue buffer drain */
606                 diff_tsc = cur_tsc - prev_tsc;
607
608                 if (unlikely(diff_tsc > drain_tsc)) {
609                         drain_buffers(qconf);
610                         prev_tsc = cur_tsc;
611                 }
612
613                 /* Read packet from RX queues */
614                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
615                         portid = rxql[i].port_id;
616                         queueid = rxql[i].queue_id;
617                         nb_rx = rte_eth_rx_burst(portid, queueid,
618                                         pkts, MAX_PKT_BURST);
619
620                         if (nb_rx > 0)
621                                 process_pkts(qconf, pkts, nb_rx, portid);
622                 }
623         }
624 }
625
626 static int32_t
627 check_params(void)
628 {
629         uint8_t lcore, portid, nb_ports;
630         uint16_t i;
631         int32_t socket_id;
632
633         if (lcore_params == NULL) {
634                 printf("Error: No port/queue/core mappings\n");
635                 return -1;
636         }
637
638         nb_ports = rte_eth_dev_count();
639
640         for (i = 0; i < nb_lcore_params; ++i) {
641                 lcore = lcore_params[i].lcore_id;
642                 if (!rte_lcore_is_enabled(lcore)) {
643                         printf("error: lcore %hhu is not enabled in "
644                                 "lcore mask\n", lcore);
645                         return -1;
646                 }
647                 socket_id = rte_lcore_to_socket_id(lcore);
648                 if (socket_id != 0 && numa_on == 0) {
649                         printf("warning: lcore %hhu is on socket %d "
650                                 "with numa off\n",
651                                 lcore, socket_id);
652                 }
653                 portid = lcore_params[i].port_id;
654                 if ((enabled_port_mask & (1 << portid)) == 0) {
655                         printf("port %u is not enabled in port mask\n", portid);
656                         return -1;
657                 }
658                 if (portid >= nb_ports) {
659                         printf("port %u is not present on the board\n", portid);
660                         return -1;
661                 }
662         }
663         return 0;
664 }
665
666 static uint8_t
667 get_port_nb_rx_queues(const uint8_t port)
668 {
669         int32_t queue = -1;
670         uint16_t i;
671
672         for (i = 0; i < nb_lcore_params; ++i) {
673                 if (lcore_params[i].port_id == port &&
674                                 lcore_params[i].queue_id > queue)
675                         queue = lcore_params[i].queue_id;
676         }
677         return (uint8_t)(++queue);
678 }
679
680 static int32_t
681 init_lcore_rx_queues(void)
682 {
683         uint16_t i, nb_rx_queue;
684         uint8_t lcore;
685
686         for (i = 0; i < nb_lcore_params; ++i) {
687                 lcore = lcore_params[i].lcore_id;
688                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
689                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
690                         printf("error: too many queues (%u) for lcore: %u\n",
691                                         nb_rx_queue + 1, lcore);
692                         return -1;
693                 }
694                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
695                         lcore_params[i].port_id;
696                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
697                         lcore_params[i].queue_id;
698                 lcore_conf[lcore].nb_rx_queue++;
699         }
700         return 0;
701 }
702
703 /* display usage */
704 static void
705 print_usage(const char *prgname)
706 {
707         printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
708                 "  --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
709                 " --single-sa SAIDX --ep0|--ep1\n"
710                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
711                 "  -P : enable promiscuous mode\n"
712                 "  -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
713                 "  --"OPTION_CONFIG": (port,queue,lcore): "
714                 "rx queues configuration\n"
715                 "  --single-sa SAIDX: use single SA index for outbound, "
716                 "bypassing the SP\n"
717                 "  --ep0: Configure as Endpoint 0\n"
718                 "  --ep1: Configure as Endpoint 1\n", prgname);
719 }
720
721 static int32_t
722 parse_portmask(const char *portmask)
723 {
724         char *end = NULL;
725         unsigned long pm;
726
727         /* parse hexadecimal string */
728         pm = strtoul(portmask, &end, 16);
729         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
730                 return -1;
731
732         if ((pm == 0) && errno)
733                 return -1;
734
735         return pm;
736 }
737
738 static int32_t
739 parse_decimal(const char *str)
740 {
741         char *end = NULL;
742         unsigned long num;
743
744         num = strtoul(str, &end, 10);
745         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
746                 return -1;
747
748         return num;
749 }
750
751 static int32_t
752 parse_config(const char *q_arg)
753 {
754         char s[256];
755         const char *p, *p0 = q_arg;
756         char *end;
757         enum fieldnames {
758                 FLD_PORT = 0,
759                 FLD_QUEUE,
760                 FLD_LCORE,
761                 _NUM_FLD
762         };
763         int long int_fld[_NUM_FLD];
764         char *str_fld[_NUM_FLD];
765         int32_t i;
766         uint32_t size;
767
768         nb_lcore_params = 0;
769
770         while ((p = strchr(p0, '(')) != NULL) {
771                 ++p;
772                 p0 = strchr(p, ')');
773                 if (p0 == NULL)
774                         return -1;
775
776                 size = p0 - p;
777                 if (size >= sizeof(s))
778                         return -1;
779
780                 snprintf(s, sizeof(s), "%.*s", size, p);
781                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
782                                 _NUM_FLD)
783                         return -1;
784                 for (i = 0; i < _NUM_FLD; i++) {
785                         errno = 0;
786                         int_fld[i] = strtoul(str_fld[i], &end, 0);
787                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
788                                 return -1;
789                 }
790                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
791                         printf("exceeded max number of lcore params: %hu\n",
792                                 nb_lcore_params);
793                         return -1;
794                 }
795                 lcore_params_array[nb_lcore_params].port_id =
796                         (uint8_t)int_fld[FLD_PORT];
797                 lcore_params_array[nb_lcore_params].queue_id =
798                         (uint8_t)int_fld[FLD_QUEUE];
799                 lcore_params_array[nb_lcore_params].lcore_id =
800                         (uint8_t)int_fld[FLD_LCORE];
801                 ++nb_lcore_params;
802         }
803         lcore_params = lcore_params_array;
804         return 0;
805 }
806
807 #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
808 static int32_t
809 parse_args_long_options(struct option *lgopts, int32_t option_index)
810 {
811         int32_t ret = -1;
812         const char *optname = lgopts[option_index].name;
813
814         if (__STRNCMP(optname, OPTION_CONFIG)) {
815                 ret = parse_config(optarg);
816                 if (ret)
817                         printf("invalid config\n");
818         }
819
820         if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
821                 ret = parse_decimal(optarg);
822                 if (ret != -1) {
823                         single_sa = 1;
824                         single_sa_idx = ret;
825                         printf("Configured with single SA index %u\n",
826                                         single_sa_idx);
827                         ret = 0;
828                 }
829         }
830
831         if (__STRNCMP(optname, OPTION_EP0)) {
832                 printf("endpoint 0\n");
833                 ep = 0;
834                 ret = 0;
835         }
836
837         if (__STRNCMP(optname, OPTION_EP1)) {
838                 printf("endpoint 1\n");
839                 ep = 1;
840                 ret = 0;
841         }
842
843         return ret;
844 }
845 #undef __STRNCMP
846
847 static int32_t
848 parse_args(int32_t argc, char **argv)
849 {
850         int32_t opt, ret;
851         char **argvopt;
852         int32_t option_index;
853         char *prgname = argv[0];
854         static struct option lgopts[] = {
855                 {OPTION_CONFIG, 1, 0, 0},
856                 {OPTION_SINGLE_SA, 1, 0, 0},
857                 {OPTION_EP0, 0, 0, 0},
858                 {OPTION_EP1, 0, 0, 0},
859                 {NULL, 0, 0, 0}
860         };
861
862         argvopt = argv;
863
864         while ((opt = getopt_long(argc, argvopt, "p:Pu:",
865                                 lgopts, &option_index)) != EOF) {
866
867                 switch (opt) {
868                 case 'p':
869                         enabled_port_mask = parse_portmask(optarg);
870                         if (enabled_port_mask == 0) {
871                                 printf("invalid portmask\n");
872                                 print_usage(prgname);
873                                 return -1;
874                         }
875                         break;
876                 case 'P':
877                         printf("Promiscuous mode selected\n");
878                         promiscuous_on = 1;
879                         break;
880                 case 'u':
881                         unprotected_port_mask = parse_portmask(optarg);
882                         if (unprotected_port_mask == 0) {
883                                 printf("invalid unprotected portmask\n");
884                                 print_usage(prgname);
885                                 return -1;
886                         }
887                         break;
888                 case 0:
889                         if (parse_args_long_options(lgopts, option_index)) {
890                                 print_usage(prgname);
891                                 return -1;
892                         }
893                         break;
894                 default:
895                         print_usage(prgname);
896                         return -1;
897                 }
898         }
899
900         if (optind >= 0)
901                 argv[optind-1] = prgname;
902
903         ret = optind-1;
904         optind = 0; /* reset getopt lib */
905         return ret;
906 }
907
908 static void
909 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
910 {
911         char buf[ETHER_ADDR_FMT_SIZE];
912         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
913         printf("%s%s", name, buf);
914 }
915
916 /* Check the link status of all ports in up to 9s, and print them finally */
917 static void
918 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
919 {
920 #define CHECK_INTERVAL 100 /* 100ms */
921 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
922         uint8_t portid, count, all_ports_up, print_flag = 0;
923         struct rte_eth_link link;
924
925         printf("\nChecking link status");
926         fflush(stdout);
927         for (count = 0; count <= MAX_CHECK_TIME; count++) {
928                 all_ports_up = 1;
929                 for (portid = 0; portid < port_num; portid++) {
930                         if ((port_mask & (1 << portid)) == 0)
931                                 continue;
932                         memset(&link, 0, sizeof(link));
933                         rte_eth_link_get_nowait(portid, &link);
934                         /* print link status if flag set */
935                         if (print_flag == 1) {
936                                 if (link.link_status)
937                                         printf("Port %d Link Up - speed %u "
938                                                 "Mbps - %s\n", (uint8_t)portid,
939                                                 (uint32_t)link.link_speed,
940                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
941                                         ("full-duplex") : ("half-duplex\n"));
942                                 else
943                                         printf("Port %d Link Down\n",
944                                                 (uint8_t)portid);
945                                 continue;
946                         }
947                         /* clear all_ports_up flag if any link down */
948                         if (link.link_status == ETH_LINK_DOWN) {
949                                 all_ports_up = 0;
950                                 break;
951                         }
952                 }
953                 /* after finally printing all link status, get out */
954                 if (print_flag == 1)
955                         break;
956
957                 if (all_ports_up == 0) {
958                         printf(".");
959                         fflush(stdout);
960                         rte_delay_ms(CHECK_INTERVAL);
961                 }
962
963                 /* set the print_flag if all ports up or timeout */
964                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
965                         print_flag = 1;
966                         printf("done\n");
967                 }
968         }
969 }
970
971 static int32_t
972 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
973                 uint16_t qp, struct lcore_params *params,
974                 struct ipsec_ctx *ipsec_ctx,
975                 const struct rte_cryptodev_capabilities *cipher,
976                 const struct rte_cryptodev_capabilities *auth)
977 {
978         int32_t ret = 0;
979         unsigned long i;
980         struct cdev_key key = { 0 };
981
982         key.lcore_id = params->lcore_id;
983         if (cipher)
984                 key.cipher_algo = cipher->sym.cipher.algo;
985         if (auth)
986                 key.auth_algo = auth->sym.auth.algo;
987
988         ret = rte_hash_lookup(map, &key);
989         if (ret != -ENOENT)
990                 return 0;
991
992         for (i = 0; i < ipsec_ctx->nb_qps; i++)
993                 if (ipsec_ctx->tbl[i].id == cdev_id)
994                         break;
995
996         if (i == ipsec_ctx->nb_qps) {
997                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
998                         printf("Maximum number of crypto devices assigned to "
999                                 "a core, increase MAX_QP_PER_LCORE value\n");
1000                         return 0;
1001                 }
1002                 ipsec_ctx->tbl[i].id = cdev_id;
1003                 ipsec_ctx->tbl[i].qp = qp;
1004                 ipsec_ctx->nb_qps++;
1005                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1006                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1007                                 cdev_id, qp, i);
1008         }
1009
1010         ret = rte_hash_add_key_data(map, &key, (void *)i);
1011         if (ret < 0) {
1012                 printf("Faled to insert cdev mapping for (lcore %u, "
1013                                 "cdev %u, qp %u), errno %d\n",
1014                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1015                                 ipsec_ctx->tbl[i].qp, ret);
1016                 return 0;
1017         }
1018
1019         return 1;
1020 }
1021
1022 static int32_t
1023 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1024                 uint16_t qp, struct lcore_params *params)
1025 {
1026         int32_t ret = 0;
1027         const struct rte_cryptodev_capabilities *i, *j;
1028         struct rte_hash *map;
1029         struct lcore_conf *qconf;
1030         struct ipsec_ctx *ipsec_ctx;
1031         const char *str;
1032
1033         qconf = &lcore_conf[params->lcore_id];
1034
1035         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1036                 map = cdev_map_out;
1037                 ipsec_ctx = &qconf->outbound;
1038                 str = "Outbound";
1039         } else {
1040                 map = cdev_map_in;
1041                 ipsec_ctx = &qconf->inbound;
1042                 str = "Inbound";
1043         }
1044
1045         /* Required cryptodevs with operation chainning */
1046         if (!(dev_info->feature_flags &
1047                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1048                 return ret;
1049
1050         for (i = dev_info->capabilities;
1051                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1052                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1053                         continue;
1054
1055                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1056                         continue;
1057
1058                 for (j = dev_info->capabilities;
1059                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1060                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1061                                 continue;
1062
1063                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1064                                 continue;
1065
1066                         ret |= add_mapping(map, str, cdev_id, qp, params,
1067                                         ipsec_ctx, i, j);
1068                 }
1069         }
1070
1071         return ret;
1072 }
1073
1074 static int32_t
1075 cryptodevs_init(void)
1076 {
1077         struct rte_cryptodev_config dev_conf;
1078         struct rte_cryptodev_qp_conf qp_conf;
1079         uint16_t idx, max_nb_qps, qp, i;
1080         int16_t cdev_id;
1081         struct rte_hash_parameters params = { 0 };
1082
1083         params.entries = CDEV_MAP_ENTRIES;
1084         params.key_len = sizeof(struct cdev_key);
1085         params.hash_func = rte_jhash;
1086         params.hash_func_init_val = 0;
1087         params.socket_id = rte_socket_id();
1088
1089         params.name = "cdev_map_in";
1090         cdev_map_in = rte_hash_create(&params);
1091         if (cdev_map_in == NULL)
1092                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1093                                 rte_errno);
1094
1095         params.name = "cdev_map_out";
1096         cdev_map_out = rte_hash_create(&params);
1097         if (cdev_map_out == NULL)
1098                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1099                                 rte_errno);
1100
1101         printf("lcore/cryptodev/qp mappings:\n");
1102
1103         idx = 0;
1104         /* Start from last cdev id to give HW priority */
1105         for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) {
1106                 struct rte_cryptodev_info cdev_info;
1107
1108                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1109
1110                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1111                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1112                 else
1113                         max_nb_qps = nb_lcore_params;
1114
1115                 qp = 0;
1116                 i = 0;
1117                 while (qp < max_nb_qps && i < nb_lcore_params) {
1118                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1119                                                 &lcore_params[idx]))
1120                                 qp++;
1121                         idx++;
1122                         idx = idx % nb_lcore_params;
1123                         i++;
1124                 }
1125
1126                 if (qp == 0)
1127                         continue;
1128
1129                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1130                 dev_conf.nb_queue_pairs = qp;
1131                 dev_conf.session_mp.nb_objs = CDEV_MP_NB_OBJS;
1132                 dev_conf.session_mp.cache_size = CDEV_MP_CACHE_SZ;
1133
1134                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1135                         rte_panic("Failed to initialize crypodev %u\n",
1136                                         cdev_id);
1137
1138                 qp_conf.nb_descriptors = CDEV_MP_NB_OBJS;
1139                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1140                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1141                                                 &qp_conf, dev_conf.socket_id))
1142                                 rte_panic("Failed to setup queue %u for "
1143                                                 "cdev_id %u\n", 0, cdev_id);
1144         }
1145
1146         printf("\n");
1147
1148         return 0;
1149 }
1150
1151 static void
1152 port_init(uint8_t portid)
1153 {
1154         struct rte_eth_dev_info dev_info;
1155         struct rte_eth_txconf *txconf;
1156         uint16_t nb_tx_queue, nb_rx_queue;
1157         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1158         int32_t ret, socket_id;
1159         struct lcore_conf *qconf;
1160         struct ether_addr ethaddr;
1161
1162         rte_eth_dev_info_get(portid, &dev_info);
1163
1164         printf("Configuring device port %u:\n", portid);
1165
1166         rte_eth_macaddr_get(portid, &ethaddr);
1167         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1168         print_ethaddr("Address: ", &ethaddr);
1169         printf("\n");
1170
1171         nb_rx_queue = get_port_nb_rx_queues(portid);
1172         nb_tx_queue = nb_lcores;
1173
1174         if (nb_rx_queue > dev_info.max_rx_queues)
1175                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1176                                 "(max rx queue is %u)\n",
1177                                 nb_rx_queue, dev_info.max_rx_queues);
1178
1179         if (nb_tx_queue > dev_info.max_tx_queues)
1180                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1181                                 "(max tx queue is %u)\n",
1182                                 nb_tx_queue, dev_info.max_tx_queues);
1183
1184         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1185                         nb_rx_queue, nb_tx_queue);
1186
1187         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1188                         &port_conf);
1189         if (ret < 0)
1190                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1191                                 "err=%d, port=%d\n", ret, portid);
1192
1193         /* init one TX queue per lcore */
1194         tx_queueid = 0;
1195         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1196                 if (rte_lcore_is_enabled(lcore_id) == 0)
1197                         continue;
1198
1199                 if (numa_on)
1200                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1201                 else
1202                         socket_id = 0;
1203
1204                 /* init TX queue */
1205                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1206
1207                 txconf = &dev_info.default_txconf;
1208                 txconf->txq_flags = 0;
1209
1210                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1211                                 socket_id, txconf);
1212                 if (ret < 0)
1213                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1214                                         "err=%d, port=%d\n", ret, portid);
1215
1216                 qconf = &lcore_conf[lcore_id];
1217                 qconf->tx_queue_id[portid] = tx_queueid;
1218                 tx_queueid++;
1219
1220                 /* init RX queues */
1221                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1222                         if (portid != qconf->rx_queue_list[queue].port_id)
1223                                 continue;
1224
1225                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1226
1227                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1228                                         socket_id);
1229
1230                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1231                                         nb_rxd, socket_id, NULL,
1232                                         socket_ctx[socket_id].mbuf_pool);
1233                         if (ret < 0)
1234                                 rte_exit(EXIT_FAILURE,
1235                                         "rte_eth_rx_queue_setup: err=%d, "
1236                                         "port=%d\n", ret, portid);
1237                 }
1238         }
1239         printf("\n");
1240 }
1241
1242 static void
1243 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1244 {
1245         char s[64];
1246
1247         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1248         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1249                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1250                         RTE_MBUF_DEFAULT_BUF_SIZE,
1251                         socket_id);
1252         if (ctx->mbuf_pool == NULL)
1253                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1254                                 socket_id);
1255         else
1256                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1257 }
1258
1259 int32_t
1260 main(int32_t argc, char **argv)
1261 {
1262         int32_t ret;
1263         uint32_t lcore_id, nb_ports;
1264         uint8_t portid, socket_id;
1265
1266         /* init EAL */
1267         ret = rte_eal_init(argc, argv);
1268         if (ret < 0)
1269                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1270         argc -= ret;
1271         argv += ret;
1272
1273         /* parse application arguments (after the EAL ones) */
1274         ret = parse_args(argc, argv);
1275         if (ret < 0)
1276                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1277
1278         if (ep < 0)
1279                 rte_exit(EXIT_FAILURE, "need to choose either EP0 or EP1\n");
1280
1281         if ((unprotected_port_mask & enabled_port_mask) !=
1282                         unprotected_port_mask)
1283                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1284                                 unprotected_port_mask);
1285
1286         nb_ports = rte_eth_dev_count();
1287
1288         if (check_params() < 0)
1289                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1290
1291         ret = init_lcore_rx_queues();
1292         if (ret < 0)
1293                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1294
1295         nb_lcores = rte_lcore_count();
1296
1297         /* Replicate each contex per socket */
1298         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1299                 if (rte_lcore_is_enabled(lcore_id) == 0)
1300                         continue;
1301
1302                 if (numa_on)
1303                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1304                 else
1305                         socket_id = 0;
1306
1307                 if (socket_ctx[socket_id].mbuf_pool)
1308                         continue;
1309
1310                 sa_init(&socket_ctx[socket_id], socket_id, ep);
1311
1312                 sp_init(&socket_ctx[socket_id], socket_id, ep);
1313
1314                 rt_init(&socket_ctx[socket_id], socket_id, ep);
1315
1316                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1317         }
1318
1319         for (portid = 0; portid < nb_ports; portid++) {
1320                 if ((enabled_port_mask & (1 << portid)) == 0)
1321                         continue;
1322
1323                 port_init(portid);
1324         }
1325
1326         cryptodevs_init();
1327
1328         /* start ports */
1329         for (portid = 0; portid < nb_ports; portid++) {
1330                 if ((enabled_port_mask & (1 << portid)) == 0)
1331                         continue;
1332
1333                 /* Start device */
1334                 ret = rte_eth_dev_start(portid);
1335                 if (ret < 0)
1336                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1337                                         "err=%d, port=%d\n", ret, portid);
1338                 /*
1339                  * If enabled, put device in promiscuous mode.
1340                  * This allows IO forwarding mode to forward packets
1341                  * to itself through 2 cross-connected  ports of the
1342                  * target machine.
1343                  */
1344                 if (promiscuous_on)
1345                         rte_eth_promiscuous_enable(portid);
1346         }
1347
1348         check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1349
1350         /* launch per-lcore init on every lcore */
1351         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1352         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1353                 if (rte_eal_wait_lcore(lcore_id) < 0)
1354                         return -1;
1355         }
1356
1357         return 0;
1358 }