040f24a43ca043aabcf18fdeeba005de2dca867b
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <sys/mman.h>
46 #include <sys/types.h>
47 #include <sys/stat.h>
48 #include <sys/queue.h>
49 #include <sys/file.h>
50 #include <unistd.h>
51 #include <limits.h>
52 #include <errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <setjmp.h>
57 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
58 #include <numa.h>
59 #include <numaif.h>
60 #endif
61
62 #include <rte_log.h>
63 #include <rte_memory.h>
64 #include <rte_memzone.h>
65 #include <rte_launch.h>
66 #include <rte_eal.h>
67 #include <rte_eal_memconfig.h>
68 #include <rte_per_lcore.h>
69 #include <rte_lcore.h>
70 #include <rte_common.h>
71 #include <rte_string_fns.h>
72
73 #include "eal_private.h"
74 #include "eal_internal_cfg.h"
75 #include "eal_filesystem.h"
76 #include "eal_hugepages.h"
77
78 #define PFN_MASK_SIZE   8
79
80 #ifdef RTE_LIBRTE_XEN_DOM0
81 int rte_xen_dom0_supported(void)
82 {
83         return internal_config.xen_dom0_support;
84 }
85 #endif
86
87 /**
88  * @file
89  * Huge page mapping under linux
90  *
91  * To reserve a big contiguous amount of memory, we use the hugepage
92  * feature of linux. For that, we need to have hugetlbfs mounted. This
93  * code will create many files in this directory (one per page) and
94  * map them in virtual memory. For each page, we will retrieve its
95  * physical address and remap it in order to have a virtual contiguous
96  * zone as well as a physical contiguous zone.
97  */
98
99 static uint64_t baseaddr_offset;
100
101 static bool phys_addrs_available = true;
102
103 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
104
105 static void
106 test_phys_addrs_available(void)
107 {
108         uint64_t tmp;
109         phys_addr_t physaddr;
110
111         /* For dom0, phys addresses can always be available */
112         if (rte_xen_dom0_supported())
113                 return;
114
115         if (!rte_eal_has_hugepages()) {
116                 RTE_LOG(ERR, EAL,
117                         "Started without hugepages support, physical addresses not available\n");
118                 phys_addrs_available = false;
119                 return;
120         }
121
122         physaddr = rte_mem_virt2phy(&tmp);
123         if (physaddr == RTE_BAD_PHYS_ADDR) {
124                 RTE_LOG(ERR, EAL,
125                         "Cannot obtain physical addresses: %s. "
126                         "Only vfio will function.\n",
127                         strerror(errno));
128                 phys_addrs_available = false;
129         }
130 }
131
132 /*
133  * Get physical address of any mapped virtual address in the current process.
134  */
135 phys_addr_t
136 rte_mem_virt2phy(const void *virtaddr)
137 {
138         int fd, retval;
139         uint64_t page, physaddr;
140         unsigned long virt_pfn;
141         int page_size;
142         off_t offset;
143
144         /* when using dom0, /proc/self/pagemap always returns 0, check in
145          * dpdk memory by browsing the memsegs */
146         if (rte_xen_dom0_supported()) {
147                 struct rte_mem_config *mcfg;
148                 struct rte_memseg *memseg;
149                 unsigned i;
150
151                 mcfg = rte_eal_get_configuration()->mem_config;
152                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
153                         memseg = &mcfg->memseg[i];
154                         if (memseg->addr == NULL)
155                                 break;
156                         if (virtaddr > memseg->addr &&
157                                         virtaddr < RTE_PTR_ADD(memseg->addr,
158                                                 memseg->len)) {
159                                 return memseg->phys_addr +
160                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
161                         }
162                 }
163
164                 return RTE_BAD_PHYS_ADDR;
165         }
166
167         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
168         if (!phys_addrs_available)
169                 return RTE_BAD_PHYS_ADDR;
170
171         /* standard page size */
172         page_size = getpagesize();
173
174         fd = open("/proc/self/pagemap", O_RDONLY);
175         if (fd < 0) {
176                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
177                         __func__, strerror(errno));
178                 return RTE_BAD_PHYS_ADDR;
179         }
180
181         virt_pfn = (unsigned long)virtaddr / page_size;
182         offset = sizeof(uint64_t) * virt_pfn;
183         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
184                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
185                                 __func__, strerror(errno));
186                 close(fd);
187                 return RTE_BAD_PHYS_ADDR;
188         }
189
190         retval = read(fd, &page, PFN_MASK_SIZE);
191         close(fd);
192         if (retval < 0) {
193                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
194                                 __func__, strerror(errno));
195                 return RTE_BAD_PHYS_ADDR;
196         } else if (retval != PFN_MASK_SIZE) {
197                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
198                                 "but expected %d:\n",
199                                 __func__, retval, PFN_MASK_SIZE);
200                 return RTE_BAD_PHYS_ADDR;
201         }
202
203         /*
204          * the pfn (page frame number) are bits 0-54 (see
205          * pagemap.txt in linux Documentation)
206          */
207         if ((page & 0x7fffffffffffffULL) == 0)
208                 return RTE_BAD_PHYS_ADDR;
209
210         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
211                 + ((unsigned long)virtaddr % page_size);
212
213         return physaddr;
214 }
215
216 /*
217  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
218  * it by browsing the /proc/self/pagemap special file.
219  */
220 static int
221 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
222 {
223         unsigned int i;
224         phys_addr_t addr;
225
226         for (i = 0; i < hpi->num_pages[0]; i++) {
227                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
228                 if (addr == RTE_BAD_PHYS_ADDR)
229                         return -1;
230                 hugepg_tbl[i].physaddr = addr;
231         }
232         return 0;
233 }
234
235 /*
236  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
237  */
238 static int
239 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
240 {
241         unsigned int i;
242         static phys_addr_t addr;
243
244         for (i = 0; i < hpi->num_pages[0]; i++) {
245                 hugepg_tbl[i].physaddr = addr;
246                 addr += hugepg_tbl[i].size;
247         }
248         return 0;
249 }
250
251 /*
252  * Check whether address-space layout randomization is enabled in
253  * the kernel. This is important for multi-process as it can prevent
254  * two processes mapping data to the same virtual address
255  * Returns:
256  *    0 - address space randomization disabled
257  *    1/2 - address space randomization enabled
258  *    negative error code on error
259  */
260 static int
261 aslr_enabled(void)
262 {
263         char c;
264         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
265         if (fd < 0)
266                 return -errno;
267         retval = read(fd, &c, 1);
268         close(fd);
269         if (retval < 0)
270                 return -errno;
271         if (retval == 0)
272                 return -EIO;
273         switch (c) {
274                 case '0' : return 0;
275                 case '1' : return 1;
276                 case '2' : return 2;
277                 default: return -EINVAL;
278         }
279 }
280
281 /*
282  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
283  * pointer to the mmap'd area and keep *size unmodified. Else, retry
284  * with a smaller zone: decrease *size by hugepage_sz until it reaches
285  * 0. In this case, return NULL. Note: this function returns an address
286  * which is a multiple of hugepage size.
287  */
288 static void *
289 get_virtual_area(size_t *size, size_t hugepage_sz)
290 {
291         void *addr;
292         int fd;
293         long aligned_addr;
294
295         if (internal_config.base_virtaddr != 0) {
296                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
297                                 baseaddr_offset);
298         }
299         else addr = NULL;
300
301         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
302
303         fd = open("/dev/zero", O_RDONLY);
304         if (fd < 0){
305                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
306                 return NULL;
307         }
308         do {
309                 addr = mmap(addr,
310                                 (*size) + hugepage_sz, PROT_READ,
311 #ifdef RTE_ARCH_PPC_64
312                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
313 #else
314                                 MAP_PRIVATE,
315 #endif
316                                 fd, 0);
317                 if (addr == MAP_FAILED)
318                         *size -= hugepage_sz;
319         } while (addr == MAP_FAILED && *size > 0);
320
321         if (addr == MAP_FAILED) {
322                 close(fd);
323                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
324                         strerror(errno));
325                 return NULL;
326         }
327
328         munmap(addr, (*size) + hugepage_sz);
329         close(fd);
330
331         /* align addr to a huge page size boundary */
332         aligned_addr = (long)addr;
333         aligned_addr += (hugepage_sz - 1);
334         aligned_addr &= (~(hugepage_sz - 1));
335         addr = (void *)(aligned_addr);
336
337         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
338                 addr, *size);
339
340         /* increment offset */
341         baseaddr_offset += *size;
342
343         return addr;
344 }
345
346 static sigjmp_buf huge_jmpenv;
347
348 static void huge_sigbus_handler(int signo __rte_unused)
349 {
350         siglongjmp(huge_jmpenv, 1);
351 }
352
353 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
354  * non-static local variable in the stack frame calling sigsetjmp might be
355  * clobbered by a call to longjmp.
356  */
357 static int huge_wrap_sigsetjmp(void)
358 {
359         return sigsetjmp(huge_jmpenv, 1);
360 }
361
362 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
363 /* Callback for numa library. */
364 void numa_error(char *where)
365 {
366         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
367 }
368 #endif
369
370 /*
371  * Mmap all hugepages of hugepage table: it first open a file in
372  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
373  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
374  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
375  * map continguous physical blocks in contiguous virtual blocks.
376  */
377 static unsigned
378 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
379                   uint64_t *essential_memory __rte_unused, int orig)
380 {
381         int fd;
382         unsigned i;
383         void *virtaddr;
384         void *vma_addr = NULL;
385         size_t vma_len = 0;
386 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
387         int node_id = -1;
388         int essential_prev = 0;
389         int oldpolicy;
390         struct bitmask *oldmask = numa_allocate_nodemask();
391         bool have_numa = true;
392         unsigned long maxnode = 0;
393
394         /* Check if kernel supports NUMA. */
395         if (numa_available() != 0) {
396                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
397                 have_numa = false;
398         }
399
400         if (orig && have_numa) {
401                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
402                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
403                                   oldmask->size + 1, 0, 0) < 0) {
404                         RTE_LOG(ERR, EAL,
405                                 "Failed to get current mempolicy: %s. "
406                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
407                         oldpolicy = MPOL_DEFAULT;
408                 }
409                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
410                         if (internal_config.socket_mem[i])
411                                 maxnode = i + 1;
412         }
413 #endif
414
415         for (i = 0; i < hpi->num_pages[0]; i++) {
416                 uint64_t hugepage_sz = hpi->hugepage_sz;
417
418 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
419                 if (maxnode) {
420                         unsigned int j;
421
422                         for (j = 0; j < maxnode; j++)
423                                 if (essential_memory[j])
424                                         break;
425
426                         if (j == maxnode) {
427                                 node_id = (node_id + 1) % maxnode;
428                                 while (!internal_config.socket_mem[node_id]) {
429                                         node_id++;
430                                         node_id %= maxnode;
431                                 }
432                                 essential_prev = 0;
433                         } else {
434                                 node_id = j;
435                                 essential_prev = essential_memory[j];
436
437                                 if (essential_memory[j] < hugepage_sz)
438                                         essential_memory[j] = 0;
439                                 else
440                                         essential_memory[j] -= hugepage_sz;
441                         }
442
443                         RTE_LOG(DEBUG, EAL,
444                                 "Setting policy MPOL_PREFERRED for socket %d\n",
445                                 node_id);
446                         numa_set_preferred(node_id);
447                 }
448 #endif
449
450                 if (orig) {
451                         hugepg_tbl[i].file_id = i;
452                         hugepg_tbl[i].size = hugepage_sz;
453                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
454                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
455                                         hugepg_tbl[i].file_id);
456                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
457                 }
458 #ifndef RTE_ARCH_64
459                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
460                  * original map address as final map address.
461                  */
462                 else if ((hugepage_sz == RTE_PGSIZE_1G)
463                         || (hugepage_sz == RTE_PGSIZE_16G)) {
464                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
465                         hugepg_tbl[i].orig_va = NULL;
466                         continue;
467                 }
468 #endif
469                 else if (vma_len == 0) {
470                         unsigned j, num_pages;
471
472                         /* reserve a virtual area for next contiguous
473                          * physical block: count the number of
474                          * contiguous physical pages. */
475                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
476 #ifdef RTE_ARCH_PPC_64
477                                 /* The physical addresses are sorted in
478                                  * descending order on PPC64 */
479                                 if (hugepg_tbl[j].physaddr !=
480                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
481                                         break;
482 #else
483                                 if (hugepg_tbl[j].physaddr !=
484                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
485                                         break;
486 #endif
487                         }
488                         num_pages = j - i;
489                         vma_len = num_pages * hugepage_sz;
490
491                         /* get the biggest virtual memory area up to
492                          * vma_len. If it fails, vma_addr is NULL, so
493                          * let the kernel provide the address. */
494                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
495                         if (vma_addr == NULL)
496                                 vma_len = hugepage_sz;
497                 }
498
499                 /* try to create hugepage file */
500                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
501                 if (fd < 0) {
502                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
503                                         strerror(errno));
504                         goto out;
505                 }
506
507                 /* map the segment, and populate page tables,
508                  * the kernel fills this segment with zeros */
509                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
510                                 MAP_SHARED | MAP_POPULATE, fd, 0);
511                 if (virtaddr == MAP_FAILED) {
512                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
513                                         strerror(errno));
514                         close(fd);
515                         goto out;
516                 }
517
518                 if (orig) {
519                         hugepg_tbl[i].orig_va = virtaddr;
520                 }
521                 else {
522                         hugepg_tbl[i].final_va = virtaddr;
523                 }
524
525                 if (orig) {
526                         /* In linux, hugetlb limitations, like cgroup, are
527                          * enforced at fault time instead of mmap(), even
528                          * with the option of MAP_POPULATE. Kernel will send
529                          * a SIGBUS signal. To avoid to be killed, save stack
530                          * environment here, if SIGBUS happens, we can jump
531                          * back here.
532                          */
533                         if (huge_wrap_sigsetjmp()) {
534                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
535                                         "hugepages of size %u MB\n",
536                                         (unsigned)(hugepage_sz / 0x100000));
537                                 munmap(virtaddr, hugepage_sz);
538                                 close(fd);
539                                 unlink(hugepg_tbl[i].filepath);
540 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
541                                 if (maxnode)
542                                         essential_memory[node_id] =
543                                                 essential_prev;
544 #endif
545                                 goto out;
546                         }
547                         *(int *)virtaddr = 0;
548                 }
549
550
551                 /* set shared flock on the file. */
552                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
553                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
554                                 __func__, strerror(errno));
555                         close(fd);
556                         goto out;
557                 }
558
559                 close(fd);
560
561                 vma_addr = (char *)vma_addr + hugepage_sz;
562                 vma_len -= hugepage_sz;
563         }
564
565 out:
566 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
567         if (maxnode) {
568                 RTE_LOG(DEBUG, EAL,
569                         "Restoring previous memory policy: %d\n", oldpolicy);
570                 if (oldpolicy == MPOL_DEFAULT) {
571                         numa_set_localalloc();
572                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
573                                          oldmask->size + 1) < 0) {
574                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
575                                 strerror(errno));
576                         numa_set_localalloc();
577                 }
578         }
579         numa_free_cpumask(oldmask);
580 #endif
581         return i;
582 }
583
584 /* Unmap all hugepages from original mapping */
585 static int
586 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
587 {
588         unsigned i;
589         for (i = 0; i < hpi->num_pages[0]; i++) {
590                 if (hugepg_tbl[i].orig_va) {
591                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
592                         hugepg_tbl[i].orig_va = NULL;
593                 }
594         }
595         return 0;
596 }
597
598 /*
599  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
600  * page.
601  */
602 static int
603 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
604 {
605         int socket_id;
606         char *end, *nodestr;
607         unsigned i, hp_count = 0;
608         uint64_t virt_addr;
609         char buf[BUFSIZ];
610         char hugedir_str[PATH_MAX];
611         FILE *f;
612
613         f = fopen("/proc/self/numa_maps", "r");
614         if (f == NULL) {
615                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
616                                 " consider that all memory is in socket_id 0\n");
617                 return 0;
618         }
619
620         snprintf(hugedir_str, sizeof(hugedir_str),
621                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
622
623         /* parse numa map */
624         while (fgets(buf, sizeof(buf), f) != NULL) {
625
626                 /* ignore non huge page */
627                 if (strstr(buf, " huge ") == NULL &&
628                                 strstr(buf, hugedir_str) == NULL)
629                         continue;
630
631                 /* get zone addr */
632                 virt_addr = strtoull(buf, &end, 16);
633                 if (virt_addr == 0 || end == buf) {
634                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
635                         goto error;
636                 }
637
638                 /* get node id (socket id) */
639                 nodestr = strstr(buf, " N");
640                 if (nodestr == NULL) {
641                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
642                         goto error;
643                 }
644                 nodestr += 2;
645                 end = strstr(nodestr, "=");
646                 if (end == NULL) {
647                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
648                         goto error;
649                 }
650                 end[0] = '\0';
651                 end = NULL;
652
653                 socket_id = strtoul(nodestr, &end, 0);
654                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
655                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
656                         goto error;
657                 }
658
659                 /* if we find this page in our mappings, set socket_id */
660                 for (i = 0; i < hpi->num_pages[0]; i++) {
661                         void *va = (void *)(unsigned long)virt_addr;
662                         if (hugepg_tbl[i].orig_va == va) {
663                                 hugepg_tbl[i].socket_id = socket_id;
664                                 hp_count++;
665 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
666                                 RTE_LOG(DEBUG, EAL,
667                                         "Hugepage %s is on socket %d\n",
668                                         hugepg_tbl[i].filepath, socket_id);
669 #endif
670                         }
671                 }
672         }
673
674         if (hp_count < hpi->num_pages[0])
675                 goto error;
676
677         fclose(f);
678         return 0;
679
680 error:
681         fclose(f);
682         return -1;
683 }
684
685 static int
686 cmp_physaddr(const void *a, const void *b)
687 {
688 #ifndef RTE_ARCH_PPC_64
689         const struct hugepage_file *p1 = a;
690         const struct hugepage_file *p2 = b;
691 #else
692         /* PowerPC needs memory sorted in reverse order from x86 */
693         const struct hugepage_file *p1 = b;
694         const struct hugepage_file *p2 = a;
695 #endif
696         if (p1->physaddr < p2->physaddr)
697                 return -1;
698         else if (p1->physaddr > p2->physaddr)
699                 return 1;
700         else
701                 return 0;
702 }
703
704 /*
705  * Uses mmap to create a shared memory area for storage of data
706  * Used in this file to store the hugepage file map on disk
707  */
708 static void *
709 create_shared_memory(const char *filename, const size_t mem_size)
710 {
711         void *retval;
712         int fd = open(filename, O_CREAT | O_RDWR, 0666);
713         if (fd < 0)
714                 return NULL;
715         if (ftruncate(fd, mem_size) < 0) {
716                 close(fd);
717                 return NULL;
718         }
719         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
720         close(fd);
721         return retval;
722 }
723
724 /*
725  * this copies *active* hugepages from one hugepage table to another.
726  * destination is typically the shared memory.
727  */
728 static int
729 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
730                 const struct hugepage_file * src, int src_size)
731 {
732         int src_pos, dst_pos = 0;
733
734         for (src_pos = 0; src_pos < src_size; src_pos++) {
735                 if (src[src_pos].final_va != NULL) {
736                         /* error on overflow attempt */
737                         if (dst_pos == dest_size)
738                                 return -1;
739                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
740                         dst_pos++;
741                 }
742         }
743         return 0;
744 }
745
746 static int
747 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
748                 unsigned num_hp_info)
749 {
750         unsigned socket, size;
751         int page, nrpages = 0;
752
753         /* get total number of hugepages */
754         for (size = 0; size < num_hp_info; size++)
755                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
756                         nrpages +=
757                         internal_config.hugepage_info[size].num_pages[socket];
758
759         for (page = 0; page < nrpages; page++) {
760                 struct hugepage_file *hp = &hugepg_tbl[page];
761
762                 if (hp->final_va != NULL && unlink(hp->filepath)) {
763                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
764                                 __func__, hp->filepath, strerror(errno));
765                 }
766         }
767         return 0;
768 }
769
770 /*
771  * unmaps hugepages that are not going to be used. since we originally allocate
772  * ALL hugepages (not just those we need), additional unmapping needs to be done.
773  */
774 static int
775 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
776                 struct hugepage_info *hpi,
777                 unsigned num_hp_info)
778 {
779         unsigned socket, size;
780         int page, nrpages = 0;
781
782         /* get total number of hugepages */
783         for (size = 0; size < num_hp_info; size++)
784                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
785                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
786
787         for (size = 0; size < num_hp_info; size++) {
788                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
789                         unsigned pages_found = 0;
790
791                         /* traverse until we have unmapped all the unused pages */
792                         for (page = 0; page < nrpages; page++) {
793                                 struct hugepage_file *hp = &hugepg_tbl[page];
794
795                                 /* find a page that matches the criteria */
796                                 if ((hp->size == hpi[size].hugepage_sz) &&
797                                                 (hp->socket_id == (int) socket)) {
798
799                                         /* if we skipped enough pages, unmap the rest */
800                                         if (pages_found == hpi[size].num_pages[socket]) {
801                                                 uint64_t unmap_len;
802
803                                                 unmap_len = hp->size;
804
805                                                 /* get start addr and len of the remaining segment */
806                                                 munmap(hp->final_va, (size_t) unmap_len);
807
808                                                 hp->final_va = NULL;
809                                                 if (unlink(hp->filepath) == -1) {
810                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
811                                                                         __func__, hp->filepath, strerror(errno));
812                                                         return -1;
813                                                 }
814                                         } else {
815                                                 /* lock the page and skip */
816                                                 pages_found++;
817                                         }
818
819                                 } /* match page */
820                         } /* foreach page */
821                 } /* foreach socket */
822         } /* foreach pagesize */
823
824         return 0;
825 }
826
827 static inline uint64_t
828 get_socket_mem_size(int socket)
829 {
830         uint64_t size = 0;
831         unsigned i;
832
833         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
834                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
835                 if (hpi->hugedir != NULL)
836                         size += hpi->hugepage_sz * hpi->num_pages[socket];
837         }
838
839         return size;
840 }
841
842 /*
843  * This function is a NUMA-aware equivalent of calc_num_pages.
844  * It takes in the list of hugepage sizes and the
845  * number of pages thereof, and calculates the best number of
846  * pages of each size to fulfill the request for <memory> ram
847  */
848 static int
849 calc_num_pages_per_socket(uint64_t * memory,
850                 struct hugepage_info *hp_info,
851                 struct hugepage_info *hp_used,
852                 unsigned num_hp_info)
853 {
854         unsigned socket, j, i = 0;
855         unsigned requested, available;
856         int total_num_pages = 0;
857         uint64_t remaining_mem, cur_mem;
858         uint64_t total_mem = internal_config.memory;
859
860         if (num_hp_info == 0)
861                 return -1;
862
863         /* if specific memory amounts per socket weren't requested */
864         if (internal_config.force_sockets == 0) {
865                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
866                 size_t default_size, total_size;
867                 unsigned lcore_id;
868
869                 /* Compute number of cores per socket */
870                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
871                 RTE_LCORE_FOREACH(lcore_id) {
872                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
873                 }
874
875                 /*
876                  * Automatically spread requested memory amongst detected sockets according
877                  * to number of cores from cpu mask present on each socket
878                  */
879                 total_size = internal_config.memory;
880                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
881
882                         /* Set memory amount per socket */
883                         default_size = (internal_config.memory * cpu_per_socket[socket])
884                                         / rte_lcore_count();
885
886                         /* Limit to maximum available memory on socket */
887                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
888
889                         /* Update sizes */
890                         memory[socket] = default_size;
891                         total_size -= default_size;
892                 }
893
894                 /*
895                  * If some memory is remaining, try to allocate it by getting all
896                  * available memory from sockets, one after the other
897                  */
898                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
899                         /* take whatever is available */
900                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
901                                                total_size);
902
903                         /* Update sizes */
904                         memory[socket] += default_size;
905                         total_size -= default_size;
906                 }
907         }
908
909         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
910                 /* skips if the memory on specific socket wasn't requested */
911                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
912                         hp_used[i].hugedir = hp_info[i].hugedir;
913                         hp_used[i].num_pages[socket] = RTE_MIN(
914                                         memory[socket] / hp_info[i].hugepage_sz,
915                                         hp_info[i].num_pages[socket]);
916
917                         cur_mem = hp_used[i].num_pages[socket] *
918                                         hp_used[i].hugepage_sz;
919
920                         memory[socket] -= cur_mem;
921                         total_mem -= cur_mem;
922
923                         total_num_pages += hp_used[i].num_pages[socket];
924
925                         /* check if we have met all memory requests */
926                         if (memory[socket] == 0)
927                                 break;
928
929                         /* check if we have any more pages left at this size, if so
930                          * move on to next size */
931                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
932                                 continue;
933                         /* At this point we know that there are more pages available that are
934                          * bigger than the memory we want, so lets see if we can get enough
935                          * from other page sizes.
936                          */
937                         remaining_mem = 0;
938                         for (j = i+1; j < num_hp_info; j++)
939                                 remaining_mem += hp_info[j].hugepage_sz *
940                                 hp_info[j].num_pages[socket];
941
942                         /* is there enough other memory, if not allocate another page and quit */
943                         if (remaining_mem < memory[socket]){
944                                 cur_mem = RTE_MIN(memory[socket],
945                                                 hp_info[i].hugepage_sz);
946                                 memory[socket] -= cur_mem;
947                                 total_mem -= cur_mem;
948                                 hp_used[i].num_pages[socket]++;
949                                 total_num_pages++;
950                                 break; /* we are done with this socket*/
951                         }
952                 }
953                 /* if we didn't satisfy all memory requirements per socket */
954                 if (memory[socket] > 0) {
955                         /* to prevent icc errors */
956                         requested = (unsigned) (internal_config.socket_mem[socket] /
957                                         0x100000);
958                         available = requested -
959                                         ((unsigned) (memory[socket] / 0x100000));
960                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
961                                         "Requested: %uMB, available: %uMB\n", socket,
962                                         requested, available);
963                         return -1;
964                 }
965         }
966
967         /* if we didn't satisfy total memory requirements */
968         if (total_mem > 0) {
969                 requested = (unsigned) (internal_config.memory / 0x100000);
970                 available = requested - (unsigned) (total_mem / 0x100000);
971                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
972                                 " available: %uMB\n", requested, available);
973                 return -1;
974         }
975         return total_num_pages;
976 }
977
978 static inline size_t
979 eal_get_hugepage_mem_size(void)
980 {
981         uint64_t size = 0;
982         unsigned i, j;
983
984         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
985                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
986                 if (hpi->hugedir != NULL) {
987                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
988                                 size += hpi->hugepage_sz * hpi->num_pages[j];
989                         }
990                 }
991         }
992
993         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
994 }
995
996 static struct sigaction huge_action_old;
997 static int huge_need_recover;
998
999 static void
1000 huge_register_sigbus(void)
1001 {
1002         sigset_t mask;
1003         struct sigaction action;
1004
1005         sigemptyset(&mask);
1006         sigaddset(&mask, SIGBUS);
1007         action.sa_flags = 0;
1008         action.sa_mask = mask;
1009         action.sa_handler = huge_sigbus_handler;
1010
1011         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1012 }
1013
1014 static void
1015 huge_recover_sigbus(void)
1016 {
1017         if (huge_need_recover) {
1018                 sigaction(SIGBUS, &huge_action_old, NULL);
1019                 huge_need_recover = 0;
1020         }
1021 }
1022
1023 /*
1024  * Prepare physical memory mapping: fill configuration structure with
1025  * these infos, return 0 on success.
1026  *  1. map N huge pages in separate files in hugetlbfs
1027  *  2. find associated physical addr
1028  *  3. find associated NUMA socket ID
1029  *  4. sort all huge pages by physical address
1030  *  5. remap these N huge pages in the correct order
1031  *  6. unmap the first mapping
1032  *  7. fill memsegs in configuration with contiguous zones
1033  */
1034 int
1035 rte_eal_hugepage_init(void)
1036 {
1037         struct rte_mem_config *mcfg;
1038         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1039         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1040
1041         uint64_t memory[RTE_MAX_NUMA_NODES];
1042
1043         unsigned hp_offset;
1044         int i, j, new_memseg;
1045         int nr_hugefiles, nr_hugepages = 0;
1046         void *addr;
1047
1048         test_phys_addrs_available();
1049
1050         memset(used_hp, 0, sizeof(used_hp));
1051
1052         /* get pointer to global configuration */
1053         mcfg = rte_eal_get_configuration()->mem_config;
1054
1055         /* hugetlbfs can be disabled */
1056         if (internal_config.no_hugetlbfs) {
1057                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1058                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1059                 if (addr == MAP_FAILED) {
1060                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1061                                         strerror(errno));
1062                         return -1;
1063                 }
1064                 mcfg->memseg[0].phys_addr = RTE_BAD_PHYS_ADDR;
1065                 mcfg->memseg[0].addr = addr;
1066                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1067                 mcfg->memseg[0].len = internal_config.memory;
1068                 mcfg->memseg[0].socket_id = 0;
1069                 return 0;
1070         }
1071
1072 /* check if app runs on Xen Dom0 */
1073         if (internal_config.xen_dom0_support) {
1074 #ifdef RTE_LIBRTE_XEN_DOM0
1075                 /* use dom0_mm kernel driver to init memory */
1076                 if (rte_xen_dom0_memory_init() < 0)
1077                         return -1;
1078                 else
1079                         return 0;
1080 #endif
1081         }
1082
1083         /* calculate total number of hugepages available. at this point we haven't
1084          * yet started sorting them so they all are on socket 0 */
1085         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1086                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1087                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1088
1089                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1090         }
1091
1092         /*
1093          * allocate a memory area for hugepage table.
1094          * this isn't shared memory yet. due to the fact that we need some
1095          * processing done on these pages, shared memory will be created
1096          * at a later stage.
1097          */
1098         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1099         if (tmp_hp == NULL)
1100                 goto fail;
1101
1102         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1103
1104         hp_offset = 0; /* where we start the current page size entries */
1105
1106         huge_register_sigbus();
1107
1108         /* make a copy of socket_mem, needed for balanced allocation. */
1109         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1110                 memory[i] = internal_config.socket_mem[i];
1111
1112
1113         /* map all hugepages and sort them */
1114         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1115                 unsigned pages_old, pages_new;
1116                 struct hugepage_info *hpi;
1117
1118                 /*
1119                  * we don't yet mark hugepages as used at this stage, so
1120                  * we just map all hugepages available to the system
1121                  * all hugepages are still located on socket 0
1122                  */
1123                 hpi = &internal_config.hugepage_info[i];
1124
1125                 if (hpi->num_pages[0] == 0)
1126                         continue;
1127
1128                 /* map all hugepages available */
1129                 pages_old = hpi->num_pages[0];
1130                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1131                                               memory, 1);
1132                 if (pages_new < pages_old) {
1133                         RTE_LOG(DEBUG, EAL,
1134                                 "%d not %d hugepages of size %u MB allocated\n",
1135                                 pages_new, pages_old,
1136                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1137
1138                         int pages = pages_old - pages_new;
1139
1140                         nr_hugepages -= pages;
1141                         hpi->num_pages[0] = pages_new;
1142                         if (pages_new == 0)
1143                                 continue;
1144                 }
1145
1146                 if (phys_addrs_available) {
1147                         /* find physical addresses for each hugepage */
1148                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1149                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1150                                         "for %u MB pages\n",
1151                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1152                                 goto fail;
1153                         }
1154                 } else {
1155                         /* set physical addresses for each hugepage */
1156                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1157                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1158                                         "for %u MB pages\n",
1159                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1160                                 goto fail;
1161                         }
1162                 }
1163
1164                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1165                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1166                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1167                         goto fail;
1168                 }
1169
1170                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1171                       sizeof(struct hugepage_file), cmp_physaddr);
1172
1173                 /* remap all hugepages */
1174                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1175                     hpi->num_pages[0]) {
1176                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1177                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1178                         goto fail;
1179                 }
1180
1181                 /* unmap original mappings */
1182                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1183                         goto fail;
1184
1185                 /* we have processed a num of hugepages of this size, so inc offset */
1186                 hp_offset += hpi->num_pages[0];
1187         }
1188
1189         huge_recover_sigbus();
1190
1191         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1192                 internal_config.memory = eal_get_hugepage_mem_size();
1193
1194         nr_hugefiles = nr_hugepages;
1195
1196
1197         /* clean out the numbers of pages */
1198         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1199                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1200                         internal_config.hugepage_info[i].num_pages[j] = 0;
1201
1202         /* get hugepages for each socket */
1203         for (i = 0; i < nr_hugefiles; i++) {
1204                 int socket = tmp_hp[i].socket_id;
1205
1206                 /* find a hugepage info with right size and increment num_pages */
1207                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1208                                 (int)internal_config.num_hugepage_sizes);
1209                 for (j = 0; j < nb_hpsizes; j++) {
1210                         if (tmp_hp[i].size ==
1211                                         internal_config.hugepage_info[j].hugepage_sz) {
1212                                 internal_config.hugepage_info[j].num_pages[socket]++;
1213                         }
1214                 }
1215         }
1216
1217         /* make a copy of socket_mem, needed for number of pages calculation */
1218         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1219                 memory[i] = internal_config.socket_mem[i];
1220
1221         /* calculate final number of pages */
1222         nr_hugepages = calc_num_pages_per_socket(memory,
1223                         internal_config.hugepage_info, used_hp,
1224                         internal_config.num_hugepage_sizes);
1225
1226         /* error if not enough memory available */
1227         if (nr_hugepages < 0)
1228                 goto fail;
1229
1230         /* reporting in! */
1231         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1232                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1233                         if (used_hp[i].num_pages[j] > 0) {
1234                                 RTE_LOG(DEBUG, EAL,
1235                                         "Requesting %u pages of size %uMB"
1236                                         " from socket %i\n",
1237                                         used_hp[i].num_pages[j],
1238                                         (unsigned)
1239                                         (used_hp[i].hugepage_sz / 0x100000),
1240                                         j);
1241                         }
1242                 }
1243         }
1244
1245         /* create shared memory */
1246         hugepage = create_shared_memory(eal_hugepage_info_path(),
1247                         nr_hugefiles * sizeof(struct hugepage_file));
1248
1249         if (hugepage == NULL) {
1250                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1251                 goto fail;
1252         }
1253         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1254
1255         /*
1256          * unmap pages that we won't need (looks at used_hp).
1257          * also, sets final_va to NULL on pages that were unmapped.
1258          */
1259         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1260                         internal_config.num_hugepage_sizes) < 0) {
1261                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1262                 goto fail;
1263         }
1264
1265         /*
1266          * copy stuff from malloc'd hugepage* to the actual shared memory.
1267          * this procedure only copies those hugepages that have final_va
1268          * not NULL. has overflow protection.
1269          */
1270         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1271                         tmp_hp, nr_hugefiles) < 0) {
1272                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1273                 goto fail;
1274         }
1275
1276         /* free the hugepage backing files */
1277         if (internal_config.hugepage_unlink &&
1278                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1279                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1280                 goto fail;
1281         }
1282
1283         /* free the temporary hugepage table */
1284         free(tmp_hp);
1285         tmp_hp = NULL;
1286
1287         /* first memseg index shall be 0 after incrementing it below */
1288         j = -1;
1289         for (i = 0; i < nr_hugefiles; i++) {
1290                 new_memseg = 0;
1291
1292                 /* if this is a new section, create a new memseg */
1293                 if (i == 0)
1294                         new_memseg = 1;
1295                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1296                         new_memseg = 1;
1297                 else if (hugepage[i].size != hugepage[i-1].size)
1298                         new_memseg = 1;
1299
1300 #ifdef RTE_ARCH_PPC_64
1301                 /* On PPC64 architecture, the mmap always start from higher
1302                  * virtual address to lower address. Here, both the physical
1303                  * address and virtual address are in descending order */
1304                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1305                     hugepage[i].size)
1306                         new_memseg = 1;
1307                 else if (((unsigned long)hugepage[i-1].final_va -
1308                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1309                         new_memseg = 1;
1310 #else
1311                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1312                     hugepage[i].size)
1313                         new_memseg = 1;
1314                 else if (((unsigned long)hugepage[i].final_va -
1315                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1316                         new_memseg = 1;
1317 #endif
1318
1319                 if (new_memseg) {
1320                         j += 1;
1321                         if (j == RTE_MAX_MEMSEG)
1322                                 break;
1323
1324                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1325                         mcfg->memseg[j].addr = hugepage[i].final_va;
1326                         mcfg->memseg[j].len = hugepage[i].size;
1327                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1328                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1329                 }
1330                 /* continuation of previous memseg */
1331                 else {
1332 #ifdef RTE_ARCH_PPC_64
1333                 /* Use the phy and virt address of the last page as segment
1334                  * address for IBM Power architecture */
1335                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1336                         mcfg->memseg[j].addr = hugepage[i].final_va;
1337 #endif
1338                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1339                 }
1340                 hugepage[i].memseg_id = j;
1341         }
1342
1343         if (i < nr_hugefiles) {
1344                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1345                         "from %d requested\n"
1346                         "Current %s=%d is not enough\n"
1347                         "Please either increase it or request less amount "
1348                         "of memory.\n",
1349                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1350                         RTE_MAX_MEMSEG);
1351                 goto fail;
1352         }
1353
1354         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1355
1356         return 0;
1357
1358 fail:
1359         huge_recover_sigbus();
1360         free(tmp_hp);
1361         if (hugepage != NULL)
1362                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1363
1364         return -1;
1365 }
1366
1367 /*
1368  * uses fstat to report the size of a file on disk
1369  */
1370 static off_t
1371 getFileSize(int fd)
1372 {
1373         struct stat st;
1374         if (fstat(fd, &st) < 0)
1375                 return 0;
1376         return st.st_size;
1377 }
1378
1379 /*
1380  * This creates the memory mappings in the secondary process to match that of
1381  * the server process. It goes through each memory segment in the DPDK runtime
1382  * configuration and finds the hugepages which form that segment, mapping them
1383  * in order to form a contiguous block in the virtual memory space
1384  */
1385 int
1386 rte_eal_hugepage_attach(void)
1387 {
1388         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1389         struct hugepage_file *hp = NULL;
1390         unsigned num_hp = 0;
1391         unsigned i, s = 0; /* s used to track the segment number */
1392         unsigned max_seg = RTE_MAX_MEMSEG;
1393         off_t size = 0;
1394         int fd, fd_zero = -1, fd_hugepage = -1;
1395
1396         if (aslr_enabled() > 0) {
1397                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1398                                 "(ASLR) is enabled in the kernel.\n");
1399                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1400                                 "into secondary processes\n");
1401         }
1402
1403         test_phys_addrs_available();
1404
1405         if (internal_config.xen_dom0_support) {
1406 #ifdef RTE_LIBRTE_XEN_DOM0
1407                 if (rte_xen_dom0_memory_attach() < 0) {
1408                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1409                                         "process\n");
1410                         return -1;
1411                 }
1412                 return 0;
1413 #endif
1414         }
1415
1416         fd_zero = open("/dev/zero", O_RDONLY);
1417         if (fd_zero < 0) {
1418                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1419                 goto error;
1420         }
1421         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1422         if (fd_hugepage < 0) {
1423                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1424                 goto error;
1425         }
1426
1427         /* map all segments into memory to make sure we get the addrs */
1428         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1429                 void *base_addr;
1430
1431                 /*
1432                  * the first memory segment with len==0 is the one that
1433                  * follows the last valid segment.
1434                  */
1435                 if (mcfg->memseg[s].len == 0)
1436                         break;
1437
1438                 /*
1439                  * fdzero is mmapped to get a contiguous block of virtual
1440                  * addresses of the appropriate memseg size.
1441                  * use mmap to get identical addresses as the primary process.
1442                  */
1443                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1444                                  PROT_READ,
1445 #ifdef RTE_ARCH_PPC_64
1446                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1447 #else
1448                                  MAP_PRIVATE,
1449 #endif
1450                                  fd_zero, 0);
1451                 if (base_addr == MAP_FAILED ||
1452                     base_addr != mcfg->memseg[s].addr) {
1453                         max_seg = s;
1454                         if (base_addr != MAP_FAILED) {
1455                                 /* errno is stale, don't use */
1456                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1457                                         "in /dev/zero at [%p], got [%p] - "
1458                                         "please use '--base-virtaddr' option\n",
1459                                         (unsigned long long)mcfg->memseg[s].len,
1460                                         mcfg->memseg[s].addr, base_addr);
1461                                 munmap(base_addr, mcfg->memseg[s].len);
1462                         } else {
1463                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1464                                         "in /dev/zero at [%p]: '%s'\n",
1465                                         (unsigned long long)mcfg->memseg[s].len,
1466                                         mcfg->memseg[s].addr, strerror(errno));
1467                         }
1468                         if (aslr_enabled() > 0) {
1469                                 RTE_LOG(ERR, EAL, "It is recommended to "
1470                                         "disable ASLR in the kernel "
1471                                         "and retry running both primary "
1472                                         "and secondary processes\n");
1473                         }
1474                         goto error;
1475                 }
1476         }
1477
1478         size = getFileSize(fd_hugepage);
1479         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1480         if (hp == MAP_FAILED) {
1481                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1482                 goto error;
1483         }
1484
1485         num_hp = size / sizeof(struct hugepage_file);
1486         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1487
1488         s = 0;
1489         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1490                 void *addr, *base_addr;
1491                 uintptr_t offset = 0;
1492                 size_t mapping_size;
1493                 /*
1494                  * free previously mapped memory so we can map the
1495                  * hugepages into the space
1496                  */
1497                 base_addr = mcfg->memseg[s].addr;
1498                 munmap(base_addr, mcfg->memseg[s].len);
1499
1500                 /* find the hugepages for this segment and map them
1501                  * we don't need to worry about order, as the server sorted the
1502                  * entries before it did the second mmap of them */
1503                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1504                         if (hp[i].memseg_id == (int)s){
1505                                 fd = open(hp[i].filepath, O_RDWR);
1506                                 if (fd < 0) {
1507                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1508                                                 hp[i].filepath);
1509                                         goto error;
1510                                 }
1511                                 mapping_size = hp[i].size;
1512                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1513                                                 mapping_size, PROT_READ | PROT_WRITE,
1514                                                 MAP_SHARED, fd, 0);
1515                                 close(fd); /* close file both on success and on failure */
1516                                 if (addr == MAP_FAILED ||
1517                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1518                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1519                                                 hp[i].filepath);
1520                                         goto error;
1521                                 }
1522                                 offset+=mapping_size;
1523                         }
1524                 }
1525                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1526                                 (unsigned long long)mcfg->memseg[s].len);
1527                 s++;
1528         }
1529         /* unmap the hugepage config file, since we are done using it */
1530         munmap(hp, size);
1531         close(fd_zero);
1532         close(fd_hugepage);
1533         return 0;
1534
1535 error:
1536         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1537                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1538         if (hp != NULL && hp != MAP_FAILED)
1539                 munmap(hp, size);
1540         if (fd_zero >= 0)
1541                 close(fd_zero);
1542         if (fd_hugepage >= 0)
1543                 close(fd_hugepage);
1544         return -1;
1545 }
1546
1547 bool
1548 rte_eal_using_phys_addrs(void)
1549 {
1550         return phys_addrs_available;
1551 }