e17c9cb5daa4d26aecbc311a015fdb84fc9f4713
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <sys/mman.h>
46 #include <sys/types.h>
47 #include <sys/stat.h>
48 #include <sys/queue.h>
49 #include <sys/file.h>
50 #include <unistd.h>
51 #include <limits.h>
52 #include <errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <setjmp.h>
57
58 #include <rte_log.h>
59 #include <rte_memory.h>
60 #include <rte_memzone.h>
61 #include <rte_launch.h>
62 #include <rte_eal.h>
63 #include <rte_eal_memconfig.h>
64 #include <rte_per_lcore.h>
65 #include <rte_lcore.h>
66 #include <rte_common.h>
67 #include <rte_string_fns.h>
68
69 #include "eal_private.h"
70 #include "eal_internal_cfg.h"
71 #include "eal_filesystem.h"
72 #include "eal_hugepages.h"
73
74 #define PFN_MASK_SIZE   8
75
76 #ifdef RTE_LIBRTE_XEN_DOM0
77 int rte_xen_dom0_supported(void)
78 {
79         return internal_config.xen_dom0_support;
80 }
81 #endif
82
83 /**
84  * @file
85  * Huge page mapping under linux
86  *
87  * To reserve a big contiguous amount of memory, we use the hugepage
88  * feature of linux. For that, we need to have hugetlbfs mounted. This
89  * code will create many files in this directory (one per page) and
90  * map them in virtual memory. For each page, we will retrieve its
91  * physical address and remap it in order to have a virtual contiguous
92  * zone as well as a physical contiguous zone.
93  */
94
95 static uint64_t baseaddr_offset;
96
97 static bool phys_addrs_available = true;
98
99 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
100
101 static void
102 test_phys_addrs_available(void)
103 {
104         uint64_t tmp;
105         phys_addr_t physaddr;
106
107         /* For dom0, phys addresses can always be available */
108         if (rte_xen_dom0_supported())
109                 return;
110
111         physaddr = rte_mem_virt2phy(&tmp);
112         if (physaddr == RTE_BAD_PHYS_ADDR) {
113                 RTE_LOG(ERR, EAL,
114                         "Cannot obtain physical addresses: %s. "
115                         "Only vfio will function.\n",
116                         strerror(errno));
117                 phys_addrs_available = false;
118         }
119 }
120
121 /*
122  * Get physical address of any mapped virtual address in the current process.
123  */
124 phys_addr_t
125 rte_mem_virt2phy(const void *virtaddr)
126 {
127         int fd, retval;
128         uint64_t page, physaddr;
129         unsigned long virt_pfn;
130         int page_size;
131         off_t offset;
132
133         /* when using dom0, /proc/self/pagemap always returns 0, check in
134          * dpdk memory by browsing the memsegs */
135         if (rte_xen_dom0_supported()) {
136                 struct rte_mem_config *mcfg;
137                 struct rte_memseg *memseg;
138                 unsigned i;
139
140                 mcfg = rte_eal_get_configuration()->mem_config;
141                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
142                         memseg = &mcfg->memseg[i];
143                         if (memseg->addr == NULL)
144                                 break;
145                         if (virtaddr > memseg->addr &&
146                                         virtaddr < RTE_PTR_ADD(memseg->addr,
147                                                 memseg->len)) {
148                                 return memseg->phys_addr +
149                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
150                         }
151                 }
152
153                 return RTE_BAD_PHYS_ADDR;
154         }
155
156         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
157         if (!phys_addrs_available)
158                 return RTE_BAD_PHYS_ADDR;
159
160         /* standard page size */
161         page_size = getpagesize();
162
163         fd = open("/proc/self/pagemap", O_RDONLY);
164         if (fd < 0) {
165                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
166                         __func__, strerror(errno));
167                 return RTE_BAD_PHYS_ADDR;
168         }
169
170         virt_pfn = (unsigned long)virtaddr / page_size;
171         offset = sizeof(uint64_t) * virt_pfn;
172         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
173                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
174                                 __func__, strerror(errno));
175                 close(fd);
176                 return RTE_BAD_PHYS_ADDR;
177         }
178
179         retval = read(fd, &page, PFN_MASK_SIZE);
180         close(fd);
181         if (retval < 0) {
182                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
183                                 __func__, strerror(errno));
184                 return RTE_BAD_PHYS_ADDR;
185         } else if (retval != PFN_MASK_SIZE) {
186                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
187                                 "but expected %d:\n",
188                                 __func__, retval, PFN_MASK_SIZE);
189                 return RTE_BAD_PHYS_ADDR;
190         }
191
192         /*
193          * the pfn (page frame number) are bits 0-54 (see
194          * pagemap.txt in linux Documentation)
195          */
196         if ((page & 0x7fffffffffffffULL) == 0)
197                 return RTE_BAD_PHYS_ADDR;
198
199         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
200                 + ((unsigned long)virtaddr % page_size);
201
202         return physaddr;
203 }
204
205 /*
206  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
207  * it by browsing the /proc/self/pagemap special file.
208  */
209 static int
210 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
211 {
212         unsigned int i;
213         phys_addr_t addr;
214
215         for (i = 0; i < hpi->num_pages[0]; i++) {
216                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
217                 if (addr == RTE_BAD_PHYS_ADDR)
218                         return -1;
219                 hugepg_tbl[i].physaddr = addr;
220         }
221         return 0;
222 }
223
224 /*
225  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
226  */
227 static int
228 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
229 {
230         unsigned int i;
231         static phys_addr_t addr;
232
233         for (i = 0; i < hpi->num_pages[0]; i++) {
234                 hugepg_tbl[i].physaddr = addr;
235                 addr += hugepg_tbl[i].size;
236         }
237         return 0;
238 }
239
240 /*
241  * Check whether address-space layout randomization is enabled in
242  * the kernel. This is important for multi-process as it can prevent
243  * two processes mapping data to the same virtual address
244  * Returns:
245  *    0 - address space randomization disabled
246  *    1/2 - address space randomization enabled
247  *    negative error code on error
248  */
249 static int
250 aslr_enabled(void)
251 {
252         char c;
253         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
254         if (fd < 0)
255                 return -errno;
256         retval = read(fd, &c, 1);
257         close(fd);
258         if (retval < 0)
259                 return -errno;
260         if (retval == 0)
261                 return -EIO;
262         switch (c) {
263                 case '0' : return 0;
264                 case '1' : return 1;
265                 case '2' : return 2;
266                 default: return -EINVAL;
267         }
268 }
269
270 /*
271  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
272  * pointer to the mmap'd area and keep *size unmodified. Else, retry
273  * with a smaller zone: decrease *size by hugepage_sz until it reaches
274  * 0. In this case, return NULL. Note: this function returns an address
275  * which is a multiple of hugepage size.
276  */
277 static void *
278 get_virtual_area(size_t *size, size_t hugepage_sz)
279 {
280         void *addr;
281         int fd;
282         long aligned_addr;
283
284         if (internal_config.base_virtaddr != 0) {
285                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
286                                 baseaddr_offset);
287         }
288         else addr = NULL;
289
290         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
291
292         fd = open("/dev/zero", O_RDONLY);
293         if (fd < 0){
294                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
295                 return NULL;
296         }
297         do {
298                 addr = mmap(addr,
299                                 (*size) + hugepage_sz, PROT_READ,
300 #ifdef RTE_ARCH_PPC_64
301                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
302 #else
303                                 MAP_PRIVATE,
304 #endif
305                                 fd, 0);
306                 if (addr == MAP_FAILED)
307                         *size -= hugepage_sz;
308         } while (addr == MAP_FAILED && *size > 0);
309
310         if (addr == MAP_FAILED) {
311                 close(fd);
312                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
313                         strerror(errno));
314                 return NULL;
315         }
316
317         munmap(addr, (*size) + hugepage_sz);
318         close(fd);
319
320         /* align addr to a huge page size boundary */
321         aligned_addr = (long)addr;
322         aligned_addr += (hugepage_sz - 1);
323         aligned_addr &= (~(hugepage_sz - 1));
324         addr = (void *)(aligned_addr);
325
326         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
327                 addr, *size);
328
329         /* increment offset */
330         baseaddr_offset += *size;
331
332         return addr;
333 }
334
335 static sigjmp_buf huge_jmpenv;
336
337 static void huge_sigbus_handler(int signo __rte_unused)
338 {
339         siglongjmp(huge_jmpenv, 1);
340 }
341
342 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
343  * non-static local variable in the stack frame calling sigsetjmp might be
344  * clobbered by a call to longjmp.
345  */
346 static int huge_wrap_sigsetjmp(void)
347 {
348         return sigsetjmp(huge_jmpenv, 1);
349 }
350
351 /*
352  * Mmap all hugepages of hugepage table: it first open a file in
353  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
354  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
355  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
356  * map continguous physical blocks in contiguous virtual blocks.
357  */
358 static unsigned
359 map_all_hugepages(struct hugepage_file *hugepg_tbl,
360                 struct hugepage_info *hpi, int orig)
361 {
362         int fd;
363         unsigned i;
364         void *virtaddr;
365         void *vma_addr = NULL;
366         size_t vma_len = 0;
367
368         for (i = 0; i < hpi->num_pages[0]; i++) {
369                 uint64_t hugepage_sz = hpi->hugepage_sz;
370
371                 if (orig) {
372                         hugepg_tbl[i].file_id = i;
373                         hugepg_tbl[i].size = hugepage_sz;
374                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
375                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
376                                         hugepg_tbl[i].file_id);
377                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
378                 }
379 #ifndef RTE_ARCH_64
380                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
381                  * original map address as final map address.
382                  */
383                 else if ((hugepage_sz == RTE_PGSIZE_1G)
384                         || (hugepage_sz == RTE_PGSIZE_16G)) {
385                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
386                         hugepg_tbl[i].orig_va = NULL;
387                         continue;
388                 }
389 #endif
390                 else if (vma_len == 0) {
391                         unsigned j, num_pages;
392
393                         /* reserve a virtual area for next contiguous
394                          * physical block: count the number of
395                          * contiguous physical pages. */
396                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
397 #ifdef RTE_ARCH_PPC_64
398                                 /* The physical addresses are sorted in
399                                  * descending order on PPC64 */
400                                 if (hugepg_tbl[j].physaddr !=
401                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
402                                         break;
403 #else
404                                 if (hugepg_tbl[j].physaddr !=
405                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
406                                         break;
407 #endif
408                         }
409                         num_pages = j - i;
410                         vma_len = num_pages * hugepage_sz;
411
412                         /* get the biggest virtual memory area up to
413                          * vma_len. If it fails, vma_addr is NULL, so
414                          * let the kernel provide the address. */
415                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
416                         if (vma_addr == NULL)
417                                 vma_len = hugepage_sz;
418                 }
419
420                 /* try to create hugepage file */
421                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
422                 if (fd < 0) {
423                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
424                                         strerror(errno));
425                         return i;
426                 }
427
428                 /* map the segment, and populate page tables,
429                  * the kernel fills this segment with zeros */
430                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
431                                 MAP_SHARED | MAP_POPULATE, fd, 0);
432                 if (virtaddr == MAP_FAILED) {
433                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
434                                         strerror(errno));
435                         close(fd);
436                         return i;
437                 }
438
439                 if (orig) {
440                         hugepg_tbl[i].orig_va = virtaddr;
441                 }
442                 else {
443                         hugepg_tbl[i].final_va = virtaddr;
444                 }
445
446                 if (orig) {
447                         /* In linux, hugetlb limitations, like cgroup, are
448                          * enforced at fault time instead of mmap(), even
449                          * with the option of MAP_POPULATE. Kernel will send
450                          * a SIGBUS signal. To avoid to be killed, save stack
451                          * environment here, if SIGBUS happens, we can jump
452                          * back here.
453                          */
454                         if (huge_wrap_sigsetjmp()) {
455                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
456                                         "hugepages of size %u MB\n",
457                                         (unsigned)(hugepage_sz / 0x100000));
458                                 munmap(virtaddr, hugepage_sz);
459                                 close(fd);
460                                 unlink(hugepg_tbl[i].filepath);
461                                 return i;
462                         }
463                         *(int *)virtaddr = 0;
464                 }
465
466
467                 /* set shared flock on the file. */
468                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
469                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
470                                 __func__, strerror(errno));
471                         close(fd);
472                         return i;
473                 }
474
475                 close(fd);
476
477                 vma_addr = (char *)vma_addr + hugepage_sz;
478                 vma_len -= hugepage_sz;
479         }
480
481         return i;
482 }
483
484 /* Unmap all hugepages from original mapping */
485 static int
486 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
487 {
488         unsigned i;
489         for (i = 0; i < hpi->num_pages[0]; i++) {
490                 if (hugepg_tbl[i].orig_va) {
491                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
492                         hugepg_tbl[i].orig_va = NULL;
493                 }
494         }
495         return 0;
496 }
497
498 /*
499  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
500  * page.
501  */
502 static int
503 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
504 {
505         int socket_id;
506         char *end, *nodestr;
507         unsigned i, hp_count = 0;
508         uint64_t virt_addr;
509         char buf[BUFSIZ];
510         char hugedir_str[PATH_MAX];
511         FILE *f;
512
513         f = fopen("/proc/self/numa_maps", "r");
514         if (f == NULL) {
515                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
516                                 " consider that all memory is in socket_id 0\n");
517                 return 0;
518         }
519
520         snprintf(hugedir_str, sizeof(hugedir_str),
521                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
522
523         /* parse numa map */
524         while (fgets(buf, sizeof(buf), f) != NULL) {
525
526                 /* ignore non huge page */
527                 if (strstr(buf, " huge ") == NULL &&
528                                 strstr(buf, hugedir_str) == NULL)
529                         continue;
530
531                 /* get zone addr */
532                 virt_addr = strtoull(buf, &end, 16);
533                 if (virt_addr == 0 || end == buf) {
534                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
535                         goto error;
536                 }
537
538                 /* get node id (socket id) */
539                 nodestr = strstr(buf, " N");
540                 if (nodestr == NULL) {
541                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
542                         goto error;
543                 }
544                 nodestr += 2;
545                 end = strstr(nodestr, "=");
546                 if (end == NULL) {
547                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
548                         goto error;
549                 }
550                 end[0] = '\0';
551                 end = NULL;
552
553                 socket_id = strtoul(nodestr, &end, 0);
554                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
555                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
556                         goto error;
557                 }
558
559                 /* if we find this page in our mappings, set socket_id */
560                 for (i = 0; i < hpi->num_pages[0]; i++) {
561                         void *va = (void *)(unsigned long)virt_addr;
562                         if (hugepg_tbl[i].orig_va == va) {
563                                 hugepg_tbl[i].socket_id = socket_id;
564                                 hp_count++;
565                         }
566                 }
567         }
568
569         if (hp_count < hpi->num_pages[0])
570                 goto error;
571
572         fclose(f);
573         return 0;
574
575 error:
576         fclose(f);
577         return -1;
578 }
579
580 static int
581 cmp_physaddr(const void *a, const void *b)
582 {
583 #ifndef RTE_ARCH_PPC_64
584         const struct hugepage_file *p1 = a;
585         const struct hugepage_file *p2 = b;
586 #else
587         /* PowerPC needs memory sorted in reverse order from x86 */
588         const struct hugepage_file *p1 = b;
589         const struct hugepage_file *p2 = a;
590 #endif
591         if (p1->physaddr < p2->physaddr)
592                 return -1;
593         else if (p1->physaddr > p2->physaddr)
594                 return 1;
595         else
596                 return 0;
597 }
598
599 /*
600  * Uses mmap to create a shared memory area for storage of data
601  * Used in this file to store the hugepage file map on disk
602  */
603 static void *
604 create_shared_memory(const char *filename, const size_t mem_size)
605 {
606         void *retval;
607         int fd = open(filename, O_CREAT | O_RDWR, 0666);
608         if (fd < 0)
609                 return NULL;
610         if (ftruncate(fd, mem_size) < 0) {
611                 close(fd);
612                 return NULL;
613         }
614         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
615         close(fd);
616         return retval;
617 }
618
619 /*
620  * this copies *active* hugepages from one hugepage table to another.
621  * destination is typically the shared memory.
622  */
623 static int
624 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
625                 const struct hugepage_file * src, int src_size)
626 {
627         int src_pos, dst_pos = 0;
628
629         for (src_pos = 0; src_pos < src_size; src_pos++) {
630                 if (src[src_pos].final_va != NULL) {
631                         /* error on overflow attempt */
632                         if (dst_pos == dest_size)
633                                 return -1;
634                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
635                         dst_pos++;
636                 }
637         }
638         return 0;
639 }
640
641 static int
642 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
643                 unsigned num_hp_info)
644 {
645         unsigned socket, size;
646         int page, nrpages = 0;
647
648         /* get total number of hugepages */
649         for (size = 0; size < num_hp_info; size++)
650                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
651                         nrpages +=
652                         internal_config.hugepage_info[size].num_pages[socket];
653
654         for (page = 0; page < nrpages; page++) {
655                 struct hugepage_file *hp = &hugepg_tbl[page];
656
657                 if (hp->final_va != NULL && unlink(hp->filepath)) {
658                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
659                                 __func__, hp->filepath, strerror(errno));
660                 }
661         }
662         return 0;
663 }
664
665 /*
666  * unmaps hugepages that are not going to be used. since we originally allocate
667  * ALL hugepages (not just those we need), additional unmapping needs to be done.
668  */
669 static int
670 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
671                 struct hugepage_info *hpi,
672                 unsigned num_hp_info)
673 {
674         unsigned socket, size;
675         int page, nrpages = 0;
676
677         /* get total number of hugepages */
678         for (size = 0; size < num_hp_info; size++)
679                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
680                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
681
682         for (size = 0; size < num_hp_info; size++) {
683                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
684                         unsigned pages_found = 0;
685
686                         /* traverse until we have unmapped all the unused pages */
687                         for (page = 0; page < nrpages; page++) {
688                                 struct hugepage_file *hp = &hugepg_tbl[page];
689
690                                 /* find a page that matches the criteria */
691                                 if ((hp->size == hpi[size].hugepage_sz) &&
692                                                 (hp->socket_id == (int) socket)) {
693
694                                         /* if we skipped enough pages, unmap the rest */
695                                         if (pages_found == hpi[size].num_pages[socket]) {
696                                                 uint64_t unmap_len;
697
698                                                 unmap_len = hp->size;
699
700                                                 /* get start addr and len of the remaining segment */
701                                                 munmap(hp->final_va, (size_t) unmap_len);
702
703                                                 hp->final_va = NULL;
704                                                 if (unlink(hp->filepath) == -1) {
705                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
706                                                                         __func__, hp->filepath, strerror(errno));
707                                                         return -1;
708                                                 }
709                                         } else {
710                                                 /* lock the page and skip */
711                                                 pages_found++;
712                                         }
713
714                                 } /* match page */
715                         } /* foreach page */
716                 } /* foreach socket */
717         } /* foreach pagesize */
718
719         return 0;
720 }
721
722 static inline uint64_t
723 get_socket_mem_size(int socket)
724 {
725         uint64_t size = 0;
726         unsigned i;
727
728         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
729                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
730                 if (hpi->hugedir != NULL)
731                         size += hpi->hugepage_sz * hpi->num_pages[socket];
732         }
733
734         return size;
735 }
736
737 /*
738  * This function is a NUMA-aware equivalent of calc_num_pages.
739  * It takes in the list of hugepage sizes and the
740  * number of pages thereof, and calculates the best number of
741  * pages of each size to fulfill the request for <memory> ram
742  */
743 static int
744 calc_num_pages_per_socket(uint64_t * memory,
745                 struct hugepage_info *hp_info,
746                 struct hugepage_info *hp_used,
747                 unsigned num_hp_info)
748 {
749         unsigned socket, j, i = 0;
750         unsigned requested, available;
751         int total_num_pages = 0;
752         uint64_t remaining_mem, cur_mem;
753         uint64_t total_mem = internal_config.memory;
754
755         if (num_hp_info == 0)
756                 return -1;
757
758         /* if specific memory amounts per socket weren't requested */
759         if (internal_config.force_sockets == 0) {
760                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
761                 size_t default_size, total_size;
762                 unsigned lcore_id;
763
764                 /* Compute number of cores per socket */
765                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
766                 RTE_LCORE_FOREACH(lcore_id) {
767                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
768                 }
769
770                 /*
771                  * Automatically spread requested memory amongst detected sockets according
772                  * to number of cores from cpu mask present on each socket
773                  */
774                 total_size = internal_config.memory;
775                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
776
777                         /* Set memory amount per socket */
778                         default_size = (internal_config.memory * cpu_per_socket[socket])
779                                         / rte_lcore_count();
780
781                         /* Limit to maximum available memory on socket */
782                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
783
784                         /* Update sizes */
785                         memory[socket] = default_size;
786                         total_size -= default_size;
787                 }
788
789                 /*
790                  * If some memory is remaining, try to allocate it by getting all
791                  * available memory from sockets, one after the other
792                  */
793                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
794                         /* take whatever is available */
795                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
796                                                total_size);
797
798                         /* Update sizes */
799                         memory[socket] += default_size;
800                         total_size -= default_size;
801                 }
802         }
803
804         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
805                 /* skips if the memory on specific socket wasn't requested */
806                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
807                         hp_used[i].hugedir = hp_info[i].hugedir;
808                         hp_used[i].num_pages[socket] = RTE_MIN(
809                                         memory[socket] / hp_info[i].hugepage_sz,
810                                         hp_info[i].num_pages[socket]);
811
812                         cur_mem = hp_used[i].num_pages[socket] *
813                                         hp_used[i].hugepage_sz;
814
815                         memory[socket] -= cur_mem;
816                         total_mem -= cur_mem;
817
818                         total_num_pages += hp_used[i].num_pages[socket];
819
820                         /* check if we have met all memory requests */
821                         if (memory[socket] == 0)
822                                 break;
823
824                         /* check if we have any more pages left at this size, if so
825                          * move on to next size */
826                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
827                                 continue;
828                         /* At this point we know that there are more pages available that are
829                          * bigger than the memory we want, so lets see if we can get enough
830                          * from other page sizes.
831                          */
832                         remaining_mem = 0;
833                         for (j = i+1; j < num_hp_info; j++)
834                                 remaining_mem += hp_info[j].hugepage_sz *
835                                 hp_info[j].num_pages[socket];
836
837                         /* is there enough other memory, if not allocate another page and quit */
838                         if (remaining_mem < memory[socket]){
839                                 cur_mem = RTE_MIN(memory[socket],
840                                                 hp_info[i].hugepage_sz);
841                                 memory[socket] -= cur_mem;
842                                 total_mem -= cur_mem;
843                                 hp_used[i].num_pages[socket]++;
844                                 total_num_pages++;
845                                 break; /* we are done with this socket*/
846                         }
847                 }
848                 /* if we didn't satisfy all memory requirements per socket */
849                 if (memory[socket] > 0) {
850                         /* to prevent icc errors */
851                         requested = (unsigned) (internal_config.socket_mem[socket] /
852                                         0x100000);
853                         available = requested -
854                                         ((unsigned) (memory[socket] / 0x100000));
855                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
856                                         "Requested: %uMB, available: %uMB\n", socket,
857                                         requested, available);
858                         return -1;
859                 }
860         }
861
862         /* if we didn't satisfy total memory requirements */
863         if (total_mem > 0) {
864                 requested = (unsigned) (internal_config.memory / 0x100000);
865                 available = requested - (unsigned) (total_mem / 0x100000);
866                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
867                                 " available: %uMB\n", requested, available);
868                 return -1;
869         }
870         return total_num_pages;
871 }
872
873 static inline size_t
874 eal_get_hugepage_mem_size(void)
875 {
876         uint64_t size = 0;
877         unsigned i, j;
878
879         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
880                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
881                 if (hpi->hugedir != NULL) {
882                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
883                                 size += hpi->hugepage_sz * hpi->num_pages[j];
884                         }
885                 }
886         }
887
888         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
889 }
890
891 static struct sigaction huge_action_old;
892 static int huge_need_recover;
893
894 static void
895 huge_register_sigbus(void)
896 {
897         sigset_t mask;
898         struct sigaction action;
899
900         sigemptyset(&mask);
901         sigaddset(&mask, SIGBUS);
902         action.sa_flags = 0;
903         action.sa_mask = mask;
904         action.sa_handler = huge_sigbus_handler;
905
906         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
907 }
908
909 static void
910 huge_recover_sigbus(void)
911 {
912         if (huge_need_recover) {
913                 sigaction(SIGBUS, &huge_action_old, NULL);
914                 huge_need_recover = 0;
915         }
916 }
917
918 /*
919  * Prepare physical memory mapping: fill configuration structure with
920  * these infos, return 0 on success.
921  *  1. map N huge pages in separate files in hugetlbfs
922  *  2. find associated physical addr
923  *  3. find associated NUMA socket ID
924  *  4. sort all huge pages by physical address
925  *  5. remap these N huge pages in the correct order
926  *  6. unmap the first mapping
927  *  7. fill memsegs in configuration with contiguous zones
928  */
929 int
930 rte_eal_hugepage_init(void)
931 {
932         struct rte_mem_config *mcfg;
933         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
934         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
935
936         uint64_t memory[RTE_MAX_NUMA_NODES];
937
938         unsigned hp_offset;
939         int i, j, new_memseg;
940         int nr_hugefiles, nr_hugepages = 0;
941         void *addr;
942
943         test_phys_addrs_available();
944
945         memset(used_hp, 0, sizeof(used_hp));
946
947         /* get pointer to global configuration */
948         mcfg = rte_eal_get_configuration()->mem_config;
949
950         /* hugetlbfs can be disabled */
951         if (internal_config.no_hugetlbfs) {
952                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
953                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
954                 if (addr == MAP_FAILED) {
955                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
956                                         strerror(errno));
957                         return -1;
958                 }
959                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
960                 mcfg->memseg[0].addr = addr;
961                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
962                 mcfg->memseg[0].len = internal_config.memory;
963                 mcfg->memseg[0].socket_id = 0;
964                 return 0;
965         }
966
967 /* check if app runs on Xen Dom0 */
968         if (internal_config.xen_dom0_support) {
969 #ifdef RTE_LIBRTE_XEN_DOM0
970                 /* use dom0_mm kernel driver to init memory */
971                 if (rte_xen_dom0_memory_init() < 0)
972                         return -1;
973                 else
974                         return 0;
975 #endif
976         }
977
978         /* calculate total number of hugepages available. at this point we haven't
979          * yet started sorting them so they all are on socket 0 */
980         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
981                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
982                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
983
984                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
985         }
986
987         /*
988          * allocate a memory area for hugepage table.
989          * this isn't shared memory yet. due to the fact that we need some
990          * processing done on these pages, shared memory will be created
991          * at a later stage.
992          */
993         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
994         if (tmp_hp == NULL)
995                 goto fail;
996
997         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
998
999         hp_offset = 0; /* where we start the current page size entries */
1000
1001         huge_register_sigbus();
1002
1003         /* map all hugepages and sort them */
1004         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1005                 unsigned pages_old, pages_new;
1006                 struct hugepage_info *hpi;
1007
1008                 /*
1009                  * we don't yet mark hugepages as used at this stage, so
1010                  * we just map all hugepages available to the system
1011                  * all hugepages are still located on socket 0
1012                  */
1013                 hpi = &internal_config.hugepage_info[i];
1014
1015                 if (hpi->num_pages[0] == 0)
1016                         continue;
1017
1018                 /* map all hugepages available */
1019                 pages_old = hpi->num_pages[0];
1020                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1021                 if (pages_new < pages_old) {
1022                         RTE_LOG(DEBUG, EAL,
1023                                 "%d not %d hugepages of size %u MB allocated\n",
1024                                 pages_new, pages_old,
1025                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1026
1027                         int pages = pages_old - pages_new;
1028
1029                         nr_hugepages -= pages;
1030                         hpi->num_pages[0] = pages_new;
1031                         if (pages_new == 0)
1032                                 continue;
1033                 }
1034
1035                 if (phys_addrs_available) {
1036                         /* find physical addresses for each hugepage */
1037                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1038                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1039                                         "for %u MB pages\n",
1040                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1041                                 goto fail;
1042                         }
1043                 } else {
1044                         /* set physical addresses for each hugepage */
1045                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1046                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1047                                         "for %u MB pages\n",
1048                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1049                                 goto fail;
1050                         }
1051                 }
1052
1053                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1054                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1055                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1056                         goto fail;
1057                 }
1058
1059                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1060                       sizeof(struct hugepage_file), cmp_physaddr);
1061
1062                 /* remap all hugepages */
1063                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1064                     hpi->num_pages[0]) {
1065                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1066                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1067                         goto fail;
1068                 }
1069
1070                 /* unmap original mappings */
1071                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1072                         goto fail;
1073
1074                 /* we have processed a num of hugepages of this size, so inc offset */
1075                 hp_offset += hpi->num_pages[0];
1076         }
1077
1078         huge_recover_sigbus();
1079
1080         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1081                 internal_config.memory = eal_get_hugepage_mem_size();
1082
1083         nr_hugefiles = nr_hugepages;
1084
1085
1086         /* clean out the numbers of pages */
1087         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1088                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1089                         internal_config.hugepage_info[i].num_pages[j] = 0;
1090
1091         /* get hugepages for each socket */
1092         for (i = 0; i < nr_hugefiles; i++) {
1093                 int socket = tmp_hp[i].socket_id;
1094
1095                 /* find a hugepage info with right size and increment num_pages */
1096                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1097                                 (int)internal_config.num_hugepage_sizes);
1098                 for (j = 0; j < nb_hpsizes; j++) {
1099                         if (tmp_hp[i].size ==
1100                                         internal_config.hugepage_info[j].hugepage_sz) {
1101                                 internal_config.hugepage_info[j].num_pages[socket]++;
1102                         }
1103                 }
1104         }
1105
1106         /* make a copy of socket_mem, needed for number of pages calculation */
1107         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1108                 memory[i] = internal_config.socket_mem[i];
1109
1110         /* calculate final number of pages */
1111         nr_hugepages = calc_num_pages_per_socket(memory,
1112                         internal_config.hugepage_info, used_hp,
1113                         internal_config.num_hugepage_sizes);
1114
1115         /* error if not enough memory available */
1116         if (nr_hugepages < 0)
1117                 goto fail;
1118
1119         /* reporting in! */
1120         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1121                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1122                         if (used_hp[i].num_pages[j] > 0) {
1123                                 RTE_LOG(DEBUG, EAL,
1124                                         "Requesting %u pages of size %uMB"
1125                                         " from socket %i\n",
1126                                         used_hp[i].num_pages[j],
1127                                         (unsigned)
1128                                         (used_hp[i].hugepage_sz / 0x100000),
1129                                         j);
1130                         }
1131                 }
1132         }
1133
1134         /* create shared memory */
1135         hugepage = create_shared_memory(eal_hugepage_info_path(),
1136                         nr_hugefiles * sizeof(struct hugepage_file));
1137
1138         if (hugepage == NULL) {
1139                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1140                 goto fail;
1141         }
1142         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1143
1144         /*
1145          * unmap pages that we won't need (looks at used_hp).
1146          * also, sets final_va to NULL on pages that were unmapped.
1147          */
1148         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1149                         internal_config.num_hugepage_sizes) < 0) {
1150                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1151                 goto fail;
1152         }
1153
1154         /*
1155          * copy stuff from malloc'd hugepage* to the actual shared memory.
1156          * this procedure only copies those hugepages that have final_va
1157          * not NULL. has overflow protection.
1158          */
1159         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1160                         tmp_hp, nr_hugefiles) < 0) {
1161                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1162                 goto fail;
1163         }
1164
1165         /* free the hugepage backing files */
1166         if (internal_config.hugepage_unlink &&
1167                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1168                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1169                 goto fail;
1170         }
1171
1172         /* free the temporary hugepage table */
1173         free(tmp_hp);
1174         tmp_hp = NULL;
1175
1176         /* first memseg index shall be 0 after incrementing it below */
1177         j = -1;
1178         for (i = 0; i < nr_hugefiles; i++) {
1179                 new_memseg = 0;
1180
1181                 /* if this is a new section, create a new memseg */
1182                 if (i == 0)
1183                         new_memseg = 1;
1184                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1185                         new_memseg = 1;
1186                 else if (hugepage[i].size != hugepage[i-1].size)
1187                         new_memseg = 1;
1188
1189 #ifdef RTE_ARCH_PPC_64
1190                 /* On PPC64 architecture, the mmap always start from higher
1191                  * virtual address to lower address. Here, both the physical
1192                  * address and virtual address are in descending order */
1193                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1194                     hugepage[i].size)
1195                         new_memseg = 1;
1196                 else if (((unsigned long)hugepage[i-1].final_va -
1197                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1198                         new_memseg = 1;
1199 #else
1200                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1201                     hugepage[i].size)
1202                         new_memseg = 1;
1203                 else if (((unsigned long)hugepage[i].final_va -
1204                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1205                         new_memseg = 1;
1206 #endif
1207
1208                 if (new_memseg) {
1209                         j += 1;
1210                         if (j == RTE_MAX_MEMSEG)
1211                                 break;
1212
1213                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1214                         mcfg->memseg[j].addr = hugepage[i].final_va;
1215                         mcfg->memseg[j].len = hugepage[i].size;
1216                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1217                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1218                 }
1219                 /* continuation of previous memseg */
1220                 else {
1221 #ifdef RTE_ARCH_PPC_64
1222                 /* Use the phy and virt address of the last page as segment
1223                  * address for IBM Power architecture */
1224                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1225                         mcfg->memseg[j].addr = hugepage[i].final_va;
1226 #endif
1227                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1228                 }
1229                 hugepage[i].memseg_id = j;
1230         }
1231
1232         if (i < nr_hugefiles) {
1233                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1234                         "from %d requested\n"
1235                         "Current %s=%d is not enough\n"
1236                         "Please either increase it or request less amount "
1237                         "of memory.\n",
1238                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1239                         RTE_MAX_MEMSEG);
1240                 goto fail;
1241         }
1242
1243         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1244
1245         return 0;
1246
1247 fail:
1248         huge_recover_sigbus();
1249         free(tmp_hp);
1250         if (hugepage != NULL)
1251                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1252
1253         return -1;
1254 }
1255
1256 /*
1257  * uses fstat to report the size of a file on disk
1258  */
1259 static off_t
1260 getFileSize(int fd)
1261 {
1262         struct stat st;
1263         if (fstat(fd, &st) < 0)
1264                 return 0;
1265         return st.st_size;
1266 }
1267
1268 /*
1269  * This creates the memory mappings in the secondary process to match that of
1270  * the server process. It goes through each memory segment in the DPDK runtime
1271  * configuration and finds the hugepages which form that segment, mapping them
1272  * in order to form a contiguous block in the virtual memory space
1273  */
1274 int
1275 rte_eal_hugepage_attach(void)
1276 {
1277         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1278         struct hugepage_file *hp = NULL;
1279         unsigned num_hp = 0;
1280         unsigned i, s = 0; /* s used to track the segment number */
1281         unsigned max_seg = RTE_MAX_MEMSEG;
1282         off_t size = 0;
1283         int fd, fd_zero = -1, fd_hugepage = -1;
1284
1285         if (aslr_enabled() > 0) {
1286                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1287                                 "(ASLR) is enabled in the kernel.\n");
1288                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1289                                 "into secondary processes\n");
1290         }
1291
1292         test_phys_addrs_available();
1293
1294         if (internal_config.xen_dom0_support) {
1295 #ifdef RTE_LIBRTE_XEN_DOM0
1296                 if (rte_xen_dom0_memory_attach() < 0) {
1297                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1298                                         "process\n");
1299                         return -1;
1300                 }
1301                 return 0;
1302 #endif
1303         }
1304
1305         fd_zero = open("/dev/zero", O_RDONLY);
1306         if (fd_zero < 0) {
1307                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1308                 goto error;
1309         }
1310         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1311         if (fd_hugepage < 0) {
1312                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1313                 goto error;
1314         }
1315
1316         /* map all segments into memory to make sure we get the addrs */
1317         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1318                 void *base_addr;
1319
1320                 /*
1321                  * the first memory segment with len==0 is the one that
1322                  * follows the last valid segment.
1323                  */
1324                 if (mcfg->memseg[s].len == 0)
1325                         break;
1326
1327                 /*
1328                  * fdzero is mmapped to get a contiguous block of virtual
1329                  * addresses of the appropriate memseg size.
1330                  * use mmap to get identical addresses as the primary process.
1331                  */
1332                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1333                                  PROT_READ,
1334 #ifdef RTE_ARCH_PPC_64
1335                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1336 #else
1337                                  MAP_PRIVATE,
1338 #endif
1339                                  fd_zero, 0);
1340                 if (base_addr == MAP_FAILED ||
1341                     base_addr != mcfg->memseg[s].addr) {
1342                         max_seg = s;
1343                         if (base_addr != MAP_FAILED) {
1344                                 /* errno is stale, don't use */
1345                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1346                                         "in /dev/zero at [%p], got [%p] - "
1347                                         "please use '--base-virtaddr' option\n",
1348                                         (unsigned long long)mcfg->memseg[s].len,
1349                                         mcfg->memseg[s].addr, base_addr);
1350                                 munmap(base_addr, mcfg->memseg[s].len);
1351                         } else {
1352                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1353                                         "in /dev/zero at [%p]: '%s'\n",
1354                                         (unsigned long long)mcfg->memseg[s].len,
1355                                         mcfg->memseg[s].addr, strerror(errno));
1356                         }
1357                         if (aslr_enabled() > 0) {
1358                                 RTE_LOG(ERR, EAL, "It is recommended to "
1359                                         "disable ASLR in the kernel "
1360                                         "and retry running both primary "
1361                                         "and secondary processes\n");
1362                         }
1363                         goto error;
1364                 }
1365         }
1366
1367         size = getFileSize(fd_hugepage);
1368         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1369         if (hp == MAP_FAILED) {
1370                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1371                 goto error;
1372         }
1373
1374         num_hp = size / sizeof(struct hugepage_file);
1375         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1376
1377         s = 0;
1378         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1379                 void *addr, *base_addr;
1380                 uintptr_t offset = 0;
1381                 size_t mapping_size;
1382                 /*
1383                  * free previously mapped memory so we can map the
1384                  * hugepages into the space
1385                  */
1386                 base_addr = mcfg->memseg[s].addr;
1387                 munmap(base_addr, mcfg->memseg[s].len);
1388
1389                 /* find the hugepages for this segment and map them
1390                  * we don't need to worry about order, as the server sorted the
1391                  * entries before it did the second mmap of them */
1392                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1393                         if (hp[i].memseg_id == (int)s){
1394                                 fd = open(hp[i].filepath, O_RDWR);
1395                                 if (fd < 0) {
1396                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1397                                                 hp[i].filepath);
1398                                         goto error;
1399                                 }
1400                                 mapping_size = hp[i].size;
1401                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1402                                                 mapping_size, PROT_READ | PROT_WRITE,
1403                                                 MAP_SHARED, fd, 0);
1404                                 close(fd); /* close file both on success and on failure */
1405                                 if (addr == MAP_FAILED ||
1406                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1407                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1408                                                 hp[i].filepath);
1409                                         goto error;
1410                                 }
1411                                 offset+=mapping_size;
1412                         }
1413                 }
1414                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1415                                 (unsigned long long)mcfg->memseg[s].len);
1416                 s++;
1417         }
1418         /* unmap the hugepage config file, since we are done using it */
1419         munmap(hp, size);
1420         close(fd_zero);
1421         close(fd_hugepage);
1422         return 0;
1423
1424 error:
1425         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1426                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1427         if (hp != NULL && hp != MAP_FAILED)
1428                 munmap(hp, size);
1429         if (fd_zero >= 0)
1430                 close(fd_zero);
1431         if (fd_hugepage >= 0)
1432                 close(fd_hugepage);
1433         return -1;
1434 }
1435
1436 bool
1437 rte_eal_using_phys_addrs(void)
1438 {
1439         return phys_addrs_available;
1440 }