bond: move to drivers/net/
[dpdk.git] / lib / librte_pmd_e1000 / e1000 / e1000_80003es2lan.c
1 /*******************************************************************************
2
3 Copyright (c) 2001-2014, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9  1. Redistributions of source code must retain the above copyright notice,
10     this list of conditions and the following disclaimer.
11
12  2. Redistributions in binary form must reproduce the above copyright
13     notice, this list of conditions and the following disclaimer in the
14     documentation and/or other materials provided with the distribution.
15
16  3. Neither the name of the Intel Corporation nor the names of its
17     contributors may be used to endorse or promote products derived from
18     this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ***************************************************************************/
33
34 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
35  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
36  */
37
38 #include "e1000_api.h"
39
40 STATIC s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
41 STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
42 STATIC s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
43 STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
44 STATIC s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
45                                                    u32 offset,
46                                                    u16 *data);
47 STATIC s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
48                                                     u32 offset,
49                                                     u16 data);
50 STATIC s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
51                                         u16 words, u16 *data);
52 STATIC s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
53 STATIC s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
54 STATIC s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
55 STATIC s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
56                                                u16 *duplex);
57 STATIC s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
58 STATIC s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
59 STATIC s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
60 STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
61 STATIC s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
62 STATIC s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
63 STATIC s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
64 STATIC s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
65 STATIC s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
66                                             u16 *data);
67 STATIC s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
68                                              u16 data);
69 STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
70 STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
71 STATIC s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
72 STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
73
74 /* A table for the GG82563 cable length where the range is defined
75  * with a lower bound at "index" and the upper bound at
76  * "index + 5".
77  */
78 STATIC const u16 e1000_gg82563_cable_length_table[] = {
79         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
80 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
81                 (sizeof(e1000_gg82563_cable_length_table) / \
82                  sizeof(e1000_gg82563_cable_length_table[0]))
83
84 /**
85  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
89 {
90         struct e1000_phy_info *phy = &hw->phy;
91         s32 ret_val;
92
93         DEBUGFUNC("e1000_init_phy_params_80003es2lan");
94
95         if (hw->phy.media_type != e1000_media_type_copper) {
96                 phy->type = e1000_phy_none;
97                 return E1000_SUCCESS;
98         } else {
99                 phy->ops.power_up = e1000_power_up_phy_copper;
100                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
101         }
102
103         phy->addr               = 1;
104         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
105         phy->reset_delay_us     = 100;
106         phy->type               = e1000_phy_gg82563;
107
108         phy->ops.acquire        = e1000_acquire_phy_80003es2lan;
109         phy->ops.check_polarity = e1000_check_polarity_m88;
110         phy->ops.check_reset_block = e1000_check_reset_block_generic;
111         phy->ops.commit         = e1000_phy_sw_reset_generic;
112         phy->ops.get_cfg_done   = e1000_get_cfg_done_80003es2lan;
113         phy->ops.get_info       = e1000_get_phy_info_m88;
114         phy->ops.release        = e1000_release_phy_80003es2lan;
115         phy->ops.reset          = e1000_phy_hw_reset_generic;
116         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
117
118         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
119         phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
120         phy->ops.read_reg       = e1000_read_phy_reg_gg82563_80003es2lan;
121         phy->ops.write_reg      = e1000_write_phy_reg_gg82563_80003es2lan;
122
123         phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
124
125         /* This can only be done after all function pointers are setup. */
126         ret_val = e1000_get_phy_id(hw);
127
128         /* Verify phy id */
129         if (phy->id != GG82563_E_PHY_ID)
130                 return -E1000_ERR_PHY;
131
132         return ret_val;
133 }
134
135 /**
136  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
137  *  @hw: pointer to the HW structure
138  **/
139 STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
140 {
141         struct e1000_nvm_info *nvm = &hw->nvm;
142         u32 eecd = E1000_READ_REG(hw, E1000_EECD);
143         u16 size;
144
145         DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
146
147         nvm->opcode_bits = 8;
148         nvm->delay_usec = 1;
149         switch (nvm->override) {
150         case e1000_nvm_override_spi_large:
151                 nvm->page_size = 32;
152                 nvm->address_bits = 16;
153                 break;
154         case e1000_nvm_override_spi_small:
155                 nvm->page_size = 8;
156                 nvm->address_bits = 8;
157                 break;
158         default:
159                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161                 break;
162         }
163
164         nvm->type = e1000_nvm_eeprom_spi;
165
166         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
167                      E1000_EECD_SIZE_EX_SHIFT);
168
169         /* Added to a constant, "size" becomes the left-shift value
170          * for setting word_size.
171          */
172         size += NVM_WORD_SIZE_BASE_SHIFT;
173
174         /* EEPROM access above 16k is unsupported */
175         if (size > 14)
176                 size = 14;
177         nvm->word_size = 1 << size;
178
179         /* Function Pointers */
180         nvm->ops.acquire        = e1000_acquire_nvm_80003es2lan;
181         nvm->ops.read           = e1000_read_nvm_eerd;
182         nvm->ops.release        = e1000_release_nvm_80003es2lan;
183         nvm->ops.update         = e1000_update_nvm_checksum_generic;
184         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
185         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
186         nvm->ops.write          = e1000_write_nvm_80003es2lan;
187
188         return E1000_SUCCESS;
189 }
190
191 /**
192  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
193  *  @hw: pointer to the HW structure
194  **/
195 STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
196 {
197         struct e1000_mac_info *mac = &hw->mac;
198
199         DEBUGFUNC("e1000_init_mac_params_80003es2lan");
200
201         /* Set media type and media-dependent function pointers */
202         switch (hw->device_id) {
203         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
204                 hw->phy.media_type = e1000_media_type_internal_serdes;
205                 mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
206                 mac->ops.setup_physical_interface =
207                                         e1000_setup_fiber_serdes_link_generic;
208                 break;
209         default:
210                 hw->phy.media_type = e1000_media_type_copper;
211                 mac->ops.check_for_link = e1000_check_for_copper_link_generic;
212                 mac->ops.setup_physical_interface =
213                                         e1000_setup_copper_link_80003es2lan;
214                 break;
215         }
216
217         /* Set mta register count */
218         mac->mta_reg_count = 128;
219         /* Set rar entry count */
220         mac->rar_entry_count = E1000_RAR_ENTRIES;
221         /* Set if part includes ASF firmware */
222         mac->asf_firmware_present = true;
223         /* FWSM register */
224         mac->has_fwsm = true;
225         /* ARC supported; valid only if manageability features are enabled. */
226         mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
227                                       E1000_FWSM_MODE_MASK);
228         /* Adaptive IFS not supported */
229         mac->adaptive_ifs = false;
230
231         /* Function pointers */
232
233         /* bus type/speed/width */
234         mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
235         /* reset */
236         mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
237         /* hw initialization */
238         mac->ops.init_hw = e1000_init_hw_80003es2lan;
239         /* link setup */
240         mac->ops.setup_link = e1000_setup_link_generic;
241         /* check management mode */
242         mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
243         /* multicast address update */
244         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
245         /* writing VFTA */
246         mac->ops.write_vfta = e1000_write_vfta_generic;
247         /* clearing VFTA */
248         mac->ops.clear_vfta = e1000_clear_vfta_generic;
249         /* read mac address */
250         mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
251         /* ID LED init */
252         mac->ops.id_led_init = e1000_id_led_init_generic;
253         /* blink LED */
254         mac->ops.blink_led = e1000_blink_led_generic;
255         /* setup LED */
256         mac->ops.setup_led = e1000_setup_led_generic;
257         /* cleanup LED */
258         mac->ops.cleanup_led = e1000_cleanup_led_generic;
259         /* turn on/off LED */
260         mac->ops.led_on = e1000_led_on_generic;
261         mac->ops.led_off = e1000_led_off_generic;
262         /* clear hardware counters */
263         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
264         /* link info */
265         mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
266
267         /* set lan id for port to determine which phy lock to use */
268         hw->mac.ops.set_lan_id(hw);
269
270         return E1000_SUCCESS;
271 }
272
273 /**
274  *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
275  *  @hw: pointer to the HW structure
276  *
277  *  Called to initialize all function pointers and parameters.
278  **/
279 void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
280 {
281         DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
282
283         hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
284         hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
285         hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
286 }
287
288 /**
289  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
290  *  @hw: pointer to the HW structure
291  *
292  *  A wrapper to acquire access rights to the correct PHY.
293  **/
294 STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
295 {
296         u16 mask;
297
298         DEBUGFUNC("e1000_acquire_phy_80003es2lan");
299
300         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
301         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
302 }
303
304 /**
305  *  e1000_release_phy_80003es2lan - Release rights to access PHY
306  *  @hw: pointer to the HW structure
307  *
308  *  A wrapper to release access rights to the correct PHY.
309  **/
310 STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
311 {
312         u16 mask;
313
314         DEBUGFUNC("e1000_release_phy_80003es2lan");
315
316         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
317         e1000_release_swfw_sync_80003es2lan(hw, mask);
318 }
319
320 /**
321  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
322  *  @hw: pointer to the HW structure
323  *
324  *  Acquire the semaphore to access the Kumeran interface.
325  *
326  **/
327 STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
328 {
329         u16 mask;
330
331         DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
332
333         mask = E1000_SWFW_CSR_SM;
334
335         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
336 }
337
338 /**
339  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
340  *  @hw: pointer to the HW structure
341  *
342  *  Release the semaphore used to access the Kumeran interface
343  **/
344 STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
345 {
346         u16 mask;
347
348         DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
349
350         mask = E1000_SWFW_CSR_SM;
351
352         e1000_release_swfw_sync_80003es2lan(hw, mask);
353 }
354
355 /**
356  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
357  *  @hw: pointer to the HW structure
358  *
359  *  Acquire the semaphore to access the EEPROM.
360  **/
361 STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
362 {
363         s32 ret_val;
364
365         DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
366
367         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
368         if (ret_val)
369                 return ret_val;
370
371         ret_val = e1000_acquire_nvm_generic(hw);
372
373         if (ret_val)
374                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
375
376         return ret_val;
377 }
378
379 /**
380  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
381  *  @hw: pointer to the HW structure
382  *
383  *  Release the semaphore used to access the EEPROM.
384  **/
385 STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
386 {
387         DEBUGFUNC("e1000_release_nvm_80003es2lan");
388
389         e1000_release_nvm_generic(hw);
390         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
391 }
392
393 /**
394  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
395  *  @hw: pointer to the HW structure
396  *  @mask: specifies which semaphore to acquire
397  *
398  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
399  *  will also specify which port we're acquiring the lock for.
400  **/
401 STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
402 {
403         u32 swfw_sync;
404         u32 swmask = mask;
405         u32 fwmask = mask << 16;
406         s32 i = 0;
407         s32 timeout = 50;
408
409         DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
410
411         while (i < timeout) {
412                 if (e1000_get_hw_semaphore_generic(hw))
413                         return -E1000_ERR_SWFW_SYNC;
414
415                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
416                 if (!(swfw_sync & (fwmask | swmask)))
417                         break;
418
419                 /* Firmware currently using resource (fwmask)
420                  * or other software thread using resource (swmask)
421                  */
422                 e1000_put_hw_semaphore_generic(hw);
423                 msec_delay_irq(5);
424                 i++;
425         }
426
427         if (i == timeout) {
428                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
429                 return -E1000_ERR_SWFW_SYNC;
430         }
431
432         swfw_sync |= swmask;
433         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
434
435         e1000_put_hw_semaphore_generic(hw);
436
437         return E1000_SUCCESS;
438 }
439
440 /**
441  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
442  *  @hw: pointer to the HW structure
443  *  @mask: specifies which semaphore to acquire
444  *
445  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
446  *  will also specify which port we're releasing the lock for.
447  **/
448 STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
449 {
450         u32 swfw_sync;
451
452         DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
453
454         while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
455                 ; /* Empty */
456
457         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
458         swfw_sync &= ~mask;
459         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
460
461         e1000_put_hw_semaphore_generic(hw);
462 }
463
464 /**
465  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
466  *  @hw: pointer to the HW structure
467  *  @offset: offset of the register to read
468  *  @data: pointer to the data returned from the operation
469  *
470  *  Read the GG82563 PHY register.
471  **/
472 STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
473                                                   u32 offset, u16 *data)
474 {
475         s32 ret_val;
476         u32 page_select;
477         u16 temp;
478
479         DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
480
481         ret_val = e1000_acquire_phy_80003es2lan(hw);
482         if (ret_val)
483                 return ret_val;
484
485         /* Select Configuration Page */
486         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
487                 page_select = GG82563_PHY_PAGE_SELECT;
488         } else {
489                 /* Use Alternative Page Select register to access
490                  * registers 30 and 31
491                  */
492                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
493         }
494
495         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
496         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
497         if (ret_val) {
498                 e1000_release_phy_80003es2lan(hw);
499                 return ret_val;
500         }
501
502         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
503                 /* The "ready" bit in the MDIC register may be incorrectly set
504                  * before the device has completed the "Page Select" MDI
505                  * transaction.  So we wait 200us after each MDI command...
506                  */
507                 usec_delay(200);
508
509                 /* ...and verify the command was successful. */
510                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
511
512                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
513                         e1000_release_phy_80003es2lan(hw);
514                         return -E1000_ERR_PHY;
515                 }
516
517                 usec_delay(200);
518
519                 ret_val = e1000_read_phy_reg_mdic(hw,
520                                                   MAX_PHY_REG_ADDRESS & offset,
521                                                   data);
522
523                 usec_delay(200);
524         } else {
525                 ret_val = e1000_read_phy_reg_mdic(hw,
526                                                   MAX_PHY_REG_ADDRESS & offset,
527                                                   data);
528         }
529
530         e1000_release_phy_80003es2lan(hw);
531
532         return ret_val;
533 }
534
535 /**
536  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
537  *  @hw: pointer to the HW structure
538  *  @offset: offset of the register to read
539  *  @data: value to write to the register
540  *
541  *  Write to the GG82563 PHY register.
542  **/
543 STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
544                                                    u32 offset, u16 data)
545 {
546         s32 ret_val;
547         u32 page_select;
548         u16 temp;
549
550         DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
551
552         ret_val = e1000_acquire_phy_80003es2lan(hw);
553         if (ret_val)
554                 return ret_val;
555
556         /* Select Configuration Page */
557         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
558                 page_select = GG82563_PHY_PAGE_SELECT;
559         } else {
560                 /* Use Alternative Page Select register to access
561                  * registers 30 and 31
562                  */
563                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
564         }
565
566         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
567         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
568         if (ret_val) {
569                 e1000_release_phy_80003es2lan(hw);
570                 return ret_val;
571         }
572
573         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
574                 /* The "ready" bit in the MDIC register may be incorrectly set
575                  * before the device has completed the "Page Select" MDI
576                  * transaction.  So we wait 200us after each MDI command...
577                  */
578                 usec_delay(200);
579
580                 /* ...and verify the command was successful. */
581                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
582
583                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
584                         e1000_release_phy_80003es2lan(hw);
585                         return -E1000_ERR_PHY;
586                 }
587
588                 usec_delay(200);
589
590                 ret_val = e1000_write_phy_reg_mdic(hw,
591                                                   MAX_PHY_REG_ADDRESS & offset,
592                                                   data);
593
594                 usec_delay(200);
595         } else {
596                 ret_val = e1000_write_phy_reg_mdic(hw,
597                                                   MAX_PHY_REG_ADDRESS & offset,
598                                                   data);
599         }
600
601         e1000_release_phy_80003es2lan(hw);
602
603         return ret_val;
604 }
605
606 /**
607  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
608  *  @hw: pointer to the HW structure
609  *  @offset: offset of the register to read
610  *  @words: number of words to write
611  *  @data: buffer of data to write to the NVM
612  *
613  *  Write "words" of data to the ESB2 NVM.
614  **/
615 STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
616                                        u16 words, u16 *data)
617 {
618         DEBUGFUNC("e1000_write_nvm_80003es2lan");
619
620         return e1000_write_nvm_spi(hw, offset, words, data);
621 }
622
623 /**
624  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
625  *  @hw: pointer to the HW structure
626  *
627  *  Wait a specific amount of time for manageability processes to complete.
628  *  This is a function pointer entry point called by the phy module.
629  **/
630 STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
631 {
632         s32 timeout = PHY_CFG_TIMEOUT;
633         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
634
635         DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
636
637         if (hw->bus.func == 1)
638                 mask = E1000_NVM_CFG_DONE_PORT_1;
639
640         while (timeout) {
641                 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
642                         break;
643                 msec_delay(1);
644                 timeout--;
645         }
646         if (!timeout) {
647                 DEBUGOUT("MNG configuration cycle has not completed.\n");
648                 return -E1000_ERR_RESET;
649         }
650
651         return E1000_SUCCESS;
652 }
653
654 /**
655  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
656  *  @hw: pointer to the HW structure
657  *
658  *  Force the speed and duplex settings onto the PHY.  This is a
659  *  function pointer entry point called by the phy module.
660  **/
661 STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
662 {
663         s32 ret_val;
664         u16 phy_data;
665         bool link;
666
667         DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
668
669         if (!(hw->phy.ops.read_reg))
670                 return E1000_SUCCESS;
671
672         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
673          * forced whenever speed and duplex are forced.
674          */
675         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
676         if (ret_val)
677                 return ret_val;
678
679         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
680         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
681         if (ret_val)
682                 return ret_val;
683
684         DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
685
686         ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
687         if (ret_val)
688                 return ret_val;
689
690         e1000_phy_force_speed_duplex_setup(hw, &phy_data);
691
692         /* Reset the phy to commit changes. */
693         phy_data |= MII_CR_RESET;
694
695         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
696         if (ret_val)
697                 return ret_val;
698
699         usec_delay(1);
700
701         if (hw->phy.autoneg_wait_to_complete) {
702                 DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
703
704                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
705                                                      100000, &link);
706                 if (ret_val)
707                         return ret_val;
708
709                 if (!link) {
710                         /* We didn't get link.
711                          * Reset the DSP and cross our fingers.
712                          */
713                         ret_val = e1000_phy_reset_dsp_generic(hw);
714                         if (ret_val)
715                                 return ret_val;
716                 }
717
718                 /* Try once more */
719                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
720                                                      100000, &link);
721                 if (ret_val)
722                         return ret_val;
723         }
724
725         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
726                                        &phy_data);
727         if (ret_val)
728                 return ret_val;
729
730         /* Resetting the phy means we need to verify the TX_CLK corresponds
731          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
732          */
733         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
734         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
735                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
736         else
737                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
738
739         /* In addition, we must re-enable CRS on Tx for both half and full
740          * duplex.
741          */
742         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
743         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
744                                         phy_data);
745
746         return ret_val;
747 }
748
749 /**
750  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
751  *  @hw: pointer to the HW structure
752  *
753  *  Find the approximate cable length as measured by the GG82563 PHY.
754  *  This is a function pointer entry point called by the phy module.
755  **/
756 STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
757 {
758         struct e1000_phy_info *phy = &hw->phy;
759         s32 ret_val;
760         u16 phy_data, index;
761
762         DEBUGFUNC("e1000_get_cable_length_80003es2lan");
763
764         if (!(hw->phy.ops.read_reg))
765                 return E1000_SUCCESS;
766
767         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
768         if (ret_val)
769                 return ret_val;
770
771         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
772
773         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
774                 return -E1000_ERR_PHY;
775
776         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
777         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
778
779         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
780
781         return E1000_SUCCESS;
782 }
783
784 /**
785  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
786  *  @hw: pointer to the HW structure
787  *  @speed: pointer to speed buffer
788  *  @duplex: pointer to duplex buffer
789  *
790  *  Retrieve the current speed and duplex configuration.
791  **/
792 STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
793                                               u16 *duplex)
794 {
795         s32 ret_val;
796
797         DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
798
799         if (hw->phy.media_type == e1000_media_type_copper) {
800                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
801                                                                     duplex);
802                 hw->phy.ops.cfg_on_link_up(hw);
803         } else {
804                 ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
805                                                                   speed,
806                                                                   duplex);
807         }
808
809         return ret_val;
810 }
811
812 /**
813  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
814  *  @hw: pointer to the HW structure
815  *
816  *  Perform a global reset to the ESB2 controller.
817  **/
818 STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
819 {
820         u32 ctrl;
821         s32 ret_val;
822         u16 kum_reg_data;
823
824         DEBUGFUNC("e1000_reset_hw_80003es2lan");
825
826         /* Prevent the PCI-E bus from sticking if there is no TLP connection
827          * on the last TLP read/write transaction when MAC is reset.
828          */
829         ret_val = e1000_disable_pcie_master_generic(hw);
830         if (ret_val)
831                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
832
833         DEBUGOUT("Masking off all interrupts\n");
834         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
835
836         E1000_WRITE_REG(hw, E1000_RCTL, 0);
837         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
838         E1000_WRITE_FLUSH(hw);
839
840         msec_delay(10);
841
842         ctrl = E1000_READ_REG(hw, E1000_CTRL);
843
844         ret_val = e1000_acquire_phy_80003es2lan(hw);
845         if (ret_val)
846                 return ret_val;
847
848         DEBUGOUT("Issuing a global reset to MAC\n");
849         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
850         e1000_release_phy_80003es2lan(hw);
851
852         /* Disable IBIST slave mode (far-end loopback) */
853         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
854                                 E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
855         if (ret_val)
856                 return ret_val;
857         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
858         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
859                                         kum_reg_data);
860
861         ret_val = e1000_get_auto_rd_done_generic(hw);
862         if (ret_val)
863                 /* We don't want to continue accessing MAC registers. */
864                 return ret_val;
865
866         /* Clear any pending interrupt events. */
867         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
868         E1000_READ_REG(hw, E1000_ICR);
869
870         return e1000_check_alt_mac_addr_generic(hw);
871 }
872
873 /**
874  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
875  *  @hw: pointer to the HW structure
876  *
877  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
878  **/
879 STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
880 {
881         struct e1000_mac_info *mac = &hw->mac;
882         u32 reg_data;
883         s32 ret_val;
884         u16 kum_reg_data;
885         u16 i;
886
887         DEBUGFUNC("e1000_init_hw_80003es2lan");
888
889         e1000_initialize_hw_bits_80003es2lan(hw);
890
891         /* Initialize identification LED */
892         ret_val = mac->ops.id_led_init(hw);
893         /* An error is not fatal and we should not stop init due to this */
894         if (ret_val)
895                 DEBUGOUT("Error initializing identification LED\n");
896
897         /* Disabling VLAN filtering */
898         DEBUGOUT("Initializing the IEEE VLAN\n");
899         mac->ops.clear_vfta(hw);
900
901         /* Setup the receive address. */
902         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
903
904         /* Zero out the Multicast HASH table */
905         DEBUGOUT("Zeroing the MTA\n");
906         for (i = 0; i < mac->mta_reg_count; i++)
907                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
908
909         /* Setup link and flow control */
910         ret_val = mac->ops.setup_link(hw);
911         if (ret_val)
912                 return ret_val;
913
914         /* Disable IBIST slave mode (far-end loopback) */
915         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
916                                         &kum_reg_data);
917         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
918         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
919                                          kum_reg_data);
920
921         /* Set the transmit descriptor write-back policy */
922         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
923         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
924                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
925         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
926
927         /* ...for both queues. */
928         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
929         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
930                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
931         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
932
933         /* Enable retransmit on late collisions */
934         reg_data = E1000_READ_REG(hw, E1000_TCTL);
935         reg_data |= E1000_TCTL_RTLC;
936         E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
937
938         /* Configure Gigabit Carry Extend Padding */
939         reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
940         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
941         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
942         E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
943
944         /* Configure Transmit Inter-Packet Gap */
945         reg_data = E1000_READ_REG(hw, E1000_TIPG);
946         reg_data &= ~E1000_TIPG_IPGT_MASK;
947         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
948         E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
949
950         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
951         reg_data &= ~0x00100000;
952         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
953
954         /* default to true to enable the MDIC W/A */
955         hw->dev_spec._80003es2lan.mdic_wa_enable = true;
956
957         ret_val =
958             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
959                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
960         if (!ret_val) {
961                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
962                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
963                         hw->dev_spec._80003es2lan.mdic_wa_enable = false;
964         }
965
966         /* Clear all of the statistics registers (clear on read).  It is
967          * important that we do this after we have tried to establish link
968          * because the symbol error count will increment wildly if there
969          * is no link.
970          */
971         e1000_clear_hw_cntrs_80003es2lan(hw);
972
973         return ret_val;
974 }
975
976 /**
977  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
978  *  @hw: pointer to the HW structure
979  *
980  *  Initializes required hardware-dependent bits needed for normal operation.
981  **/
982 STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
983 {
984         u32 reg;
985
986         DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
987
988         /* Transmit Descriptor Control 0 */
989         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
990         reg |= (1 << 22);
991         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
992
993         /* Transmit Descriptor Control 1 */
994         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
995         reg |= (1 << 22);
996         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
997
998         /* Transmit Arbitration Control 0 */
999         reg = E1000_READ_REG(hw, E1000_TARC(0));
1000         reg &= ~(0xF << 27); /* 30:27 */
1001         if (hw->phy.media_type != e1000_media_type_copper)
1002                 reg &= ~(1 << 20);
1003         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
1004
1005         /* Transmit Arbitration Control 1 */
1006         reg = E1000_READ_REG(hw, E1000_TARC(1));
1007         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
1008                 reg &= ~(1 << 28);
1009         else
1010                 reg |= (1 << 28);
1011         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
1012
1013         /* Disable IPv6 extension header parsing because some malformed
1014          * IPv6 headers can hang the Rx.
1015          */
1016         reg = E1000_READ_REG(hw, E1000_RFCTL);
1017         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1018         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
1019
1020         return;
1021 }
1022
1023 /**
1024  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Setup some GG82563 PHY registers for obtaining link
1028  **/
1029 STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
1030 {
1031         struct e1000_phy_info *phy = &hw->phy;
1032         s32 ret_val;
1033         u32 reg;
1034         u16 data;
1035
1036         DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
1037
1038         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
1039         if (ret_val)
1040                 return ret_val;
1041
1042         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1043         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
1044         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
1045
1046         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
1047         if (ret_val)
1048                 return ret_val;
1049
1050         /* Options:
1051          *   MDI/MDI-X = 0 (default)
1052          *   0 - Auto for all speeds
1053          *   1 - MDI mode
1054          *   2 - MDI-X mode
1055          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1056          */
1057         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
1058         if (ret_val)
1059                 return ret_val;
1060
1061         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1062
1063         switch (phy->mdix) {
1064         case 1:
1065                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1066                 break;
1067         case 2:
1068                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1069                 break;
1070         case 0:
1071         default:
1072                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1073                 break;
1074         }
1075
1076         /* Options:
1077          *   disable_polarity_correction = 0 (default)
1078          *       Automatic Correction for Reversed Cable Polarity
1079          *   0 - Disabled
1080          *   1 - Enabled
1081          */
1082         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1083         if (phy->disable_polarity_correction)
1084                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1085
1086         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
1087         if (ret_val)
1088                 return ret_val;
1089
1090         /* SW Reset the PHY so all changes take effect */
1091         ret_val = hw->phy.ops.commit(hw);
1092         if (ret_val) {
1093                 DEBUGOUT("Error Resetting the PHY\n");
1094                 return ret_val;
1095         }
1096
1097         /* Bypass Rx and Tx FIFO's */
1098         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
1099         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1100                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1101         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
1102         if (ret_val)
1103                 return ret_val;
1104
1105         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
1106         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
1107         if (ret_val)
1108                 return ret_val;
1109         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1110         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
1111         if (ret_val)
1112                 return ret_val;
1113
1114         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1115         if (ret_val)
1116                 return ret_val;
1117
1118         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1119         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
1120         if (ret_val)
1121                 return ret_val;
1122
1123         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1124         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1125         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1126
1127         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1128         if (ret_val)
1129                 return ret_val;
1130
1131         /* Do not init these registers when the HW is in IAMT mode, since the
1132          * firmware will have already initialized them.  We only initialize
1133          * them if the HW is not in IAMT mode.
1134          */
1135         if (!hw->mac.ops.check_mng_mode(hw)) {
1136                 /* Enable Electrical Idle on the PHY */
1137                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1138                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1139                                                 data);
1140                 if (ret_val)
1141                         return ret_val;
1142
1143                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1144                                                &data);
1145                 if (ret_val)
1146                         return ret_val;
1147
1148                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1149                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1150                                                 data);
1151                 if (ret_val)
1152                         return ret_val;
1153         }
1154
1155         /* Workaround: Disable padding in Kumeran interface in the MAC
1156          * and in the PHY to avoid CRC errors.
1157          */
1158         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
1159         if (ret_val)
1160                 return ret_val;
1161
1162         data |= GG82563_ICR_DIS_PADDING;
1163         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
1164         if (ret_val)
1165                 return ret_val;
1166
1167         return E1000_SUCCESS;
1168 }
1169
1170 /**
1171  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1172  *  @hw: pointer to the HW structure
1173  *
1174  *  Essentially a wrapper for setting up all things "copper" related.
1175  *  This is a function pointer entry point called by the mac module.
1176  **/
1177 STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1178 {
1179         u32 ctrl;
1180         s32 ret_val;
1181         u16 reg_data;
1182
1183         DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
1184
1185         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1186         ctrl |= E1000_CTRL_SLU;
1187         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1188         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1189
1190         /* Set the mac to wait the maximum time between each
1191          * iteration and increase the max iterations when
1192          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1193          */
1194         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1195                                                    0xFFFF);
1196         if (ret_val)
1197                 return ret_val;
1198         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1199                                                   &reg_data);
1200         if (ret_val)
1201                 return ret_val;
1202         reg_data |= 0x3F;
1203         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1204                                                    reg_data);
1205         if (ret_val)
1206                 return ret_val;
1207         ret_val =
1208             e1000_read_kmrn_reg_80003es2lan(hw,
1209                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1210                                             &reg_data);
1211         if (ret_val)
1212                 return ret_val;
1213         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1214         ret_val =
1215             e1000_write_kmrn_reg_80003es2lan(hw,
1216                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1217                                              reg_data);
1218         if (ret_val)
1219                 return ret_val;
1220
1221         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1222         if (ret_val)
1223                 return ret_val;
1224
1225         return e1000_setup_copper_link_generic(hw);
1226 }
1227
1228 /**
1229  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1230  *  @hw: pointer to the HW structure
1231  *  @duplex: current duplex setting
1232  *
1233  *  Configure the KMRN interface by applying last minute quirks for
1234  *  10/100 operation.
1235  **/
1236 STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1237 {
1238         s32 ret_val = E1000_SUCCESS;
1239         u16 speed;
1240         u16 duplex;
1241
1242         DEBUGFUNC("e1000_configure_on_link_up");
1243
1244         if (hw->phy.media_type == e1000_media_type_copper) {
1245                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
1246                                                                     &duplex);
1247                 if (ret_val)
1248                         return ret_val;
1249
1250                 if (speed == SPEED_1000)
1251                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1252                 else
1253                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1254         }
1255
1256         return ret_val;
1257 }
1258
1259 /**
1260  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1261  *  @hw: pointer to the HW structure
1262  *  @duplex: current duplex setting
1263  *
1264  *  Configure the KMRN interface by applying last minute quirks for
1265  *  10/100 operation.
1266  **/
1267 STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1268 {
1269         s32 ret_val;
1270         u32 tipg;
1271         u32 i = 0;
1272         u16 reg_data, reg_data2;
1273
1274         DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1275
1276         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1277         ret_val =
1278             e1000_write_kmrn_reg_80003es2lan(hw,
1279                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1280                                              reg_data);
1281         if (ret_val)
1282                 return ret_val;
1283
1284         /* Configure Transmit Inter-Packet Gap */
1285         tipg = E1000_READ_REG(hw, E1000_TIPG);
1286         tipg &= ~E1000_TIPG_IPGT_MASK;
1287         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1288         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1289
1290         do {
1291                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1292                                                &reg_data);
1293                 if (ret_val)
1294                         return ret_val;
1295
1296                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1297                                                &reg_data2);
1298                 if (ret_val)
1299                         return ret_val;
1300                 i++;
1301         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1302
1303         if (duplex == HALF_DUPLEX)
1304                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1305         else
1306                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1307
1308         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1309 }
1310
1311 /**
1312  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1313  *  @hw: pointer to the HW structure
1314  *
1315  *  Configure the KMRN interface by applying last minute quirks for
1316  *  gigabit operation.
1317  **/
1318 STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1319 {
1320         s32 ret_val;
1321         u16 reg_data, reg_data2;
1322         u32 tipg;
1323         u32 i = 0;
1324
1325         DEBUGFUNC("e1000_configure_kmrn_for_1000");
1326
1327         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1328         ret_val =
1329             e1000_write_kmrn_reg_80003es2lan(hw,
1330                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1331                                              reg_data);
1332         if (ret_val)
1333                 return ret_val;
1334
1335         /* Configure Transmit Inter-Packet Gap */
1336         tipg = E1000_READ_REG(hw, E1000_TIPG);
1337         tipg &= ~E1000_TIPG_IPGT_MASK;
1338         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1339         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
1340
1341         do {
1342                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1343                                                &reg_data);
1344                 if (ret_val)
1345                         return ret_val;
1346
1347                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1348                                                &reg_data2);
1349                 if (ret_val)
1350                         return ret_val;
1351                 i++;
1352         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1353
1354         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1355
1356         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1357 }
1358
1359 /**
1360  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1361  *  @hw: pointer to the HW structure
1362  *  @offset: register offset to be read
1363  *  @data: pointer to the read data
1364  *
1365  *  Acquire semaphore, then read the PHY register at offset
1366  *  using the kumeran interface.  The information retrieved is stored in data.
1367  *  Release the semaphore before exiting.
1368  **/
1369 STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1370                                            u16 *data)
1371 {
1372         u32 kmrnctrlsta;
1373         s32 ret_val;
1374
1375         DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
1376
1377         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1378         if (ret_val)
1379                 return ret_val;
1380
1381         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1382                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1383         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1384         E1000_WRITE_FLUSH(hw);
1385
1386         usec_delay(2);
1387
1388         kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
1389         *data = (u16)kmrnctrlsta;
1390
1391         e1000_release_mac_csr_80003es2lan(hw);
1392
1393         return ret_val;
1394 }
1395
1396 /**
1397  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1398  *  @hw: pointer to the HW structure
1399  *  @offset: register offset to write to
1400  *  @data: data to write at register offset
1401  *
1402  *  Acquire semaphore, then write the data to PHY register
1403  *  at the offset using the kumeran interface.  Release semaphore
1404  *  before exiting.
1405  **/
1406 STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1407                                             u16 data)
1408 {
1409         u32 kmrnctrlsta;
1410         s32 ret_val;
1411
1412         DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
1413
1414         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1415         if (ret_val)
1416                 return ret_val;
1417
1418         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1419                        E1000_KMRNCTRLSTA_OFFSET) | data;
1420         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
1421         E1000_WRITE_FLUSH(hw);
1422
1423         usec_delay(2);
1424
1425         e1000_release_mac_csr_80003es2lan(hw);
1426
1427         return ret_val;
1428 }
1429
1430 /**
1431  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1432  *  @hw: pointer to the HW structure
1433  **/
1434 STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1435 {
1436         s32 ret_val;
1437
1438         DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
1439
1440         /* If there's an alternate MAC address place it in RAR0
1441          * so that it will override the Si installed default perm
1442          * address.
1443          */
1444         ret_val = e1000_check_alt_mac_addr_generic(hw);
1445         if (ret_val)
1446                 return ret_val;
1447
1448         return e1000_read_mac_addr_generic(hw);
1449 }
1450
1451 /**
1452  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1453  * @hw: pointer to the HW structure
1454  *
1455  * In the case of a PHY power down to save power, or to turn off link during a
1456  * driver unload, or wake on lan is not enabled, remove the link.
1457  **/
1458 STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1459 {
1460         /* If the management interface is not enabled, then power down */
1461         if (!(hw->mac.ops.check_mng_mode(hw) ||
1462               hw->phy.ops.check_reset_block(hw)))
1463                 e1000_power_down_phy_copper(hw);
1464
1465         return;
1466 }
1467
1468 /**
1469  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1470  *  @hw: pointer to the HW structure
1471  *
1472  *  Clears the hardware counters by reading the counter registers.
1473  **/
1474 STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1475 {
1476         DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
1477
1478         e1000_clear_hw_cntrs_base_generic(hw);
1479
1480         E1000_READ_REG(hw, E1000_PRC64);
1481         E1000_READ_REG(hw, E1000_PRC127);
1482         E1000_READ_REG(hw, E1000_PRC255);
1483         E1000_READ_REG(hw, E1000_PRC511);
1484         E1000_READ_REG(hw, E1000_PRC1023);
1485         E1000_READ_REG(hw, E1000_PRC1522);
1486         E1000_READ_REG(hw, E1000_PTC64);
1487         E1000_READ_REG(hw, E1000_PTC127);
1488         E1000_READ_REG(hw, E1000_PTC255);
1489         E1000_READ_REG(hw, E1000_PTC511);
1490         E1000_READ_REG(hw, E1000_PTC1023);
1491         E1000_READ_REG(hw, E1000_PTC1522);
1492
1493         E1000_READ_REG(hw, E1000_ALGNERRC);
1494         E1000_READ_REG(hw, E1000_RXERRC);
1495         E1000_READ_REG(hw, E1000_TNCRS);
1496         E1000_READ_REG(hw, E1000_CEXTERR);
1497         E1000_READ_REG(hw, E1000_TSCTC);
1498         E1000_READ_REG(hw, E1000_TSCTFC);
1499
1500         E1000_READ_REG(hw, E1000_MGTPRC);
1501         E1000_READ_REG(hw, E1000_MGTPDC);
1502         E1000_READ_REG(hw, E1000_MGTPTC);
1503
1504         E1000_READ_REG(hw, E1000_IAC);
1505         E1000_READ_REG(hw, E1000_ICRXOC);
1506
1507         E1000_READ_REG(hw, E1000_ICRXPTC);
1508         E1000_READ_REG(hw, E1000_ICRXATC);
1509         E1000_READ_REG(hw, E1000_ICTXPTC);
1510         E1000_READ_REG(hw, E1000_ICTXATC);
1511         E1000_READ_REG(hw, E1000_ICTXQEC);
1512         E1000_READ_REG(hw, E1000_ICTXQMTC);
1513         E1000_READ_REG(hw, E1000_ICRXDMTC);
1514 }