mbuf: remove flag alias for IP checksum
[dpdk.git] / lib / librte_pmd_i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53
54 #include "i40e_logs.h"
55 #include "i40e/i40e_prototype.h"
56 #include "i40e/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
59
60 #define I40E_MIN_RING_DESC     64
61 #define I40E_MAX_RING_DESC     4096
62 #define I40E_ALIGN             128
63 #define DEFAULT_TX_RS_THRESH   32
64 #define DEFAULT_TX_FREE_THRESH 32
65 #define I40E_MAX_PKT_TYPE      256
66
67 #define I40E_VLAN_TAG_SIZE 4
68 #define I40E_TX_MAX_BURST  32
69
70 #define I40E_DMA_MEM_ALIGN 4096
71
72 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
73                                         ETH_TXQ_FLAGS_NOOFFLOADS)
74
75 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
76
77 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
78         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
79
80 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
81         ((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
82
83 static const struct rte_memzone *
84 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
85                            const char *ring_name,
86                            uint16_t queue_id,
87                            uint32_t ring_size,
88                            int socket_id);
89 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
90                                       struct rte_mbuf **tx_pkts,
91                                       uint16_t nb_pkts);
92
93 /* Translate the rx descriptor status to pkt flags */
94 static inline uint64_t
95 i40e_rxd_status_to_pkt_flags(uint64_t qword)
96 {
97         uint64_t flags;
98
99         /* Check if VLAN packet */
100         flags = qword & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
101                                                         PKT_RX_VLAN_PKT : 0;
102
103         /* Check if RSS_HASH */
104         flags |= (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
105                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
106                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
107
108         /* Check if FDIR Match */
109         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
110                                                         PKT_RX_FDIR : 0);
111
112         return flags;
113 }
114
115 static inline uint64_t
116 i40e_rxd_error_to_pkt_flags(uint64_t qword)
117 {
118         uint64_t flags = 0;
119         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
120
121 #define I40E_RX_ERR_BITS 0x3f
122         if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
123                 return flags;
124         /* If RXE bit set, all other status bits are meaningless */
125         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
126                 flags |= PKT_RX_MAC_ERR;
127                 return flags;
128         }
129
130         /* If RECIPE bit set, all other status indications should be ignored */
131         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
132                 flags |= PKT_RX_RECIP_ERR;
133                 return flags;
134         }
135         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
136                 flags |= PKT_RX_HBUF_OVERFLOW;
137         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
138                 flags |= PKT_RX_IP_CKSUM_BAD;
139         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
140                 flags |= PKT_RX_L4_CKSUM_BAD;
141         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
142                 flags |= PKT_RX_EIP_CKSUM_BAD;
143         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
144                 flags |= PKT_RX_OVERSIZE;
145
146         return flags;
147 }
148
149 /* Translate pkt types to pkt flags */
150 static inline uint64_t
151 i40e_rxd_ptype_to_pkt_flags(uint64_t qword)
152 {
153         uint8_t ptype = (uint8_t)((qword & I40E_RXD_QW1_PTYPE_MASK) >>
154                                         I40E_RXD_QW1_PTYPE_SHIFT);
155         static const uint64_t ip_ptype_map[I40E_MAX_PKT_TYPE] = {
156                 0, /* PTYPE 0 */
157                 0, /* PTYPE 1 */
158                 0, /* PTYPE 2 */
159                 0, /* PTYPE 3 */
160                 0, /* PTYPE 4 */
161                 0, /* PTYPE 5 */
162                 0, /* PTYPE 6 */
163                 0, /* PTYPE 7 */
164                 0, /* PTYPE 8 */
165                 0, /* PTYPE 9 */
166                 0, /* PTYPE 10 */
167                 0, /* PTYPE 11 */
168                 0, /* PTYPE 12 */
169                 0, /* PTYPE 13 */
170                 0, /* PTYPE 14 */
171                 0, /* PTYPE 15 */
172                 0, /* PTYPE 16 */
173                 0, /* PTYPE 17 */
174                 0, /* PTYPE 18 */
175                 0, /* PTYPE 19 */
176                 0, /* PTYPE 20 */
177                 0, /* PTYPE 21 */
178                 PKT_RX_IPV4_HDR, /* PTYPE 22 */
179                 PKT_RX_IPV4_HDR, /* PTYPE 23 */
180                 PKT_RX_IPV4_HDR, /* PTYPE 24 */
181                 0, /* PTYPE 25 */
182                 PKT_RX_IPV4_HDR, /* PTYPE 26 */
183                 PKT_RX_IPV4_HDR, /* PTYPE 27 */
184                 PKT_RX_IPV4_HDR, /* PTYPE 28 */
185                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 29 */
186                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 30 */
187                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 31 */
188                 0, /* PTYPE 32 */
189                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 33 */
190                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 34 */
191                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 35 */
192                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 36 */
193                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 37 */
194                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 38 */
195                 0, /* PTYPE 39 */
196                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 40 */
197                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 41 */
198                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 42 */
199                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 43 */
200                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 44 */
201                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 45 */
202                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 46 */
203                 0, /* PTYPE 47 */
204                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 48 */
205                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 49 */
206                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 50 */
207                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 51 */
208                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 52 */
209                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 53 */
210                 0, /* PTYPE 54 */
211                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 55 */
212                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 56 */
213                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 57 */
214                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 58 */
215                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 59 */
216                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 60 */
217                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 61 */
218                 0, /* PTYPE 62 */
219                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 63 */
220                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 64 */
221                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 65 */
222                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 66 */
223                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 67 */
224                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 68 */
225                 0, /* PTYPE 69 */
226                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 70 */
227                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 71 */
228                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 72 */
229                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 73 */
230                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 74 */
231                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 75 */
232                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 76 */
233                 0, /* PTYPE 77 */
234                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 78 */
235                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 79 */
236                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 80 */
237                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 81 */
238                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 82 */
239                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 83 */
240                 0, /* PTYPE 84 */
241                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 85 */
242                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 86 */
243                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 87 */
244                 PKT_RX_IPV6_HDR, /* PTYPE 88 */
245                 PKT_RX_IPV6_HDR, /* PTYPE 89 */
246                 PKT_RX_IPV6_HDR, /* PTYPE 90 */
247                 0, /* PTYPE 91 */
248                 PKT_RX_IPV6_HDR, /* PTYPE 92 */
249                 PKT_RX_IPV6_HDR, /* PTYPE 93 */
250                 PKT_RX_IPV6_HDR, /* PTYPE 94 */
251                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 95 */
252                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 96 */
253                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 97 */
254                 0, /* PTYPE 98 */
255                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 99 */
256                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 100 */
257                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 101 */
258                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 102 */
259                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 103 */
260                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 104 */
261                 0, /* PTYPE 105 */
262                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 106 */
263                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 107 */
264                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 108 */
265                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 109 */
266                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 110 */
267                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 111 */
268                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 112 */
269                 0, /* PTYPE 113 */
270                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 114 */
271                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 115 */
272                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 116 */
273                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 117 */
274                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 118 */
275                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 119 */
276                 0, /* PTYPE 120 */
277                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 121 */
278                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 122 */
279                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 123 */
280                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 124 */
281                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 125 */
282                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 126 */
283                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 127 */
284                 0, /* PTYPE 128 */
285                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 129 */
286                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 130 */
287                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 131 */
288                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 132 */
289                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 133 */
290                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 134 */
291                 0, /* PTYPE 135 */
292                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 136 */
293                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 137 */
294                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 138 */
295                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 139 */
296                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 140 */
297                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 141 */
298                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 142 */
299                 0, /* PTYPE 143 */
300                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 144 */
301                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 145 */
302                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 146 */
303                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 147 */
304                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 148 */
305                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 149 */
306                 0, /* PTYPE 150 */
307                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 151 */
308                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 152 */
309                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 153 */
310                 0, /* PTYPE 154 */
311                 0, /* PTYPE 155 */
312                 0, /* PTYPE 156 */
313                 0, /* PTYPE 157 */
314                 0, /* PTYPE 158 */
315                 0, /* PTYPE 159 */
316                 0, /* PTYPE 160 */
317                 0, /* PTYPE 161 */
318                 0, /* PTYPE 162 */
319                 0, /* PTYPE 163 */
320                 0, /* PTYPE 164 */
321                 0, /* PTYPE 165 */
322                 0, /* PTYPE 166 */
323                 0, /* PTYPE 167 */
324                 0, /* PTYPE 168 */
325                 0, /* PTYPE 169 */
326                 0, /* PTYPE 170 */
327                 0, /* PTYPE 171 */
328                 0, /* PTYPE 172 */
329                 0, /* PTYPE 173 */
330                 0, /* PTYPE 174 */
331                 0, /* PTYPE 175 */
332                 0, /* PTYPE 176 */
333                 0, /* PTYPE 177 */
334                 0, /* PTYPE 178 */
335                 0, /* PTYPE 179 */
336                 0, /* PTYPE 180 */
337                 0, /* PTYPE 181 */
338                 0, /* PTYPE 182 */
339                 0, /* PTYPE 183 */
340                 0, /* PTYPE 184 */
341                 0, /* PTYPE 185 */
342                 0, /* PTYPE 186 */
343                 0, /* PTYPE 187 */
344                 0, /* PTYPE 188 */
345                 0, /* PTYPE 189 */
346                 0, /* PTYPE 190 */
347                 0, /* PTYPE 191 */
348                 0, /* PTYPE 192 */
349                 0, /* PTYPE 193 */
350                 0, /* PTYPE 194 */
351                 0, /* PTYPE 195 */
352                 0, /* PTYPE 196 */
353                 0, /* PTYPE 197 */
354                 0, /* PTYPE 198 */
355                 0, /* PTYPE 199 */
356                 0, /* PTYPE 200 */
357                 0, /* PTYPE 201 */
358                 0, /* PTYPE 202 */
359                 0, /* PTYPE 203 */
360                 0, /* PTYPE 204 */
361                 0, /* PTYPE 205 */
362                 0, /* PTYPE 206 */
363                 0, /* PTYPE 207 */
364                 0, /* PTYPE 208 */
365                 0, /* PTYPE 209 */
366                 0, /* PTYPE 210 */
367                 0, /* PTYPE 211 */
368                 0, /* PTYPE 212 */
369                 0, /* PTYPE 213 */
370                 0, /* PTYPE 214 */
371                 0, /* PTYPE 215 */
372                 0, /* PTYPE 216 */
373                 0, /* PTYPE 217 */
374                 0, /* PTYPE 218 */
375                 0, /* PTYPE 219 */
376                 0, /* PTYPE 220 */
377                 0, /* PTYPE 221 */
378                 0, /* PTYPE 222 */
379                 0, /* PTYPE 223 */
380                 0, /* PTYPE 224 */
381                 0, /* PTYPE 225 */
382                 0, /* PTYPE 226 */
383                 0, /* PTYPE 227 */
384                 0, /* PTYPE 228 */
385                 0, /* PTYPE 229 */
386                 0, /* PTYPE 230 */
387                 0, /* PTYPE 231 */
388                 0, /* PTYPE 232 */
389                 0, /* PTYPE 233 */
390                 0, /* PTYPE 234 */
391                 0, /* PTYPE 235 */
392                 0, /* PTYPE 236 */
393                 0, /* PTYPE 237 */
394                 0, /* PTYPE 238 */
395                 0, /* PTYPE 239 */
396                 0, /* PTYPE 240 */
397                 0, /* PTYPE 241 */
398                 0, /* PTYPE 242 */
399                 0, /* PTYPE 243 */
400                 0, /* PTYPE 244 */
401                 0, /* PTYPE 245 */
402                 0, /* PTYPE 246 */
403                 0, /* PTYPE 247 */
404                 0, /* PTYPE 248 */
405                 0, /* PTYPE 249 */
406                 0, /* PTYPE 250 */
407                 0, /* PTYPE 251 */
408                 0, /* PTYPE 252 */
409                 0, /* PTYPE 253 */
410                 0, /* PTYPE 254 */
411                 0, /* PTYPE 255 */
412         };
413
414         return ip_ptype_map[ptype];
415 }
416
417 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
418 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
419 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
420 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
421 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
422
423 static inline uint64_t
424 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
425 {
426         uint64_t flags = 0;
427 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
428         uint16_t flexbh, flexbl;
429
430         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
431                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
432                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
433         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
434                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
435                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
436
437
438         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
439                 mb->hash.fdir.hi =
440                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
441                 flags |= PKT_RX_FDIR_ID;
442         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
443                 mb->hash.fdir.hi =
444                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
445                 flags |= PKT_RX_FDIR_FLX;
446         }
447         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
448                 mb->hash.fdir.lo =
449                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
450                 flags |= PKT_RX_FDIR_FLX;
451         }
452 #else
453         mb->hash.fdir.hi =
454                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
455         flags |= PKT_RX_FDIR_ID;
456 #endif
457         return flags;
458 }
459 static inline void
460 i40e_txd_enable_checksum(uint64_t ol_flags,
461                         uint32_t *td_cmd,
462                         uint32_t *td_offset,
463                         uint8_t l2_len,
464                         uint16_t l3_len,
465                         uint8_t outer_l2_len,
466                         uint16_t outer_l3_len,
467                         uint32_t *cd_tunneling)
468 {
469         if (!l2_len) {
470                 PMD_DRV_LOG(DEBUG, "L2 length set to 0");
471                 return;
472         }
473
474         if (!l3_len) {
475                 PMD_DRV_LOG(DEBUG, "L3 length set to 0");
476                 return;
477         }
478
479         /* UDP tunneling packet TX checksum offload */
480         if (unlikely(ol_flags & PKT_TX_UDP_TUNNEL_PKT)) {
481
482                 *td_offset |= (outer_l2_len >> 1)
483                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
484
485                 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
486                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
487                 else if (ol_flags & PKT_TX_OUTER_IPV4)
488                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
489                 else if (ol_flags & PKT_TX_OUTER_IPV6)
490                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
491
492                 /* Now set the ctx descriptor fields */
493                 *cd_tunneling |= (outer_l3_len >> 2) <<
494                                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
495                                 I40E_TXD_CTX_UDP_TUNNELING |
496                                 (l2_len >> 1) <<
497                                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
498
499         } else
500                 *td_offset |= (l2_len >> 1)
501                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
502
503         /* Enable L3 checksum offloads */
504         if (ol_flags & PKT_TX_IP_CKSUM) {
505                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
506                 *td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
507         } else if (ol_flags & PKT_TX_IPV4) {
508                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
509                 *td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
510         } else if (ol_flags & PKT_TX_IPV6) {
511                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
512                 *td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
513         }
514
515         /* Enable L4 checksum offloads */
516         switch (ol_flags & PKT_TX_L4_MASK) {
517         case PKT_TX_TCP_CKSUM:
518                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
519                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
520                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
521                 break;
522         case PKT_TX_SCTP_CKSUM:
523                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
524                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
525                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
526                 break;
527         case PKT_TX_UDP_CKSUM:
528                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
529                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
530                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
531                 break;
532         default:
533                 break;
534         }
535 }
536
537 static inline struct rte_mbuf *
538 rte_rxmbuf_alloc(struct rte_mempool *mp)
539 {
540         struct rte_mbuf *m;
541
542         m = __rte_mbuf_raw_alloc(mp);
543         __rte_mbuf_sanity_check_raw(m, 0);
544
545         return m;
546 }
547
548 /* Construct the tx flags */
549 static inline uint64_t
550 i40e_build_ctob(uint32_t td_cmd,
551                 uint32_t td_offset,
552                 unsigned int size,
553                 uint32_t td_tag)
554 {
555         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
556                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
557                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
558                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
559                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
560 }
561
562 static inline int
563 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
564 {
565         struct i40e_tx_entry *sw_ring = txq->sw_ring;
566         volatile struct i40e_tx_desc *txd = txq->tx_ring;
567         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
568         uint16_t nb_tx_desc = txq->nb_tx_desc;
569         uint16_t desc_to_clean_to;
570         uint16_t nb_tx_to_clean;
571
572         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
573         if (desc_to_clean_to >= nb_tx_desc)
574                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
575
576         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
577         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
578                 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))) {
579                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
580                         "(port=%d queue=%d)", desc_to_clean_to,
581                                 txq->port_id, txq->queue_id);
582                 return -1;
583         }
584
585         if (last_desc_cleaned > desc_to_clean_to)
586                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
587                                                         desc_to_clean_to);
588         else
589                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
590                                         last_desc_cleaned);
591
592         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
593
594         txq->last_desc_cleaned = desc_to_clean_to;
595         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
596
597         return 0;
598 }
599
600 static inline int
601 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
602 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
603 #else
604 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
605 #endif
606 {
607         int ret = 0;
608
609 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
610         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
611                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
612                              "rxq->rx_free_thresh=%d, "
613                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
614                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
615                 ret = -EINVAL;
616         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
617                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
618                              "rxq->rx_free_thresh=%d, "
619                              "rxq->nb_rx_desc=%d",
620                              rxq->rx_free_thresh, rxq->nb_rx_desc);
621                 ret = -EINVAL;
622         } else if (!(rxq->nb_rx_desc % rxq->rx_free_thresh) == 0) {
623                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
624                              "rxq->nb_rx_desc=%d, "
625                              "rxq->rx_free_thresh=%d",
626                              rxq->nb_rx_desc, rxq->rx_free_thresh);
627                 ret = -EINVAL;
628         } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
629                                 RTE_PMD_I40E_RX_MAX_BURST))) {
630                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
631                              "rxq->nb_rx_desc=%d, "
632                              "I40E_MAX_RING_DESC=%d, "
633                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
634                              rxq->nb_rx_desc, I40E_MAX_RING_DESC,
635                              RTE_PMD_I40E_RX_MAX_BURST);
636                 ret = -EINVAL;
637         }
638 #else
639         ret = -EINVAL;
640 #endif
641
642         return ret;
643 }
644
645 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
646 #define I40E_LOOK_AHEAD 8
647 #if (I40E_LOOK_AHEAD != 8)
648 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
649 #endif
650 static inline int
651 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
652 {
653         volatile union i40e_rx_desc *rxdp;
654         struct i40e_rx_entry *rxep;
655         struct rte_mbuf *mb;
656         uint16_t pkt_len;
657         uint64_t qword1;
658         uint32_t rx_status;
659         int32_t s[I40E_LOOK_AHEAD], nb_dd;
660         int32_t i, j, nb_rx = 0;
661         uint64_t pkt_flags;
662
663         rxdp = &rxq->rx_ring[rxq->rx_tail];
664         rxep = &rxq->sw_ring[rxq->rx_tail];
665
666         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
667         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
668                                 I40E_RXD_QW1_STATUS_SHIFT;
669
670         /* Make sure there is at least 1 packet to receive */
671         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
672                 return 0;
673
674         /**
675          * Scan LOOK_AHEAD descriptors at a time to determine which
676          * descriptors reference packets that are ready to be received.
677          */
678         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
679                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
680                 /* Read desc statuses backwards to avoid race condition */
681                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
682                         qword1 = rte_le_to_cpu_64(\
683                                 rxdp[j].wb.qword1.status_error_len);
684                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
685                                         I40E_RXD_QW1_STATUS_SHIFT;
686                 }
687
688                 /* Compute how many status bits were set */
689                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
690                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
691
692                 nb_rx += nb_dd;
693
694                 /* Translate descriptor info to mbuf parameters */
695                 for (j = 0; j < nb_dd; j++) {
696                         mb = rxep[j].mbuf;
697                         qword1 = rte_le_to_cpu_64(\
698                                 rxdp[j].wb.qword1.status_error_len);
699                         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
700                                                 I40E_RXD_QW1_STATUS_SHIFT;
701                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
702                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
703                         mb->data_len = pkt_len;
704                         mb->pkt_len = pkt_len;
705                         mb->vlan_tci = rx_status &
706                                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
707                         rte_le_to_cpu_16(\
708                                 rxdp[j].wb.qword0.lo_dword.l2tag1) : 0;
709                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
710                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
711                         pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
712
713                         mb->packet_type = (uint16_t)((qword1 &
714                                         I40E_RXD_QW1_PTYPE_MASK) >>
715                                         I40E_RXD_QW1_PTYPE_SHIFT);
716                         if (pkt_flags & PKT_RX_RSS_HASH)
717                                 mb->hash.rss = rte_le_to_cpu_32(\
718                                         rxdp[j].wb.qword0.hi_dword.rss);
719                         if (pkt_flags & PKT_RX_FDIR)
720                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
721
722                         mb->ol_flags = pkt_flags;
723                 }
724
725                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
726                         rxq->rx_stage[i + j] = rxep[j].mbuf;
727
728                 if (nb_dd != I40E_LOOK_AHEAD)
729                         break;
730         }
731
732         /* Clear software ring entries */
733         for (i = 0; i < nb_rx; i++)
734                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
735
736         return nb_rx;
737 }
738
739 static inline uint16_t
740 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
741                         struct rte_mbuf **rx_pkts,
742                         uint16_t nb_pkts)
743 {
744         uint16_t i;
745         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
746
747         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
748
749         for (i = 0; i < nb_pkts; i++)
750                 rx_pkts[i] = stage[i];
751
752         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
753         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
754
755         return nb_pkts;
756 }
757
758 static inline int
759 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
760 {
761         volatile union i40e_rx_desc *rxdp;
762         struct i40e_rx_entry *rxep;
763         struct rte_mbuf *mb;
764         uint16_t alloc_idx, i;
765         uint64_t dma_addr;
766         int diag;
767
768         /* Allocate buffers in bulk */
769         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
770                                 (rxq->rx_free_thresh - 1));
771         rxep = &(rxq->sw_ring[alloc_idx]);
772         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
773                                         rxq->rx_free_thresh);
774         if (unlikely(diag != 0)) {
775                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
776                 return -ENOMEM;
777         }
778
779         rxdp = &rxq->rx_ring[alloc_idx];
780         for (i = 0; i < rxq->rx_free_thresh; i++) {
781                 mb = rxep[i].mbuf;
782                 rte_mbuf_refcnt_set(mb, 1);
783                 mb->next = NULL;
784                 mb->data_off = RTE_PKTMBUF_HEADROOM;
785                 mb->nb_segs = 1;
786                 mb->port = rxq->port_id;
787                 dma_addr = rte_cpu_to_le_64(\
788                         RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
789                 rxdp[i].read.hdr_addr = dma_addr;
790                 rxdp[i].read.pkt_addr = dma_addr;
791         }
792
793         /* Update rx tail regsiter */
794         rte_wmb();
795         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
796
797         rxq->rx_free_trigger =
798                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
799         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
800                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
801
802         return 0;
803 }
804
805 static inline uint16_t
806 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
807 {
808         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
809         uint16_t nb_rx = 0;
810
811         if (!nb_pkts)
812                 return 0;
813
814         if (rxq->rx_nb_avail)
815                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
816
817         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
818         rxq->rx_next_avail = 0;
819         rxq->rx_nb_avail = nb_rx;
820         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
821
822         if (rxq->rx_tail > rxq->rx_free_trigger) {
823                 if (i40e_rx_alloc_bufs(rxq) != 0) {
824                         uint16_t i, j;
825
826                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
827                                    "port_id=%u, queue_id=%u",
828                                    rxq->port_id, rxq->queue_id);
829                         rxq->rx_nb_avail = 0;
830                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
831                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
832                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
833
834                         return 0;
835                 }
836         }
837
838         if (rxq->rx_tail >= rxq->nb_rx_desc)
839                 rxq->rx_tail = 0;
840
841         if (rxq->rx_nb_avail)
842                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
843
844         return 0;
845 }
846
847 static uint16_t
848 i40e_recv_pkts_bulk_alloc(void *rx_queue,
849                           struct rte_mbuf **rx_pkts,
850                           uint16_t nb_pkts)
851 {
852         uint16_t nb_rx = 0, n, count;
853
854         if (unlikely(nb_pkts == 0))
855                 return 0;
856
857         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
858                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
859
860         while (nb_pkts) {
861                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
862                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
863                 nb_rx = (uint16_t)(nb_rx + count);
864                 nb_pkts = (uint16_t)(nb_pkts - count);
865                 if (count < n)
866                         break;
867         }
868
869         return nb_rx;
870 }
871 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
872
873 uint16_t
874 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
875 {
876         struct i40e_rx_queue *rxq;
877         volatile union i40e_rx_desc *rx_ring;
878         volatile union i40e_rx_desc *rxdp;
879         union i40e_rx_desc rxd;
880         struct i40e_rx_entry *sw_ring;
881         struct i40e_rx_entry *rxe;
882         struct rte_mbuf *rxm;
883         struct rte_mbuf *nmb;
884         uint16_t nb_rx;
885         uint32_t rx_status;
886         uint64_t qword1;
887         uint16_t rx_packet_len;
888         uint16_t rx_id, nb_hold;
889         uint64_t dma_addr;
890         uint64_t pkt_flags;
891
892         nb_rx = 0;
893         nb_hold = 0;
894         rxq = rx_queue;
895         rx_id = rxq->rx_tail;
896         rx_ring = rxq->rx_ring;
897         sw_ring = rxq->sw_ring;
898
899         while (nb_rx < nb_pkts) {
900                 rxdp = &rx_ring[rx_id];
901                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
902                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
903                                 >> I40E_RXD_QW1_STATUS_SHIFT;
904                 /* Check the DD bit first */
905                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
906                         break;
907
908                 nmb = rte_rxmbuf_alloc(rxq->mp);
909                 if (unlikely(!nmb))
910                         break;
911                 rxd = *rxdp;
912
913                 nb_hold++;
914                 rxe = &sw_ring[rx_id];
915                 rx_id++;
916                 if (unlikely(rx_id == rxq->nb_rx_desc))
917                         rx_id = 0;
918
919                 /* Prefetch next mbuf */
920                 rte_prefetch0(sw_ring[rx_id].mbuf);
921
922                 /**
923                  * When next RX descriptor is on a cache line boundary,
924                  * prefetch the next 4 RX descriptors and next 8 pointers
925                  * to mbufs.
926                  */
927                 if ((rx_id & 0x3) == 0) {
928                         rte_prefetch0(&rx_ring[rx_id]);
929                         rte_prefetch0(&sw_ring[rx_id]);
930                 }
931                 rxm = rxe->mbuf;
932                 rxe->mbuf = nmb;
933                 dma_addr =
934                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
935                 rxdp->read.hdr_addr = dma_addr;
936                 rxdp->read.pkt_addr = dma_addr;
937
938                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
939                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
940
941                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
942                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
943                 rxm->nb_segs = 1;
944                 rxm->next = NULL;
945                 rxm->pkt_len = rx_packet_len;
946                 rxm->data_len = rx_packet_len;
947                 rxm->port = rxq->port_id;
948
949                 rxm->vlan_tci = rx_status &
950                         (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
951                         rte_le_to_cpu_16(rxd.wb.qword0.lo_dword.l2tag1) : 0;
952                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
953                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
954                 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
955                 rxm->packet_type = (uint16_t)((qword1 & I40E_RXD_QW1_PTYPE_MASK) >>
956                                 I40E_RXD_QW1_PTYPE_SHIFT);
957                 if (pkt_flags & PKT_RX_RSS_HASH)
958                         rxm->hash.rss =
959                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
960                 if (pkt_flags & PKT_RX_FDIR)
961                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
962
963                 rxm->ol_flags = pkt_flags;
964
965                 rx_pkts[nb_rx++] = rxm;
966         }
967         rxq->rx_tail = rx_id;
968
969         /**
970          * If the number of free RX descriptors is greater than the RX free
971          * threshold of the queue, advance the receive tail register of queue.
972          * Update that register with the value of the last processed RX
973          * descriptor minus 1.
974          */
975         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
976         if (nb_hold > rxq->rx_free_thresh) {
977                 rx_id = (uint16_t) ((rx_id == 0) ?
978                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
979                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
980                 nb_hold = 0;
981         }
982         rxq->nb_rx_hold = nb_hold;
983
984         return nb_rx;
985 }
986
987 uint16_t
988 i40e_recv_scattered_pkts(void *rx_queue,
989                          struct rte_mbuf **rx_pkts,
990                          uint16_t nb_pkts)
991 {
992         struct i40e_rx_queue *rxq = rx_queue;
993         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
994         volatile union i40e_rx_desc *rxdp;
995         union i40e_rx_desc rxd;
996         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
997         struct i40e_rx_entry *rxe;
998         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
999         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1000         struct rte_mbuf *nmb, *rxm;
1001         uint16_t rx_id = rxq->rx_tail;
1002         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1003         uint32_t rx_status;
1004         uint64_t qword1;
1005         uint64_t dma_addr;
1006         uint64_t pkt_flags;
1007
1008         while (nb_rx < nb_pkts) {
1009                 rxdp = &rx_ring[rx_id];
1010                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1011                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1012                                         I40E_RXD_QW1_STATUS_SHIFT;
1013                 /* Check the DD bit */
1014                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1015                         break;
1016
1017                 nmb = rte_rxmbuf_alloc(rxq->mp);
1018                 if (unlikely(!nmb))
1019                         break;
1020                 rxd = *rxdp;
1021                 nb_hold++;
1022                 rxe = &sw_ring[rx_id];
1023                 rx_id++;
1024                 if (rx_id == rxq->nb_rx_desc)
1025                         rx_id = 0;
1026
1027                 /* Prefetch next mbuf */
1028                 rte_prefetch0(sw_ring[rx_id].mbuf);
1029
1030                 /**
1031                  * When next RX descriptor is on a cache line boundary,
1032                  * prefetch the next 4 RX descriptors and next 8 pointers
1033                  * to mbufs.
1034                  */
1035                 if ((rx_id & 0x3) == 0) {
1036                         rte_prefetch0(&rx_ring[rx_id]);
1037                         rte_prefetch0(&sw_ring[rx_id]);
1038                 }
1039
1040                 rxm = rxe->mbuf;
1041                 rxe->mbuf = nmb;
1042                 dma_addr =
1043                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1044
1045                 /* Set data buffer address and data length of the mbuf */
1046                 rxdp->read.hdr_addr = dma_addr;
1047                 rxdp->read.pkt_addr = dma_addr;
1048                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1049                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1050                 rxm->data_len = rx_packet_len;
1051                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1052
1053                 /**
1054                  * If this is the first buffer of the received packet, set the
1055                  * pointer to the first mbuf of the packet and initialize its
1056                  * context. Otherwise, update the total length and the number
1057                  * of segments of the current scattered packet, and update the
1058                  * pointer to the last mbuf of the current packet.
1059                  */
1060                 if (!first_seg) {
1061                         first_seg = rxm;
1062                         first_seg->nb_segs = 1;
1063                         first_seg->pkt_len = rx_packet_len;
1064                 } else {
1065                         first_seg->pkt_len =
1066                                 (uint16_t)(first_seg->pkt_len +
1067                                                 rx_packet_len);
1068                         first_seg->nb_segs++;
1069                         last_seg->next = rxm;
1070                 }
1071
1072                 /**
1073                  * If this is not the last buffer of the received packet,
1074                  * update the pointer to the last mbuf of the current scattered
1075                  * packet and continue to parse the RX ring.
1076                  */
1077                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
1078                         last_seg = rxm;
1079                         continue;
1080                 }
1081
1082                 /**
1083                  * This is the last buffer of the received packet. If the CRC
1084                  * is not stripped by the hardware:
1085                  *  - Subtract the CRC length from the total packet length.
1086                  *  - If the last buffer only contains the whole CRC or a part
1087                  *  of it, free the mbuf associated to the last buffer. If part
1088                  *  of the CRC is also contained in the previous mbuf, subtract
1089                  *  the length of that CRC part from the data length of the
1090                  *  previous mbuf.
1091                  */
1092                 rxm->next = NULL;
1093                 if (unlikely(rxq->crc_len > 0)) {
1094                         first_seg->pkt_len -= ETHER_CRC_LEN;
1095                         if (rx_packet_len <= ETHER_CRC_LEN) {
1096                                 rte_pktmbuf_free_seg(rxm);
1097                                 first_seg->nb_segs--;
1098                                 last_seg->data_len =
1099                                         (uint16_t)(last_seg->data_len -
1100                                         (ETHER_CRC_LEN - rx_packet_len));
1101                                 last_seg->next = NULL;
1102                         } else
1103                                 rxm->data_len = (uint16_t)(rx_packet_len -
1104                                                                 ETHER_CRC_LEN);
1105                 }
1106
1107                 first_seg->port = rxq->port_id;
1108                 first_seg->vlan_tci = (rx_status &
1109                         (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1110                         rte_le_to_cpu_16(rxd.wb.qword0.lo_dword.l2tag1) : 0;
1111                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1112                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1113                 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
1114                 first_seg->packet_type = (uint16_t)((qword1 &
1115                                         I40E_RXD_QW1_PTYPE_MASK) >>
1116                                         I40E_RXD_QW1_PTYPE_SHIFT);
1117                 if (pkt_flags & PKT_RX_RSS_HASH)
1118                         rxm->hash.rss =
1119                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1120                 if (pkt_flags & PKT_RX_FDIR)
1121                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1122
1123                 first_seg->ol_flags = pkt_flags;
1124
1125                 /* Prefetch data of first segment, if configured to do so. */
1126                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1127                         first_seg->data_off));
1128                 rx_pkts[nb_rx++] = first_seg;
1129                 first_seg = NULL;
1130         }
1131
1132         /* Record index of the next RX descriptor to probe. */
1133         rxq->rx_tail = rx_id;
1134         rxq->pkt_first_seg = first_seg;
1135         rxq->pkt_last_seg = last_seg;
1136
1137         /**
1138          * If the number of free RX descriptors is greater than the RX free
1139          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1140          * register. Update the RDT with the value of the last processed RX
1141          * descriptor minus 1, to guarantee that the RDT register is never
1142          * equal to the RDH register, which creates a "full" ring situtation
1143          * from the hardware point of view.
1144          */
1145         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1146         if (nb_hold > rxq->rx_free_thresh) {
1147                 rx_id = (uint16_t)(rx_id == 0 ?
1148                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1149                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1150                 nb_hold = 0;
1151         }
1152         rxq->nb_rx_hold = nb_hold;
1153
1154         return nb_rx;
1155 }
1156
1157 /* Check if the context descriptor is needed for TX offloading */
1158 static inline uint16_t
1159 i40e_calc_context_desc(uint64_t flags)
1160 {
1161         uint64_t mask = 0ULL;
1162
1163         if (flags | PKT_TX_UDP_TUNNEL_PKT)
1164                 mask |= PKT_TX_UDP_TUNNEL_PKT;
1165
1166 #ifdef RTE_LIBRTE_IEEE1588
1167         mask |= PKT_TX_IEEE1588_TMST;
1168 #endif
1169         if (flags & mask)
1170                 return 1;
1171
1172         return 0;
1173 }
1174
1175 uint16_t
1176 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1177 {
1178         struct i40e_tx_queue *txq;
1179         struct i40e_tx_entry *sw_ring;
1180         struct i40e_tx_entry *txe, *txn;
1181         volatile struct i40e_tx_desc *txd;
1182         volatile struct i40e_tx_desc *txr;
1183         struct rte_mbuf *tx_pkt;
1184         struct rte_mbuf *m_seg;
1185         uint32_t cd_tunneling_params;
1186         uint16_t tx_id;
1187         uint16_t nb_tx;
1188         uint32_t td_cmd;
1189         uint32_t td_offset;
1190         uint32_t tx_flags;
1191         uint32_t td_tag;
1192         uint64_t ol_flags;
1193         uint8_t l2_len;
1194         uint16_t l3_len;
1195         uint8_t outer_l2_len;
1196         uint16_t outer_l3_len;
1197         uint16_t nb_used;
1198         uint16_t nb_ctx;
1199         uint16_t tx_last;
1200         uint16_t slen;
1201         uint64_t buf_dma_addr;
1202
1203         txq = tx_queue;
1204         sw_ring = txq->sw_ring;
1205         txr = txq->tx_ring;
1206         tx_id = txq->tx_tail;
1207         txe = &sw_ring[tx_id];
1208
1209         /* Check if the descriptor ring needs to be cleaned. */
1210         if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh)
1211                 i40e_xmit_cleanup(txq);
1212
1213         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1214                 td_cmd = 0;
1215                 td_tag = 0;
1216                 td_offset = 0;
1217                 tx_flags = 0;
1218
1219                 tx_pkt = *tx_pkts++;
1220                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1221
1222                 ol_flags = tx_pkt->ol_flags;
1223                 l2_len = tx_pkt->l2_len;
1224                 l3_len = tx_pkt->l3_len;
1225                 outer_l2_len = tx_pkt->outer_l2_len;
1226                 outer_l3_len = tx_pkt->outer_l3_len;
1227
1228                 /* Calculate the number of context descriptors needed. */
1229                 nb_ctx = i40e_calc_context_desc(ol_flags);
1230
1231                 /**
1232                  * The number of descriptors that must be allocated for
1233                  * a packet equals to the number of the segments of that
1234                  * packet plus 1 context descriptor if needed.
1235                  */
1236                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1237                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1238
1239                 /* Circular ring */
1240                 if (tx_last >= txq->nb_tx_desc)
1241                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1242
1243                 if (nb_used > txq->nb_tx_free) {
1244                         if (i40e_xmit_cleanup(txq) != 0) {
1245                                 if (nb_tx == 0)
1246                                         return 0;
1247                                 goto end_of_tx;
1248                         }
1249                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1250                                 while (nb_used > txq->nb_tx_free) {
1251                                         if (i40e_xmit_cleanup(txq) != 0) {
1252                                                 if (nb_tx == 0)
1253                                                         return 0;
1254                                                 goto end_of_tx;
1255                                         }
1256                                 }
1257                         }
1258                 }
1259
1260                 /* Descriptor based VLAN insertion */
1261                 if (ol_flags & PKT_TX_VLAN_PKT) {
1262                         tx_flags |= tx_pkt->vlan_tci <<
1263                                         I40E_TX_FLAG_L2TAG1_SHIFT;
1264                         tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1265                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1266                         td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1267                                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1268                 }
1269
1270                 /* Always enable CRC offload insertion */
1271                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1272
1273                 /* Enable checksum offloading */
1274                 cd_tunneling_params = 0;
1275                 i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
1276                                                 l2_len, l3_len, outer_l2_len,
1277                                                 outer_l3_len,
1278                                                 &cd_tunneling_params);
1279
1280                 if (unlikely(nb_ctx)) {
1281                         /* Setup TX context descriptor if required */
1282                         volatile struct i40e_tx_context_desc *ctx_txd =
1283                                 (volatile struct i40e_tx_context_desc *)\
1284                                                         &txr[tx_id];
1285                         uint16_t cd_l2tag2 = 0;
1286                         uint64_t cd_type_cmd_tso_mss =
1287                                 I40E_TX_DESC_DTYPE_CONTEXT;
1288
1289                         txn = &sw_ring[txe->next_id];
1290                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1291                         if (txe->mbuf != NULL) {
1292                                 rte_pktmbuf_free_seg(txe->mbuf);
1293                                 txe->mbuf = NULL;
1294                         }
1295 #ifdef RTE_LIBRTE_IEEE1588
1296                         if (ol_flags & PKT_TX_IEEE1588_TMST)
1297                                 cd_type_cmd_tso_mss |=
1298                                         ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1299                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1300 #endif
1301                         ctx_txd->tunneling_params =
1302                                 rte_cpu_to_le_32(cd_tunneling_params);
1303                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1304                         ctx_txd->type_cmd_tso_mss =
1305                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1306                         txe->last_id = tx_last;
1307                         tx_id = txe->next_id;
1308                         txe = txn;
1309                 }
1310
1311                 m_seg = tx_pkt;
1312                 do {
1313                         txd = &txr[tx_id];
1314                         txn = &sw_ring[txe->next_id];
1315
1316                         if (txe->mbuf)
1317                                 rte_pktmbuf_free_seg(txe->mbuf);
1318                         txe->mbuf = m_seg;
1319
1320                         /* Setup TX Descriptor */
1321                         slen = m_seg->data_len;
1322                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
1323                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1324                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1325                                                 td_offset, slen, td_tag);
1326                         txe->last_id = tx_last;
1327                         tx_id = txe->next_id;
1328                         txe = txn;
1329                         m_seg = m_seg->next;
1330                 } while (m_seg != NULL);
1331
1332                 /* The last packet data descriptor needs End Of Packet (EOP) */
1333                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1334                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1335                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1336
1337                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1338                         PMD_TX_FREE_LOG(DEBUG,
1339                                         "Setting RS bit on TXD id="
1340                                         "%4u (port=%d queue=%d)",
1341                                         tx_last, txq->port_id, txq->queue_id);
1342
1343                         td_cmd |= I40E_TX_DESC_CMD_RS;
1344
1345                         /* Update txq RS bit counters */
1346                         txq->nb_tx_used = 0;
1347                 }
1348
1349                 txd->cmd_type_offset_bsz |=
1350                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1351                                         I40E_TXD_QW1_CMD_SHIFT);
1352         }
1353
1354 end_of_tx:
1355         rte_wmb();
1356
1357         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1358                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1359                    (unsigned) tx_id, (unsigned) nb_tx);
1360
1361         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1362         txq->tx_tail = tx_id;
1363
1364         return nb_tx;
1365 }
1366
1367 static inline int __attribute__((always_inline))
1368 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1369 {
1370         struct i40e_tx_entry *txep;
1371         uint16_t i;
1372
1373         if (!(txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1374                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)))
1375                 return 0;
1376
1377         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1378
1379         for (i = 0; i < txq->tx_rs_thresh; i++)
1380                 rte_prefetch0((txep + i)->mbuf);
1381
1382         if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
1383                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1384                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1385                         txep->mbuf = NULL;
1386                 }
1387         } else {
1388                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1389                         rte_pktmbuf_free_seg(txep->mbuf);
1390                         txep->mbuf = NULL;
1391                 }
1392         }
1393
1394         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1395         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1396         if (txq->tx_next_dd >= txq->nb_tx_desc)
1397                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1398
1399         return txq->tx_rs_thresh;
1400 }
1401
1402 #define I40E_TD_CMD (I40E_TX_DESC_CMD_ICRC |\
1403                      I40E_TX_DESC_CMD_EOP)
1404
1405 /* Populate 4 descriptors with data from 4 mbufs */
1406 static inline void
1407 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1408 {
1409         uint64_t dma_addr;
1410         uint32_t i;
1411
1412         for (i = 0; i < 4; i++, txdp++, pkts++) {
1413                 dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1414                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1415                 txdp->cmd_type_offset_bsz =
1416                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1417                                         (*pkts)->data_len, 0);
1418         }
1419 }
1420
1421 /* Populate 1 descriptor with data from 1 mbuf */
1422 static inline void
1423 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1424 {
1425         uint64_t dma_addr;
1426
1427         dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1428         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1429         txdp->cmd_type_offset_bsz =
1430                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1431                                 (*pkts)->data_len, 0);
1432 }
1433
1434 /* Fill hardware descriptor ring with mbuf data */
1435 static inline void
1436 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1437                      struct rte_mbuf **pkts,
1438                      uint16_t nb_pkts)
1439 {
1440         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1441         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1442         const int N_PER_LOOP = 4;
1443         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1444         int mainpart, leftover;
1445         int i, j;
1446
1447         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1448         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1449         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1450                 for (j = 0; j < N_PER_LOOP; ++j) {
1451                         (txep + i + j)->mbuf = *(pkts + i + j);
1452                 }
1453                 tx4(txdp + i, pkts + i);
1454         }
1455         if (unlikely(leftover > 0)) {
1456                 for (i = 0; i < leftover; ++i) {
1457                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1458                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1459                 }
1460         }
1461 }
1462
1463 static inline uint16_t
1464 tx_xmit_pkts(struct i40e_tx_queue *txq,
1465              struct rte_mbuf **tx_pkts,
1466              uint16_t nb_pkts)
1467 {
1468         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1469         uint16_t n = 0;
1470
1471         /**
1472          * Begin scanning the H/W ring for done descriptors when the number
1473          * of available descriptors drops below tx_free_thresh. For each done
1474          * descriptor, free the associated buffer.
1475          */
1476         if (txq->nb_tx_free < txq->tx_free_thresh)
1477                 i40e_tx_free_bufs(txq);
1478
1479         /* Use available descriptor only */
1480         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1481         if (unlikely(!nb_pkts))
1482                 return 0;
1483
1484         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1485         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1486                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1487                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1488                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1489                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1490                                                 I40E_TXD_QW1_CMD_SHIFT);
1491                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1492                 txq->tx_tail = 0;
1493         }
1494
1495         /* Fill hardware descriptor ring with mbuf data */
1496         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1497         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1498
1499         /* Determin if RS bit needs to be set */
1500         if (txq->tx_tail > txq->tx_next_rs) {
1501                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1502                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1503                                                 I40E_TXD_QW1_CMD_SHIFT);
1504                 txq->tx_next_rs =
1505                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1506                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1507                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1508         }
1509
1510         if (txq->tx_tail >= txq->nb_tx_desc)
1511                 txq->tx_tail = 0;
1512
1513         /* Update the tx tail register */
1514         rte_wmb();
1515         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1516
1517         return nb_pkts;
1518 }
1519
1520 static uint16_t
1521 i40e_xmit_pkts_simple(void *tx_queue,
1522                       struct rte_mbuf **tx_pkts,
1523                       uint16_t nb_pkts)
1524 {
1525         uint16_t nb_tx = 0;
1526
1527         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1528                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1529                                                 tx_pkts, nb_pkts);
1530
1531         while (nb_pkts) {
1532                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1533                                                 I40E_TX_MAX_BURST);
1534
1535                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1536                                                 &tx_pkts[nb_tx], num);
1537                 nb_tx = (uint16_t)(nb_tx + ret);
1538                 nb_pkts = (uint16_t)(nb_pkts - ret);
1539                 if (ret < num)
1540                         break;
1541         }
1542
1543         return nb_tx;
1544 }
1545
1546 /*
1547  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1548  * application used, which assume having sequential ones. But from driver's
1549  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1550  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1551  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1552  * use queue_idx from 0 to 95 to access queues, while real queue would be
1553  * different. This function will do a queue mapping to find VSI the queue
1554  * belongs to.
1555  */
1556 static struct i40e_vsi*
1557 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1558 {
1559         /* the queue in MAIN VSI range */
1560         if (queue_idx < pf->main_vsi->nb_qps)
1561                 return pf->main_vsi;
1562
1563         queue_idx -= pf->main_vsi->nb_qps;
1564
1565         /* queue_idx is greater than VMDQ VSIs range */
1566         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1567                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1568                 return NULL;
1569         }
1570
1571         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1572 }
1573
1574 static uint16_t
1575 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1576 {
1577         /* the queue in MAIN VSI range */
1578         if (queue_idx < pf->main_vsi->nb_qps)
1579                 return queue_idx;
1580
1581         /* It's VMDQ queues */
1582         queue_idx -= pf->main_vsi->nb_qps;
1583
1584         if (pf->nb_cfg_vmdq_vsi)
1585                 return queue_idx % pf->vmdq_nb_qps;
1586         else {
1587                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1588                 return (uint16_t)(-1);
1589         }
1590 }
1591
1592 int
1593 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1594 {
1595         struct i40e_rx_queue *rxq;
1596         int err = -1;
1597         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1598
1599         PMD_INIT_FUNC_TRACE();
1600
1601         if (rx_queue_id < dev->data->nb_rx_queues) {
1602                 rxq = dev->data->rx_queues[rx_queue_id];
1603
1604                 err = i40e_alloc_rx_queue_mbufs(rxq);
1605                 if (err) {
1606                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1607                         return err;
1608                 }
1609
1610                 rte_wmb();
1611
1612                 /* Init the RX tail regieter. */
1613                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1614
1615                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1616
1617                 if (err) {
1618                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1619                                     rx_queue_id);
1620
1621                         i40e_rx_queue_release_mbufs(rxq);
1622                         i40e_reset_rx_queue(rxq);
1623                 }
1624         }
1625
1626         return err;
1627 }
1628
1629 int
1630 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1631 {
1632         struct i40e_rx_queue *rxq;
1633         int err;
1634         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1635
1636         if (rx_queue_id < dev->data->nb_rx_queues) {
1637                 rxq = dev->data->rx_queues[rx_queue_id];
1638
1639                 /*
1640                 * rx_queue_id is queue id aplication refers to, while
1641                 * rxq->reg_idx is the real queue index.
1642                 */
1643                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1644
1645                 if (err) {
1646                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1647                                     rx_queue_id);
1648                         return err;
1649                 }
1650                 i40e_rx_queue_release_mbufs(rxq);
1651                 i40e_reset_rx_queue(rxq);
1652         }
1653
1654         return 0;
1655 }
1656
1657 int
1658 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1659 {
1660         int err = -1;
1661         struct i40e_tx_queue *txq;
1662         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1663
1664         PMD_INIT_FUNC_TRACE();
1665
1666         if (tx_queue_id < dev->data->nb_tx_queues) {
1667                 txq = dev->data->tx_queues[tx_queue_id];
1668
1669                 /*
1670                 * tx_queue_id is queue id aplication refers to, while
1671                 * rxq->reg_idx is the real queue index.
1672                 */
1673                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1674                 if (err)
1675                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1676                                     tx_queue_id);
1677         }
1678
1679         return err;
1680 }
1681
1682 int
1683 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1684 {
1685         struct i40e_tx_queue *txq;
1686         int err;
1687         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1688
1689         if (tx_queue_id < dev->data->nb_tx_queues) {
1690                 txq = dev->data->tx_queues[tx_queue_id];
1691
1692                 /*
1693                 * tx_queue_id is queue id aplication refers to, while
1694                 * txq->reg_idx is the real queue index.
1695                 */
1696                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1697
1698                 if (err) {
1699                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1700                                     tx_queue_id);
1701                         return err;
1702                 }
1703
1704                 i40e_tx_queue_release_mbufs(txq);
1705                 i40e_reset_tx_queue(txq);
1706         }
1707
1708         return 0;
1709 }
1710
1711 int
1712 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1713                         uint16_t queue_idx,
1714                         uint16_t nb_desc,
1715                         unsigned int socket_id,
1716                         const struct rte_eth_rxconf *rx_conf,
1717                         struct rte_mempool *mp)
1718 {
1719         struct i40e_vsi *vsi;
1720         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1721         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1722         struct i40e_rx_queue *rxq;
1723         const struct rte_memzone *rz;
1724         uint32_t ring_size;
1725         uint16_t len;
1726         int use_def_burst_func = 1;
1727
1728         if (hw->mac.type == I40E_MAC_VF) {
1729                 struct i40e_vf *vf =
1730                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1731                 vsi = &vf->vsi;
1732         } else
1733                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1734
1735         if (vsi == NULL) {
1736                 PMD_DRV_LOG(ERR, "VSI not available or queue "
1737                             "index exceeds the maximum");
1738                 return I40E_ERR_PARAM;
1739         }
1740         if (((nb_desc * sizeof(union i40e_rx_desc)) % I40E_ALIGN) != 0 ||
1741                                         (nb_desc > I40E_MAX_RING_DESC) ||
1742                                         (nb_desc < I40E_MIN_RING_DESC)) {
1743                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1744                             "invalid", nb_desc);
1745                 return I40E_ERR_PARAM;
1746         }
1747
1748         /* Free memory if needed */
1749         if (dev->data->rx_queues[queue_idx]) {
1750                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1751                 dev->data->rx_queues[queue_idx] = NULL;
1752         }
1753
1754         /* Allocate the rx queue data structure */
1755         rxq = rte_zmalloc_socket("i40e rx queue",
1756                                  sizeof(struct i40e_rx_queue),
1757                                  RTE_CACHE_LINE_SIZE,
1758                                  socket_id);
1759         if (!rxq) {
1760                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1761                             "rx queue data structure");
1762                 return (-ENOMEM);
1763         }
1764         rxq->mp = mp;
1765         rxq->nb_rx_desc = nb_desc;
1766         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1767         rxq->queue_id = queue_idx;
1768         if (hw->mac.type == I40E_MAC_VF)
1769                 rxq->reg_idx = queue_idx;
1770         else /* PF device */
1771                 rxq->reg_idx = vsi->base_queue +
1772                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
1773
1774         rxq->port_id = dev->data->port_id;
1775         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1776                                                         0 : ETHER_CRC_LEN);
1777         rxq->drop_en = rx_conf->rx_drop_en;
1778         rxq->vsi = vsi;
1779         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1780
1781         /* Allocate the maximun number of RX ring hardware descriptor. */
1782         ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
1783         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
1784         rz = i40e_ring_dma_zone_reserve(dev,
1785                                         "rx_ring",
1786                                         queue_idx,
1787                                         ring_size,
1788                                         socket_id);
1789         if (!rz) {
1790                 i40e_dev_rx_queue_release(rxq);
1791                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1792                 return (-ENOMEM);
1793         }
1794
1795         /* Zero all the descriptors in the ring. */
1796         memset(rz->addr, 0, ring_size);
1797
1798 #ifdef RTE_LIBRTE_XEN_DOM0
1799         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1800 #else
1801         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
1802 #endif
1803
1804         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1805
1806 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1807         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1808 #else
1809         len = nb_desc;
1810 #endif
1811
1812         /* Allocate the software ring. */
1813         rxq->sw_ring =
1814                 rte_zmalloc_socket("i40e rx sw ring",
1815                                    sizeof(struct i40e_rx_entry) * len,
1816                                    RTE_CACHE_LINE_SIZE,
1817                                    socket_id);
1818         if (!rxq->sw_ring) {
1819                 i40e_dev_rx_queue_release(rxq);
1820                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1821                 return (-ENOMEM);
1822         }
1823
1824         i40e_reset_rx_queue(rxq);
1825         rxq->q_set = TRUE;
1826         dev->data->rx_queues[queue_idx] = rxq;
1827
1828         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
1829
1830         if (!use_def_burst_func && !dev->data->scattered_rx) {
1831 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1832                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1833                              "satisfied. Rx Burst Bulk Alloc function will be "
1834                              "used on port=%d, queue=%d.",
1835                              rxq->port_id, rxq->queue_id);
1836                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
1837 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1838         } else {
1839                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1840                              "not satisfied, Scattered Rx is requested, "
1841                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1842                              "not enabled on port=%d, queue=%d.",
1843                              rxq->port_id, rxq->queue_id);
1844         }
1845
1846         return 0;
1847 }
1848
1849 void
1850 i40e_dev_rx_queue_release(void *rxq)
1851 {
1852         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1853
1854         if (!q) {
1855                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1856                 return;
1857         }
1858
1859         i40e_rx_queue_release_mbufs(q);
1860         rte_free(q->sw_ring);
1861         rte_free(q);
1862 }
1863
1864 uint32_t
1865 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1866 {
1867 #define I40E_RXQ_SCAN_INTERVAL 4
1868         volatile union i40e_rx_desc *rxdp;
1869         struct i40e_rx_queue *rxq;
1870         uint16_t desc = 0;
1871
1872         if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
1873                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
1874                 return 0;
1875         }
1876
1877         rxq = dev->data->rx_queues[rx_queue_id];
1878         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1879         while ((desc < rxq->nb_rx_desc) &&
1880                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1881                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1882                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1883                 /**
1884                  * Check the DD bit of a rx descriptor of each 4 in a group,
1885                  * to avoid checking too frequently and downgrading performance
1886                  * too much.
1887                  */
1888                 desc += I40E_RXQ_SCAN_INTERVAL;
1889                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1890                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1891                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1892                                         desc - rxq->nb_rx_desc]);
1893         }
1894
1895         return desc;
1896 }
1897
1898 int
1899 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1900 {
1901         volatile union i40e_rx_desc *rxdp;
1902         struct i40e_rx_queue *rxq = rx_queue;
1903         uint16_t desc;
1904         int ret;
1905
1906         if (unlikely(offset >= rxq->nb_rx_desc)) {
1907                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
1908                 return 0;
1909         }
1910
1911         desc = rxq->rx_tail + offset;
1912         if (desc >= rxq->nb_rx_desc)
1913                 desc -= rxq->nb_rx_desc;
1914
1915         rxdp = &(rxq->rx_ring[desc]);
1916
1917         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1918                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1919                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1920
1921         return ret;
1922 }
1923
1924 int
1925 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
1926                         uint16_t queue_idx,
1927                         uint16_t nb_desc,
1928                         unsigned int socket_id,
1929                         const struct rte_eth_txconf *tx_conf)
1930 {
1931         struct i40e_vsi *vsi;
1932         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1933         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1934         struct i40e_tx_queue *txq;
1935         const struct rte_memzone *tz;
1936         uint32_t ring_size;
1937         uint16_t tx_rs_thresh, tx_free_thresh;
1938
1939         if (hw->mac.type == I40E_MAC_VF) {
1940                 struct i40e_vf *vf =
1941                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1942                 vsi = &vf->vsi;
1943         } else
1944                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1945
1946         if (vsi == NULL) {
1947                 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
1948                             "exceeds the maximum", queue_idx);
1949                 return I40E_ERR_PARAM;
1950         }
1951
1952         if (((nb_desc * sizeof(struct i40e_tx_desc)) % I40E_ALIGN) != 0 ||
1953                                         (nb_desc > I40E_MAX_RING_DESC) ||
1954                                         (nb_desc < I40E_MIN_RING_DESC)) {
1955                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
1956                             "invalid", nb_desc);
1957                 return I40E_ERR_PARAM;
1958         }
1959
1960         /**
1961          * The following two parameters control the setting of the RS bit on
1962          * transmit descriptors. TX descriptors will have their RS bit set
1963          * after txq->tx_rs_thresh descriptors have been used. The TX
1964          * descriptor ring will be cleaned after txq->tx_free_thresh
1965          * descriptors are used or if the number of descriptors required to
1966          * transmit a packet is greater than the number of free TX descriptors.
1967          *
1968          * The following constraints must be satisfied:
1969          *  - tx_rs_thresh must be greater than 0.
1970          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1971          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1972          *  - tx_rs_thresh must be a divisor of the ring size.
1973          *  - tx_free_thresh must be greater than 0.
1974          *  - tx_free_thresh must be less than the size of the ring minus 3.
1975          *
1976          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1977          * race condition, hence the maximum threshold constraints. When set
1978          * to zero use default values.
1979          */
1980         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
1981                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
1982         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
1983                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
1984         if (tx_rs_thresh >= (nb_desc - 2)) {
1985                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1986                              "number of TX descriptors minus 2. "
1987                              "(tx_rs_thresh=%u port=%d queue=%d)",
1988                              (unsigned int)tx_rs_thresh,
1989                              (int)dev->data->port_id,
1990                              (int)queue_idx);
1991                 return I40E_ERR_PARAM;
1992         }
1993         if (tx_free_thresh >= (nb_desc - 3)) {
1994                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1995                              "tx_free_thresh must be less than the "
1996                              "number of TX descriptors minus 3. "
1997                              "(tx_free_thresh=%u port=%d queue=%d)",
1998                              (unsigned int)tx_free_thresh,
1999                              (int)dev->data->port_id,
2000                              (int)queue_idx);
2001                 return I40E_ERR_PARAM;
2002         }
2003         if (tx_rs_thresh > tx_free_thresh) {
2004                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2005                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2006                              " tx_rs_thresh=%u port=%d queue=%d)",
2007                              (unsigned int)tx_free_thresh,
2008                              (unsigned int)tx_rs_thresh,
2009                              (int)dev->data->port_id,
2010                              (int)queue_idx);
2011                 return I40E_ERR_PARAM;
2012         }
2013         if ((nb_desc % tx_rs_thresh) != 0) {
2014                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2015                              "number of TX descriptors. (tx_rs_thresh=%u"
2016                              " port=%d queue=%d)",
2017                              (unsigned int)tx_rs_thresh,
2018                              (int)dev->data->port_id,
2019                              (int)queue_idx);
2020                 return I40E_ERR_PARAM;
2021         }
2022         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2023                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2024                              "tx_rs_thresh is greater than 1. "
2025                              "(tx_rs_thresh=%u port=%d queue=%d)",
2026                              (unsigned int)tx_rs_thresh,
2027                              (int)dev->data->port_id,
2028                              (int)queue_idx);
2029                 return I40E_ERR_PARAM;
2030         }
2031
2032         /* Free memory if needed. */
2033         if (dev->data->tx_queues[queue_idx]) {
2034                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2035                 dev->data->tx_queues[queue_idx] = NULL;
2036         }
2037
2038         /* Allocate the TX queue data structure. */
2039         txq = rte_zmalloc_socket("i40e tx queue",
2040                                   sizeof(struct i40e_tx_queue),
2041                                   RTE_CACHE_LINE_SIZE,
2042                                   socket_id);
2043         if (!txq) {
2044                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2045                             "tx queue structure");
2046                 return (-ENOMEM);
2047         }
2048
2049         /* Allocate TX hardware ring descriptors. */
2050         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2051         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2052         tz = i40e_ring_dma_zone_reserve(dev,
2053                                         "tx_ring",
2054                                         queue_idx,
2055                                         ring_size,
2056                                         socket_id);
2057         if (!tz) {
2058                 i40e_dev_tx_queue_release(txq);
2059                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2060                 return (-ENOMEM);
2061         }
2062
2063         txq->nb_tx_desc = nb_desc;
2064         txq->tx_rs_thresh = tx_rs_thresh;
2065         txq->tx_free_thresh = tx_free_thresh;
2066         txq->pthresh = tx_conf->tx_thresh.pthresh;
2067         txq->hthresh = tx_conf->tx_thresh.hthresh;
2068         txq->wthresh = tx_conf->tx_thresh.wthresh;
2069         txq->queue_id = queue_idx;
2070         if (hw->mac.type == I40E_MAC_VF)
2071                 txq->reg_idx = queue_idx;
2072         else /* PF device */
2073                 txq->reg_idx = vsi->base_queue +
2074                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2075
2076         txq->port_id = dev->data->port_id;
2077         txq->txq_flags = tx_conf->txq_flags;
2078         txq->vsi = vsi;
2079         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2080
2081 #ifdef RTE_LIBRTE_XEN_DOM0
2082         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2083 #else
2084         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2085 #endif
2086         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2087
2088         /* Allocate software ring */
2089         txq->sw_ring =
2090                 rte_zmalloc_socket("i40e tx sw ring",
2091                                    sizeof(struct i40e_tx_entry) * nb_desc,
2092                                    RTE_CACHE_LINE_SIZE,
2093                                    socket_id);
2094         if (!txq->sw_ring) {
2095                 i40e_dev_tx_queue_release(txq);
2096                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2097                 return (-ENOMEM);
2098         }
2099
2100         i40e_reset_tx_queue(txq);
2101         txq->q_set = TRUE;
2102         dev->data->tx_queues[queue_idx] = txq;
2103
2104         /* Use a simple TX queue without offloads or multi segs if possible */
2105         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) &&
2106                                 (txq->tx_rs_thresh >= I40E_TX_MAX_BURST)) {
2107                 PMD_INIT_LOG(INFO, "Using simple tx path");
2108                 dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2109         } else {
2110                 PMD_INIT_LOG(INFO, "Using full-featured tx path");
2111                 dev->tx_pkt_burst = i40e_xmit_pkts;
2112         }
2113
2114         return 0;
2115 }
2116
2117 void
2118 i40e_dev_tx_queue_release(void *txq)
2119 {
2120         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2121
2122         if (!q) {
2123                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2124                 return;
2125         }
2126
2127         i40e_tx_queue_release_mbufs(q);
2128         rte_free(q->sw_ring);
2129         rte_free(q);
2130 }
2131
2132 static const struct rte_memzone *
2133 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
2134                            const char *ring_name,
2135                            uint16_t queue_id,
2136                            uint32_t ring_size,
2137                            int socket_id)
2138 {
2139         char z_name[RTE_MEMZONE_NAMESIZE];
2140         const struct rte_memzone *mz;
2141
2142         snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
2143                         dev->driver->pci_drv.name, ring_name,
2144                                 dev->data->port_id, queue_id);
2145         mz = rte_memzone_lookup(z_name);
2146         if (mz)
2147                 return mz;
2148
2149 #ifdef RTE_LIBRTE_XEN_DOM0
2150         return rte_memzone_reserve_bounded(z_name, ring_size,
2151                 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2152 #else
2153         return rte_memzone_reserve_aligned(z_name, ring_size,
2154                                 socket_id, 0, I40E_ALIGN);
2155 #endif
2156 }
2157
2158 const struct rte_memzone *
2159 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2160 {
2161         const struct rte_memzone *mz = NULL;
2162
2163         mz = rte_memzone_lookup(name);
2164         if (mz)
2165                 return mz;
2166 #ifdef RTE_LIBRTE_XEN_DOM0
2167         mz = rte_memzone_reserve_bounded(name, len,
2168                 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2169 #else
2170         mz = rte_memzone_reserve_aligned(name, len,
2171                                 socket_id, 0, I40E_ALIGN);
2172 #endif
2173         return mz;
2174 }
2175
2176 void
2177 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2178 {
2179         uint16_t i;
2180
2181         if (!rxq || !rxq->sw_ring) {
2182                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2183                 return;
2184         }
2185
2186         for (i = 0; i < rxq->nb_rx_desc; i++) {
2187                 if (rxq->sw_ring[i].mbuf) {
2188                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2189                         rxq->sw_ring[i].mbuf = NULL;
2190                 }
2191         }
2192 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2193         if (rxq->rx_nb_avail == 0)
2194                 return;
2195         for (i = 0; i < rxq->rx_nb_avail; i++) {
2196                 struct rte_mbuf *mbuf;
2197
2198                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2199                 rte_pktmbuf_free_seg(mbuf);
2200         }
2201         rxq->rx_nb_avail = 0;
2202 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2203 }
2204
2205 void
2206 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2207 {
2208         unsigned i;
2209         uint16_t len;
2210
2211 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2212         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2213                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2214         else
2215 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2216                 len = rxq->nb_rx_desc;
2217
2218         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2219                 ((volatile char *)rxq->rx_ring)[i] = 0;
2220
2221 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2222         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2223         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2224                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2225
2226         rxq->rx_nb_avail = 0;
2227         rxq->rx_next_avail = 0;
2228         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2229 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2230         rxq->rx_tail = 0;
2231         rxq->nb_rx_hold = 0;
2232         rxq->pkt_first_seg = NULL;
2233         rxq->pkt_last_seg = NULL;
2234 }
2235
2236 void
2237 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2238 {
2239         uint16_t i;
2240
2241         if (!txq || !txq->sw_ring) {
2242                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2243                 return;
2244         }
2245
2246         for (i = 0; i < txq->nb_tx_desc; i++) {
2247                 if (txq->sw_ring[i].mbuf) {
2248                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2249                         txq->sw_ring[i].mbuf = NULL;
2250                 }
2251         }
2252 }
2253
2254 void
2255 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2256 {
2257         struct i40e_tx_entry *txe;
2258         uint16_t i, prev, size;
2259
2260         if (!txq) {
2261                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2262                 return;
2263         }
2264
2265         txe = txq->sw_ring;
2266         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2267         for (i = 0; i < size; i++)
2268                 ((volatile char *)txq->tx_ring)[i] = 0;
2269
2270         prev = (uint16_t)(txq->nb_tx_desc - 1);
2271         for (i = 0; i < txq->nb_tx_desc; i++) {
2272                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2273
2274                 txd->cmd_type_offset_bsz =
2275                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2276                 txe[i].mbuf =  NULL;
2277                 txe[i].last_id = i;
2278                 txe[prev].next_id = i;
2279                 prev = i;
2280         }
2281
2282         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2283         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2284
2285         txq->tx_tail = 0;
2286         txq->nb_tx_used = 0;
2287
2288         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2289         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2290 }
2291
2292 /* Init the TX queue in hardware */
2293 int
2294 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2295 {
2296         enum i40e_status_code err = I40E_SUCCESS;
2297         struct i40e_vsi *vsi = txq->vsi;
2298         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2299         uint16_t pf_q = txq->reg_idx;
2300         struct i40e_hmc_obj_txq tx_ctx;
2301         uint32_t qtx_ctl;
2302
2303         /* clear the context structure first */
2304         memset(&tx_ctx, 0, sizeof(tx_ctx));
2305         tx_ctx.new_context = 1;
2306         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2307         tx_ctx.qlen = txq->nb_tx_desc;
2308         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[0]);
2309         if (vsi->type == I40E_VSI_FDIR)
2310                 tx_ctx.fd_ena = TRUE;
2311
2312         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2313         if (err != I40E_SUCCESS) {
2314                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2315                 return err;
2316         }
2317
2318         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2319         if (err != I40E_SUCCESS) {
2320                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2321                 return err;
2322         }
2323
2324         /* Now associate this queue with this PCI function */
2325         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2326         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2327                                         I40E_QTX_CTL_PF_INDX_MASK);
2328         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2329         I40E_WRITE_FLUSH(hw);
2330
2331         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2332
2333         return err;
2334 }
2335
2336 int
2337 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2338 {
2339         struct i40e_rx_entry *rxe = rxq->sw_ring;
2340         uint64_t dma_addr;
2341         uint16_t i;
2342
2343         for (i = 0; i < rxq->nb_rx_desc; i++) {
2344                 volatile union i40e_rx_desc *rxd;
2345                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
2346
2347                 if (unlikely(!mbuf)) {
2348                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2349                         return -ENOMEM;
2350                 }
2351
2352                 rte_mbuf_refcnt_set(mbuf, 1);
2353                 mbuf->next = NULL;
2354                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2355                 mbuf->nb_segs = 1;
2356                 mbuf->port = rxq->port_id;
2357
2358                 dma_addr =
2359                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
2360
2361                 rxd = &rxq->rx_ring[i];
2362                 rxd->read.pkt_addr = dma_addr;
2363                 rxd->read.hdr_addr = dma_addr;
2364 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2365                 rxd->read.rsvd1 = 0;
2366                 rxd->read.rsvd2 = 0;
2367 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2368
2369                 rxe[i].mbuf = mbuf;
2370         }
2371
2372         return 0;
2373 }
2374
2375 /*
2376  * Calculate the buffer length, and check the jumbo frame
2377  * and maximum packet length.
2378  */
2379 static int
2380 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2381 {
2382         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2383         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2384         struct rte_eth_dev_data *data = pf->dev_data;
2385         struct rte_pktmbuf_pool_private *mbp_priv =
2386                         rte_mempool_get_priv(rxq->mp);
2387         uint16_t buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
2388                                                 RTE_PKTMBUF_HEADROOM);
2389         uint16_t len;
2390
2391         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2392                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2393         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2394                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2395                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2396                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2397                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2398                 rxq->hs_mode = i40e_header_split_enabled;
2399                 break;
2400         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2401         default:
2402                 rxq->rx_hdr_len = 0;
2403                 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2404                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2405                 rxq->hs_mode = i40e_header_split_none;
2406                 break;
2407         }
2408
2409         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2410         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2411         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2412                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2413                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2414                         PMD_DRV_LOG(ERR, "maximum packet length must "
2415                                     "be larger than %u and smaller than %u,"
2416                                     "as jumbo frame is enabled",
2417                                     (uint32_t)ETHER_MAX_LEN,
2418                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2419                         return I40E_ERR_CONFIG;
2420                 }
2421         } else {
2422                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2423                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2424                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2425                                     "larger than %u and smaller than %u, "
2426                                     "as jumbo frame is disabled",
2427                                     (uint32_t)ETHER_MIN_LEN,
2428                                     (uint32_t)ETHER_MAX_LEN);
2429                         return I40E_ERR_CONFIG;
2430                 }
2431         }
2432
2433         return 0;
2434 }
2435
2436 /* Init the RX queue in hardware */
2437 int
2438 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2439 {
2440         int err = I40E_SUCCESS;
2441         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2442         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2443         struct rte_eth_dev *dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
2444         uint16_t pf_q = rxq->reg_idx;
2445         uint16_t buf_size;
2446         struct i40e_hmc_obj_rxq rx_ctx;
2447         struct rte_pktmbuf_pool_private *mbp_priv;
2448
2449         err = i40e_rx_queue_config(rxq);
2450         if (err < 0) {
2451                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2452                 return err;
2453         }
2454
2455         /* Clear the context structure first */
2456         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2457         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2458         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2459
2460         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2461         rx_ctx.qlen = rxq->nb_rx_desc;
2462 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2463         rx_ctx.dsize = 1;
2464 #endif
2465         rx_ctx.dtype = rxq->hs_mode;
2466         if (rxq->hs_mode)
2467                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2468         else
2469                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2470         rx_ctx.rxmax = rxq->max_pkt_len;
2471         rx_ctx.tphrdesc_ena = 1;
2472         rx_ctx.tphwdesc_ena = 1;
2473         rx_ctx.tphdata_ena = 1;
2474         rx_ctx.tphhead_ena = 1;
2475         rx_ctx.lrxqthresh = 2;
2476         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2477         rx_ctx.l2tsel = 1;
2478         rx_ctx.showiv = 1;
2479         rx_ctx.prefena = 1;
2480
2481         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2482         if (err != I40E_SUCCESS) {
2483                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2484                 return err;
2485         }
2486         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2487         if (err != I40E_SUCCESS) {
2488                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2489                 return err;
2490         }
2491
2492         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2493
2494         mbp_priv = rte_mempool_get_priv(rxq->mp);
2495         buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
2496                                         RTE_PKTMBUF_HEADROOM);
2497
2498         /* Check if scattered RX needs to be used. */
2499         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2500                 dev_data->scattered_rx = 1;
2501                 dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2502         }
2503
2504         /* Init the RX tail regieter. */
2505         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2506
2507         return 0;
2508 }
2509
2510 void
2511 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2512 {
2513         uint16_t i;
2514
2515         PMD_INIT_FUNC_TRACE();
2516
2517         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2518                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2519                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2520         }
2521
2522         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2523                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2524                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2525         }
2526 }
2527
2528 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2529 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2530
2531 enum i40e_status_code
2532 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2533 {
2534         struct i40e_tx_queue *txq;
2535         const struct rte_memzone *tz = NULL;
2536         uint32_t ring_size;
2537         struct rte_eth_dev *dev = pf->adapter->eth_dev;
2538
2539         if (!pf) {
2540                 PMD_DRV_LOG(ERR, "PF is not available");
2541                 return I40E_ERR_BAD_PTR;
2542         }
2543
2544         /* Allocate the TX queue data structure. */
2545         txq = rte_zmalloc_socket("i40e fdir tx queue",
2546                                   sizeof(struct i40e_tx_queue),
2547                                   RTE_CACHE_LINE_SIZE,
2548                                   SOCKET_ID_ANY);
2549         if (!txq) {
2550                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2551                                         "tx queue structure.");
2552                 return I40E_ERR_NO_MEMORY;
2553         }
2554
2555         /* Allocate TX hardware ring descriptors. */
2556         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2557         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2558
2559         tz = i40e_ring_dma_zone_reserve(dev,
2560                                         "fdir_tx_ring",
2561                                         I40E_FDIR_QUEUE_ID,
2562                                         ring_size,
2563                                         SOCKET_ID_ANY);
2564         if (!tz) {
2565                 i40e_dev_tx_queue_release(txq);
2566                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2567                 return I40E_ERR_NO_MEMORY;
2568         }
2569
2570         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2571         txq->queue_id = I40E_FDIR_QUEUE_ID;
2572         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2573         txq->vsi = pf->fdir.fdir_vsi;
2574
2575 #ifdef RTE_LIBRTE_XEN_DOM0
2576         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2577 #else
2578         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2579 #endif
2580         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2581         /*
2582          * don't need to allocate software ring and reset for the fdir
2583          * program queue just set the queue has been configured.
2584          */
2585         txq->q_set = TRUE;
2586         pf->fdir.txq = txq;
2587
2588         return I40E_SUCCESS;
2589 }
2590
2591 enum i40e_status_code
2592 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2593 {
2594         struct i40e_rx_queue *rxq;
2595         const struct rte_memzone *rz = NULL;
2596         uint32_t ring_size;
2597         struct rte_eth_dev *dev = pf->adapter->eth_dev;
2598
2599         if (!pf) {
2600                 PMD_DRV_LOG(ERR, "PF is not available");
2601                 return I40E_ERR_BAD_PTR;
2602         }
2603
2604         /* Allocate the RX queue data structure. */
2605         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2606                                   sizeof(struct i40e_rx_queue),
2607                                   RTE_CACHE_LINE_SIZE,
2608                                   SOCKET_ID_ANY);
2609         if (!rxq) {
2610                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2611                                         "rx queue structure.");
2612                 return I40E_ERR_NO_MEMORY;
2613         }
2614
2615         /* Allocate RX hardware ring descriptors. */
2616         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2617         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2618
2619         rz = i40e_ring_dma_zone_reserve(dev,
2620                                         "fdir_rx_ring",
2621                                         I40E_FDIR_QUEUE_ID,
2622                                         ring_size,
2623                                         SOCKET_ID_ANY);
2624         if (!rz) {
2625                 i40e_dev_rx_queue_release(rxq);
2626                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2627                 return I40E_ERR_NO_MEMORY;
2628         }
2629
2630         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2631         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2632         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2633         rxq->vsi = pf->fdir.fdir_vsi;
2634
2635 #ifdef RTE_LIBRTE_XEN_DOM0
2636         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2637 #else
2638         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
2639 #endif
2640         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2641
2642         /*
2643          * Don't need to allocate software ring and reset for the fdir
2644          * rx queue, just set the queue has been configured.
2645          */
2646         rxq->q_set = TRUE;
2647         pf->fdir.rxq = rxq;
2648
2649         return I40E_SUCCESS;
2650 }