drivers: remove direct access to interrupt handle
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102         ENA_STAT_TX_ENTRY(missed_tx),
103 };
104
105 static const struct ena_stats ena_stats_rx_strings[] = {
106         ENA_STAT_RX_ENTRY(cnt),
107         ENA_STAT_RX_ENTRY(bytes),
108         ENA_STAT_RX_ENTRY(refill_partial),
109         ENA_STAT_RX_ENTRY(bad_csum),
110         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111         ENA_STAT_RX_ENTRY(bad_desc_num),
112         ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114
115 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
119
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125                        RTE_MBUF_F_TX_IP_CKSUM |\
126                        RTE_MBUF_F_TX_TCP_SEG)
127
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF            0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
133
134 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
135         RTE_MBUF_F_TX_IPV6 |            \
136         RTE_MBUF_F_TX_IPV4 |            \
137         RTE_MBUF_F_TX_IP_CKSUM |        \
138         RTE_MBUF_F_TX_TCP_SEG)
139
140 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
141         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM                0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM                0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM                0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO                    0x0020
156
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH                 0x0040
159
160 static const struct rte_pci_id pci_id_ena_map[] = {
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163         { .device_id = 0 },
164 };
165
166 static struct ena_aenq_handlers aenq_handlers;
167
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169                            struct rte_pci_device *pdev,
170                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
171                            bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174         struct ena_tx_buffer *tx_info,
175         struct rte_mbuf *mbuf,
176         void **push_header,
177         uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                                   uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183                 uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185                               uint16_t nb_desc, unsigned int socket_id,
186                               const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188                               uint16_t nb_desc, unsigned int socket_id,
189                               const struct rte_eth_rxconf *rx_conf,
190                               struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193                                     struct ena_com_rx_buf_info *ena_bufs,
194                                     uint32_t descs,
195                                     uint16_t *next_to_clean,
196                                     uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200                                   struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203                            bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217                            int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221                               enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224                                enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231                          struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237                                 struct rte_eth_xstat_name *xstats_names,
238                                 unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240                           struct rte_eth_xstat *stats,
241                           unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243                                 const uint64_t *ids,
244                                 uint64_t *values,
245                                 unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247                                    const char *value,
248                                    void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250                              struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254                                     uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256                                      uint16_t queue_id);
257
258 static const struct eth_dev_ops ena_dev_ops = {
259         .dev_configure        = ena_dev_configure,
260         .dev_infos_get        = ena_infos_get,
261         .rx_queue_setup       = ena_rx_queue_setup,
262         .tx_queue_setup       = ena_tx_queue_setup,
263         .dev_start            = ena_start,
264         .dev_stop             = ena_stop,
265         .link_update          = ena_link_update,
266         .stats_get            = ena_stats_get,
267         .xstats_get_names     = ena_xstats_get_names,
268         .xstats_get           = ena_xstats_get,
269         .xstats_get_by_id     = ena_xstats_get_by_id,
270         .mtu_set              = ena_mtu_set,
271         .rx_queue_release     = ena_rx_queue_release,
272         .tx_queue_release     = ena_tx_queue_release,
273         .dev_close            = ena_close,
274         .dev_reset            = ena_dev_reset,
275         .reta_update          = ena_rss_reta_update,
276         .reta_query           = ena_rss_reta_query,
277         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
278         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
279         .rss_hash_update      = ena_rss_hash_update,
280         .rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284                                        struct ena_com_rx_ctx *ena_rx_ctx,
285                                        bool fill_hash)
286 {
287         uint64_t ol_flags = 0;
288         uint32_t packet_type = 0;
289
290         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291                 packet_type |= RTE_PTYPE_L4_TCP;
292         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293                 packet_type |= RTE_PTYPE_L4_UDP;
294
295         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296                 packet_type |= RTE_PTYPE_L3_IPV4;
297                 if (unlikely(ena_rx_ctx->l3_csum_err))
298                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299                 else
300                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302                 packet_type |= RTE_PTYPE_L3_IPV6;
303         }
304
305         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307         else
308                 if (unlikely(ena_rx_ctx->l4_csum_err))
309                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310                 else
311                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312
313         if (fill_hash &&
314             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316                 mbuf->hash.rss = ena_rx_ctx->hash;
317         }
318
319         mbuf->ol_flags = ol_flags;
320         mbuf->packet_type = packet_type;
321 }
322
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324                                        struct ena_com_tx_ctx *ena_tx_ctx,
325                                        uint64_t queue_offloads,
326                                        bool disable_meta_caching)
327 {
328         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329
330         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331             (queue_offloads & QUEUE_OFFLOADS)) {
332                 /* check if TSO is required */
333                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335                         ena_tx_ctx->tso_enable = true;
336
337                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338                 }
339
340                 /* check if L3 checksum is needed */
341                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343                         ena_tx_ctx->l3_csum_enable = true;
344
345                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347                 } else {
348                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349
350                         /* set don't fragment (DF) flag */
351                         if (mbuf->packet_type &
352                                 (RTE_PTYPE_L4_NONFRAG
353                                  | RTE_PTYPE_INNER_L4_NONFRAG))
354                                 ena_tx_ctx->df = true;
355                 }
356
357                 /* check if L4 checksum is needed */
358                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361                         ena_tx_ctx->l4_csum_enable = true;
362                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
364                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366                         ena_tx_ctx->l4_csum_enable = true;
367                 } else {
368                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369                         ena_tx_ctx->l4_csum_enable = false;
370                 }
371
372                 ena_meta->mss = mbuf->tso_segsz;
373                 ena_meta->l3_hdr_len = mbuf->l3_len;
374                 ena_meta->l3_hdr_offset = mbuf->l2_len;
375
376                 ena_tx_ctx->meta_valid = true;
377         } else if (disable_meta_caching) {
378                 memset(ena_meta, 0, sizeof(*ena_meta));
379                 ena_tx_ctx->meta_valid = true;
380         } else {
381                 ena_tx_ctx->meta_valid = false;
382         }
383 }
384
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387         struct ena_tx_buffer *tx_info = NULL;
388
389         if (likely(req_id < tx_ring->ring_size)) {
390                 tx_info = &tx_ring->tx_buffer_info[req_id];
391                 if (likely(tx_info->mbuf))
392                         return 0;
393         }
394
395         if (tx_info)
396                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397         else
398                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399
400         /* Trigger device reset */
401         ++tx_ring->tx_stats.bad_req_id;
402         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403         tx_ring->adapter->trigger_reset = true;
404         return -EFAULT;
405 }
406
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409         struct ena_admin_host_info *host_info;
410         int rc;
411
412         /* Allocate only the host info */
413         rc = ena_com_allocate_host_info(ena_dev);
414         if (rc) {
415                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416                 return;
417         }
418
419         host_info = ena_dev->host_attr.host_info;
420
421         host_info->os_type = ENA_ADMIN_OS_DPDK;
422         host_info->kernel_ver = RTE_VERSION;
423         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424                 sizeof(host_info->kernel_ver_str));
425         host_info->os_dist = RTE_VERSION;
426         strlcpy((char *)host_info->os_dist_str, rte_version(),
427                 sizeof(host_info->os_dist_str));
428         host_info->driver_version =
429                 (DRV_MODULE_VER_MAJOR) |
430                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431                 (DRV_MODULE_VER_SUBMINOR <<
432                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433         host_info->num_cpus = rte_lcore_count();
434
435         host_info->driver_supported_features =
436                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438
439         rc = ena_com_set_host_attributes(ena_dev);
440         if (rc) {
441                 if (rc == -ENA_COM_UNSUPPORTED)
442                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443                 else
444                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445
446                 goto err;
447         }
448
449         return;
450
451 err:
452         ena_com_delete_host_info(ena_dev);
453 }
454
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465         u32 debug_area_size;
466         int rc, ss_count;
467
468         ss_count = ena_xstats_calc_num(adapter->edev_data);
469
470         /* allocate 32 bytes for each string and 64bit for the value */
471         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472
473         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474         if (rc) {
475                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476                 return;
477         }
478
479         rc = ena_com_set_host_attributes(&adapter->ena_dev);
480         if (rc) {
481                 if (rc == -ENA_COM_UNSUPPORTED)
482                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483                 else
484                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485
486                 goto err;
487         }
488
489         return;
490 err:
491         ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
498         struct ena_adapter *adapter = dev->data->dev_private;
499         int ret = 0;
500
501         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502                 return 0;
503
504         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505                 ret = ena_stop(dev);
506         adapter->state = ENA_ADAPTER_STATE_CLOSED;
507
508         ena_rx_queue_release_all(dev);
509         ena_tx_queue_release_all(dev);
510
511         rte_free(adapter->drv_stats);
512         adapter->drv_stats = NULL;
513
514         rte_intr_disable(intr_handle);
515         rte_intr_callback_unregister(intr_handle,
516                                      ena_interrupt_handler_rte,
517                                      dev);
518
519         /*
520          * MAC is not allocated dynamically. Setting NULL should prevent from
521          * release of the resource in the rte_eth_dev_release_port().
522          */
523         dev->data->mac_addrs = NULL;
524
525         return ret;
526 }
527
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531         int rc = 0;
532
533         /* Cannot release memory in secondary process */
534         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536                 return -EPERM;
537         }
538
539         ena_destroy_device(dev);
540         rc = eth_ena_dev_init(dev);
541         if (rc)
542                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543
544         return rc;
545 }
546
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549         int nb_queues = dev->data->nb_rx_queues;
550         int i;
551
552         for (i = 0; i < nb_queues; i++)
553                 ena_rx_queue_release(dev, i);
554 }
555
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558         int nb_queues = dev->data->nb_tx_queues;
559         int i;
560
561         for (i = 0; i < nb_queues; i++)
562                 ena_tx_queue_release(dev, i);
563 }
564
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567         struct ena_ring *ring = dev->data->rx_queues[qid];
568
569         /* Free ring resources */
570         if (ring->rx_buffer_info)
571                 rte_free(ring->rx_buffer_info);
572         ring->rx_buffer_info = NULL;
573
574         if (ring->rx_refill_buffer)
575                 rte_free(ring->rx_refill_buffer);
576         ring->rx_refill_buffer = NULL;
577
578         if (ring->empty_rx_reqs)
579                 rte_free(ring->empty_rx_reqs);
580         ring->empty_rx_reqs = NULL;
581
582         ring->configured = 0;
583
584         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
585                 ring->port_id, ring->id);
586 }
587
588 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
589 {
590         struct ena_ring *ring = dev->data->tx_queues[qid];
591
592         /* Free ring resources */
593         if (ring->push_buf_intermediate_buf)
594                 rte_free(ring->push_buf_intermediate_buf);
595
596         if (ring->tx_buffer_info)
597                 rte_free(ring->tx_buffer_info);
598
599         if (ring->empty_tx_reqs)
600                 rte_free(ring->empty_tx_reqs);
601
602         ring->empty_tx_reqs = NULL;
603         ring->tx_buffer_info = NULL;
604         ring->push_buf_intermediate_buf = NULL;
605
606         ring->configured = 0;
607
608         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
609                 ring->port_id, ring->id);
610 }
611
612 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
613 {
614         unsigned int i;
615
616         for (i = 0; i < ring->ring_size; ++i) {
617                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
618                 if (rx_info->mbuf) {
619                         rte_mbuf_raw_free(rx_info->mbuf);
620                         rx_info->mbuf = NULL;
621                 }
622         }
623 }
624
625 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
626 {
627         unsigned int i;
628
629         for (i = 0; i < ring->ring_size; ++i) {
630                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
631
632                 if (tx_buf->mbuf) {
633                         rte_pktmbuf_free(tx_buf->mbuf);
634                         tx_buf->mbuf = NULL;
635                 }
636         }
637 }
638
639 static int ena_link_update(struct rte_eth_dev *dev,
640                            __rte_unused int wait_to_complete)
641 {
642         struct rte_eth_link *link = &dev->data->dev_link;
643         struct ena_adapter *adapter = dev->data->dev_private;
644
645         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
646         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
647         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
648
649         return 0;
650 }
651
652 static int ena_queue_start_all(struct rte_eth_dev *dev,
653                                enum ena_ring_type ring_type)
654 {
655         struct ena_adapter *adapter = dev->data->dev_private;
656         struct ena_ring *queues = NULL;
657         int nb_queues;
658         int i = 0;
659         int rc = 0;
660
661         if (ring_type == ENA_RING_TYPE_RX) {
662                 queues = adapter->rx_ring;
663                 nb_queues = dev->data->nb_rx_queues;
664         } else {
665                 queues = adapter->tx_ring;
666                 nb_queues = dev->data->nb_tx_queues;
667         }
668         for (i = 0; i < nb_queues; i++) {
669                 if (queues[i].configured) {
670                         if (ring_type == ENA_RING_TYPE_RX) {
671                                 ena_assert_msg(
672                                         dev->data->rx_queues[i] == &queues[i],
673                                         "Inconsistent state of Rx queues\n");
674                         } else {
675                                 ena_assert_msg(
676                                         dev->data->tx_queues[i] == &queues[i],
677                                         "Inconsistent state of Tx queues\n");
678                         }
679
680                         rc = ena_queue_start(dev, &queues[i]);
681
682                         if (rc) {
683                                 PMD_INIT_LOG(ERR,
684                                         "Failed to start queue[%d] of type(%d)\n",
685                                         i, ring_type);
686                                 goto err;
687                         }
688                 }
689         }
690
691         return 0;
692
693 err:
694         while (i--)
695                 if (queues[i].configured)
696                         ena_queue_stop(&queues[i]);
697
698         return rc;
699 }
700
701 static int ena_check_valid_conf(struct ena_adapter *adapter)
702 {
703         uint32_t mtu = adapter->edev_data->mtu;
704
705         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
706                 PMD_INIT_LOG(ERR,
707                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
708                         mtu, adapter->max_mtu, ENA_MIN_MTU);
709                 return ENA_COM_UNSUPPORTED;
710         }
711
712         return 0;
713 }
714
715 static int
716 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
717                        bool use_large_llq_hdr)
718 {
719         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
720         struct ena_com_dev *ena_dev = ctx->ena_dev;
721         uint32_t max_tx_queue_size;
722         uint32_t max_rx_queue_size;
723
724         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
725                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
726                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
727                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
728                         max_queue_ext->max_rx_sq_depth);
729                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
730
731                 if (ena_dev->tx_mem_queue_type ==
732                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
733                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
734                                 llq->max_llq_depth);
735                 } else {
736                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
737                                 max_queue_ext->max_tx_sq_depth);
738                 }
739
740                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
741                         max_queue_ext->max_per_packet_rx_descs);
742                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
743                         max_queue_ext->max_per_packet_tx_descs);
744         } else {
745                 struct ena_admin_queue_feature_desc *max_queues =
746                         &ctx->get_feat_ctx->max_queues;
747                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
748                         max_queues->max_sq_depth);
749                 max_tx_queue_size = max_queues->max_cq_depth;
750
751                 if (ena_dev->tx_mem_queue_type ==
752                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
753                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
754                                 llq->max_llq_depth);
755                 } else {
756                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
757                                 max_queues->max_sq_depth);
758                 }
759
760                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
761                         max_queues->max_packet_rx_descs);
762                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
763                         max_queues->max_packet_tx_descs);
764         }
765
766         /* Round down to the nearest power of 2 */
767         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
768         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
769
770         if (use_large_llq_hdr) {
771                 if ((llq->entry_size_ctrl_supported &
772                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
773                     (ena_dev->tx_mem_queue_type ==
774                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
775                         max_tx_queue_size /= 2;
776                         PMD_INIT_LOG(INFO,
777                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
778                                 max_tx_queue_size);
779                 } else {
780                         PMD_INIT_LOG(ERR,
781                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
782                 }
783         }
784
785         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
786                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
787                 return -EFAULT;
788         }
789
790         ctx->max_tx_queue_size = max_tx_queue_size;
791         ctx->max_rx_queue_size = max_rx_queue_size;
792
793         return 0;
794 }
795
796 static void ena_stats_restart(struct rte_eth_dev *dev)
797 {
798         struct ena_adapter *adapter = dev->data->dev_private;
799
800         rte_atomic64_init(&adapter->drv_stats->ierrors);
801         rte_atomic64_init(&adapter->drv_stats->oerrors);
802         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
803         adapter->drv_stats->rx_drops = 0;
804 }
805
806 static int ena_stats_get(struct rte_eth_dev *dev,
807                           struct rte_eth_stats *stats)
808 {
809         struct ena_admin_basic_stats ena_stats;
810         struct ena_adapter *adapter = dev->data->dev_private;
811         struct ena_com_dev *ena_dev = &adapter->ena_dev;
812         int rc;
813         int i;
814         int max_rings_stats;
815
816         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
817                 return -ENOTSUP;
818
819         memset(&ena_stats, 0, sizeof(ena_stats));
820
821         rte_spinlock_lock(&adapter->admin_lock);
822         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
823         rte_spinlock_unlock(&adapter->admin_lock);
824         if (unlikely(rc)) {
825                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
826                 return rc;
827         }
828
829         /* Set of basic statistics from ENA */
830         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
831                                           ena_stats.rx_pkts_low);
832         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
833                                           ena_stats.tx_pkts_low);
834         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
835                                         ena_stats.rx_bytes_low);
836         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
837                                         ena_stats.tx_bytes_low);
838
839         /* Driver related stats */
840         stats->imissed = adapter->drv_stats->rx_drops;
841         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
842         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
843         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
844
845         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
846                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
847         for (i = 0; i < max_rings_stats; ++i) {
848                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
849
850                 stats->q_ibytes[i] = rx_stats->bytes;
851                 stats->q_ipackets[i] = rx_stats->cnt;
852                 stats->q_errors[i] = rx_stats->bad_desc_num +
853                         rx_stats->bad_req_id;
854         }
855
856         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
857                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
858         for (i = 0; i < max_rings_stats; ++i) {
859                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
860
861                 stats->q_obytes[i] = tx_stats->bytes;
862                 stats->q_opackets[i] = tx_stats->cnt;
863         }
864
865         return 0;
866 }
867
868 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
869 {
870         struct ena_adapter *adapter;
871         struct ena_com_dev *ena_dev;
872         int rc = 0;
873
874         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
875         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
876         adapter = dev->data->dev_private;
877
878         ena_dev = &adapter->ena_dev;
879         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
880
881         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
882                 PMD_DRV_LOG(ERR,
883                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
884                         mtu, adapter->max_mtu, ENA_MIN_MTU);
885                 return -EINVAL;
886         }
887
888         rc = ena_com_set_dev_mtu(ena_dev, mtu);
889         if (rc)
890                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
891         else
892                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
893
894         return rc;
895 }
896
897 static int ena_start(struct rte_eth_dev *dev)
898 {
899         struct ena_adapter *adapter = dev->data->dev_private;
900         uint64_t ticks;
901         int rc = 0;
902
903         /* Cannot allocate memory in secondary process */
904         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
905                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
906                 return -EPERM;
907         }
908
909         rc = ena_check_valid_conf(adapter);
910         if (rc)
911                 return rc;
912
913         rc = ena_setup_rx_intr(dev);
914         if (rc)
915                 return rc;
916
917         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
918         if (rc)
919                 return rc;
920
921         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
922         if (rc)
923                 goto err_start_tx;
924
925         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
926                 rc = ena_rss_configure(adapter);
927                 if (rc)
928                         goto err_rss_init;
929         }
930
931         ena_stats_restart(dev);
932
933         adapter->timestamp_wd = rte_get_timer_cycles();
934         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
935
936         ticks = rte_get_timer_hz();
937         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
938                         ena_timer_wd_callback, dev);
939
940         ++adapter->dev_stats.dev_start;
941         adapter->state = ENA_ADAPTER_STATE_RUNNING;
942
943         return 0;
944
945 err_rss_init:
946         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
947 err_start_tx:
948         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
949         return rc;
950 }
951
952 static int ena_stop(struct rte_eth_dev *dev)
953 {
954         struct ena_adapter *adapter = dev->data->dev_private;
955         struct ena_com_dev *ena_dev = &adapter->ena_dev;
956         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
957         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
958         int rc;
959
960         /* Cannot free memory in secondary process */
961         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
962                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
963                 return -EPERM;
964         }
965
966         rte_timer_stop_sync(&adapter->timer_wd);
967         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
968         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
969
970         if (adapter->trigger_reset) {
971                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
972                 if (rc)
973                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
974         }
975
976         rte_intr_disable(intr_handle);
977
978         rte_intr_efd_disable(intr_handle);
979
980         /* Cleanup vector list */
981         rte_intr_vec_list_free(intr_handle);
982
983         rte_intr_enable(intr_handle);
984
985         ++adapter->dev_stats.dev_stop;
986         adapter->state = ENA_ADAPTER_STATE_STOPPED;
987         dev->data->dev_started = 0;
988
989         return 0;
990 }
991
992 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
993 {
994         struct ena_adapter *adapter = ring->adapter;
995         struct ena_com_dev *ena_dev = &adapter->ena_dev;
996         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
997         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
998         struct ena_com_create_io_ctx ctx =
999                 /* policy set to _HOST just to satisfy icc compiler */
1000                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1001                   0, 0, 0, 0, 0 };
1002         uint16_t ena_qid;
1003         unsigned int i;
1004         int rc;
1005
1006         ctx.msix_vector = -1;
1007         if (ring->type == ENA_RING_TYPE_TX) {
1008                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1009                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1010                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1011                 for (i = 0; i < ring->ring_size; i++)
1012                         ring->empty_tx_reqs[i] = i;
1013         } else {
1014                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1015                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1016                 if (rte_intr_dp_is_en(intr_handle))
1017                         ctx.msix_vector =
1018                                 rte_intr_vec_list_index_get(intr_handle,
1019                                                                    ring->id);
1020
1021                 for (i = 0; i < ring->ring_size; i++)
1022                         ring->empty_rx_reqs[i] = i;
1023         }
1024         ctx.queue_size = ring->ring_size;
1025         ctx.qid = ena_qid;
1026         ctx.numa_node = ring->numa_socket_id;
1027
1028         rc = ena_com_create_io_queue(ena_dev, &ctx);
1029         if (rc) {
1030                 PMD_DRV_LOG(ERR,
1031                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1032                         ring->id, ena_qid, rc);
1033                 return rc;
1034         }
1035
1036         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1037                                      &ring->ena_com_io_sq,
1038                                      &ring->ena_com_io_cq);
1039         if (rc) {
1040                 PMD_DRV_LOG(ERR,
1041                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1042                         ring->id, rc);
1043                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1044                 return rc;
1045         }
1046
1047         if (ring->type == ENA_RING_TYPE_TX)
1048                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1049
1050         /* Start with Rx interrupts being masked. */
1051         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1052                 ena_rx_queue_intr_disable(dev, ring->id);
1053
1054         return 0;
1055 }
1056
1057 static void ena_queue_stop(struct ena_ring *ring)
1058 {
1059         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1060
1061         if (ring->type == ENA_RING_TYPE_RX) {
1062                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1063                 ena_rx_queue_release_bufs(ring);
1064         } else {
1065                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1066                 ena_tx_queue_release_bufs(ring);
1067         }
1068 }
1069
1070 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1071                               enum ena_ring_type ring_type)
1072 {
1073         struct ena_adapter *adapter = dev->data->dev_private;
1074         struct ena_ring *queues = NULL;
1075         uint16_t nb_queues, i;
1076
1077         if (ring_type == ENA_RING_TYPE_RX) {
1078                 queues = adapter->rx_ring;
1079                 nb_queues = dev->data->nb_rx_queues;
1080         } else {
1081                 queues = adapter->tx_ring;
1082                 nb_queues = dev->data->nb_tx_queues;
1083         }
1084
1085         for (i = 0; i < nb_queues; ++i)
1086                 if (queues[i].configured)
1087                         ena_queue_stop(&queues[i]);
1088 }
1089
1090 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1091 {
1092         int rc, bufs_num;
1093
1094         ena_assert_msg(ring->configured == 1,
1095                        "Trying to start unconfigured queue\n");
1096
1097         rc = ena_create_io_queue(dev, ring);
1098         if (rc) {
1099                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1100                 return rc;
1101         }
1102
1103         ring->next_to_clean = 0;
1104         ring->next_to_use = 0;
1105
1106         if (ring->type == ENA_RING_TYPE_TX) {
1107                 ring->tx_stats.available_desc =
1108                         ena_com_free_q_entries(ring->ena_com_io_sq);
1109                 return 0;
1110         }
1111
1112         bufs_num = ring->ring_size - 1;
1113         rc = ena_populate_rx_queue(ring, bufs_num);
1114         if (rc != bufs_num) {
1115                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1116                                          ENA_IO_RXQ_IDX(ring->id));
1117                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1118                 return ENA_COM_FAULT;
1119         }
1120         /* Flush per-core RX buffers pools cache as they can be used on other
1121          * cores as well.
1122          */
1123         rte_mempool_cache_flush(NULL, ring->mb_pool);
1124
1125         return 0;
1126 }
1127
1128 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1129                               uint16_t queue_idx,
1130                               uint16_t nb_desc,
1131                               unsigned int socket_id,
1132                               const struct rte_eth_txconf *tx_conf)
1133 {
1134         struct ena_ring *txq = NULL;
1135         struct ena_adapter *adapter = dev->data->dev_private;
1136         unsigned int i;
1137         uint16_t dyn_thresh;
1138
1139         txq = &adapter->tx_ring[queue_idx];
1140
1141         if (txq->configured) {
1142                 PMD_DRV_LOG(CRIT,
1143                         "API violation. Queue[%d] is already configured\n",
1144                         queue_idx);
1145                 return ENA_COM_FAULT;
1146         }
1147
1148         if (!rte_is_power_of_2(nb_desc)) {
1149                 PMD_DRV_LOG(ERR,
1150                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1151                         nb_desc);
1152                 return -EINVAL;
1153         }
1154
1155         if (nb_desc > adapter->max_tx_ring_size) {
1156                 PMD_DRV_LOG(ERR,
1157                         "Unsupported size of Tx queue (max size: %d)\n",
1158                         adapter->max_tx_ring_size);
1159                 return -EINVAL;
1160         }
1161
1162         txq->port_id = dev->data->port_id;
1163         txq->next_to_clean = 0;
1164         txq->next_to_use = 0;
1165         txq->ring_size = nb_desc;
1166         txq->size_mask = nb_desc - 1;
1167         txq->numa_socket_id = socket_id;
1168         txq->pkts_without_db = false;
1169         txq->last_cleanup_ticks = 0;
1170
1171         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1172                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1173                 RTE_CACHE_LINE_SIZE,
1174                 socket_id);
1175         if (!txq->tx_buffer_info) {
1176                 PMD_DRV_LOG(ERR,
1177                         "Failed to allocate memory for Tx buffer info\n");
1178                 return -ENOMEM;
1179         }
1180
1181         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1182                 sizeof(uint16_t) * txq->ring_size,
1183                 RTE_CACHE_LINE_SIZE,
1184                 socket_id);
1185         if (!txq->empty_tx_reqs) {
1186                 PMD_DRV_LOG(ERR,
1187                         "Failed to allocate memory for empty Tx requests\n");
1188                 rte_free(txq->tx_buffer_info);
1189                 return -ENOMEM;
1190         }
1191
1192         txq->push_buf_intermediate_buf =
1193                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1194                         txq->tx_max_header_size,
1195                         RTE_CACHE_LINE_SIZE,
1196                         socket_id);
1197         if (!txq->push_buf_intermediate_buf) {
1198                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1199                 rte_free(txq->tx_buffer_info);
1200                 rte_free(txq->empty_tx_reqs);
1201                 return -ENOMEM;
1202         }
1203
1204         for (i = 0; i < txq->ring_size; i++)
1205                 txq->empty_tx_reqs[i] = i;
1206
1207         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1208
1209         /* Check if caller provided the Tx cleanup threshold value. */
1210         if (tx_conf->tx_free_thresh != 0) {
1211                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1212         } else {
1213                 dyn_thresh = txq->ring_size -
1214                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1215                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1216                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1217         }
1218
1219         txq->missing_tx_completion_threshold =
1220                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1221
1222         /* Store pointer to this queue in upper layer */
1223         txq->configured = 1;
1224         dev->data->tx_queues[queue_idx] = txq;
1225
1226         return 0;
1227 }
1228
1229 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1230                               uint16_t queue_idx,
1231                               uint16_t nb_desc,
1232                               unsigned int socket_id,
1233                               const struct rte_eth_rxconf *rx_conf,
1234                               struct rte_mempool *mp)
1235 {
1236         struct ena_adapter *adapter = dev->data->dev_private;
1237         struct ena_ring *rxq = NULL;
1238         size_t buffer_size;
1239         int i;
1240         uint16_t dyn_thresh;
1241
1242         rxq = &adapter->rx_ring[queue_idx];
1243         if (rxq->configured) {
1244                 PMD_DRV_LOG(CRIT,
1245                         "API violation. Queue[%d] is already configured\n",
1246                         queue_idx);
1247                 return ENA_COM_FAULT;
1248         }
1249
1250         if (!rte_is_power_of_2(nb_desc)) {
1251                 PMD_DRV_LOG(ERR,
1252                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1253                         nb_desc);
1254                 return -EINVAL;
1255         }
1256
1257         if (nb_desc > adapter->max_rx_ring_size) {
1258                 PMD_DRV_LOG(ERR,
1259                         "Unsupported size of Rx queue (max size: %d)\n",
1260                         adapter->max_rx_ring_size);
1261                 return -EINVAL;
1262         }
1263
1264         /* ENA isn't supporting buffers smaller than 1400 bytes */
1265         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1266         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1267                 PMD_DRV_LOG(ERR,
1268                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1269                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1270                 return -EINVAL;
1271         }
1272
1273         rxq->port_id = dev->data->port_id;
1274         rxq->next_to_clean = 0;
1275         rxq->next_to_use = 0;
1276         rxq->ring_size = nb_desc;
1277         rxq->size_mask = nb_desc - 1;
1278         rxq->numa_socket_id = socket_id;
1279         rxq->mb_pool = mp;
1280
1281         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1282                 sizeof(struct ena_rx_buffer) * nb_desc,
1283                 RTE_CACHE_LINE_SIZE,
1284                 socket_id);
1285         if (!rxq->rx_buffer_info) {
1286                 PMD_DRV_LOG(ERR,
1287                         "Failed to allocate memory for Rx buffer info\n");
1288                 return -ENOMEM;
1289         }
1290
1291         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1292                 sizeof(struct rte_mbuf *) * nb_desc,
1293                 RTE_CACHE_LINE_SIZE,
1294                 socket_id);
1295         if (!rxq->rx_refill_buffer) {
1296                 PMD_DRV_LOG(ERR,
1297                         "Failed to allocate memory for Rx refill buffer\n");
1298                 rte_free(rxq->rx_buffer_info);
1299                 rxq->rx_buffer_info = NULL;
1300                 return -ENOMEM;
1301         }
1302
1303         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1304                 sizeof(uint16_t) * nb_desc,
1305                 RTE_CACHE_LINE_SIZE,
1306                 socket_id);
1307         if (!rxq->empty_rx_reqs) {
1308                 PMD_DRV_LOG(ERR,
1309                         "Failed to allocate memory for empty Rx requests\n");
1310                 rte_free(rxq->rx_buffer_info);
1311                 rxq->rx_buffer_info = NULL;
1312                 rte_free(rxq->rx_refill_buffer);
1313                 rxq->rx_refill_buffer = NULL;
1314                 return -ENOMEM;
1315         }
1316
1317         for (i = 0; i < nb_desc; i++)
1318                 rxq->empty_rx_reqs[i] = i;
1319
1320         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1321
1322         if (rx_conf->rx_free_thresh != 0) {
1323                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1324         } else {
1325                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1326                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1327                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1328         }
1329
1330         /* Store pointer to this queue in upper layer */
1331         rxq->configured = 1;
1332         dev->data->rx_queues[queue_idx] = rxq;
1333
1334         return 0;
1335 }
1336
1337 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1338                                   struct rte_mbuf *mbuf, uint16_t id)
1339 {
1340         struct ena_com_buf ebuf;
1341         int rc;
1342
1343         /* prepare physical address for DMA transaction */
1344         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1345         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1346
1347         /* pass resource to device */
1348         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1349         if (unlikely(rc != 0))
1350                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1351
1352         return rc;
1353 }
1354
1355 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1356 {
1357         unsigned int i;
1358         int rc;
1359         uint16_t next_to_use = rxq->next_to_use;
1360         uint16_t req_id;
1361 #ifdef RTE_ETHDEV_DEBUG_RX
1362         uint16_t in_use;
1363 #endif
1364         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1365
1366         if (unlikely(!count))
1367                 return 0;
1368
1369 #ifdef RTE_ETHDEV_DEBUG_RX
1370         in_use = rxq->ring_size - 1 -
1371                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1372         if (unlikely((in_use + count) >= rxq->ring_size))
1373                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1374 #endif
1375
1376         /* get resources for incoming packets */
1377         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1378         if (unlikely(rc < 0)) {
1379                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1380                 ++rxq->rx_stats.mbuf_alloc_fail;
1381                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1382                 return 0;
1383         }
1384
1385         for (i = 0; i < count; i++) {
1386                 struct rte_mbuf *mbuf = mbufs[i];
1387                 struct ena_rx_buffer *rx_info;
1388
1389                 if (likely((i + 4) < count))
1390                         rte_prefetch0(mbufs[i + 4]);
1391
1392                 req_id = rxq->empty_rx_reqs[next_to_use];
1393                 rx_info = &rxq->rx_buffer_info[req_id];
1394
1395                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1396                 if (unlikely(rc != 0))
1397                         break;
1398
1399                 rx_info->mbuf = mbuf;
1400                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1401         }
1402
1403         if (unlikely(i < count)) {
1404                 PMD_RX_LOG(WARNING,
1405                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1406                         rxq->id, i, count);
1407                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1408                 ++rxq->rx_stats.refill_partial;
1409         }
1410
1411         /* When we submitted free recources to device... */
1412         if (likely(i > 0)) {
1413                 /* ...let HW know that it can fill buffers with data. */
1414                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1415
1416                 rxq->next_to_use = next_to_use;
1417         }
1418
1419         return i;
1420 }
1421
1422 static int ena_device_init(struct ena_com_dev *ena_dev,
1423                            struct rte_pci_device *pdev,
1424                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1425                            bool *wd_state)
1426 {
1427         uint32_t aenq_groups;
1428         int rc;
1429         bool readless_supported;
1430
1431         /* Initialize mmio registers */
1432         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1433         if (rc) {
1434                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1435                 return rc;
1436         }
1437
1438         /* The PCIe configuration space revision id indicate if mmio reg
1439          * read is disabled.
1440          */
1441         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1442         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1443
1444         /* reset device */
1445         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1446         if (rc) {
1447                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1448                 goto err_mmio_read_less;
1449         }
1450
1451         /* check FW version */
1452         rc = ena_com_validate_version(ena_dev);
1453         if (rc) {
1454                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1455                 goto err_mmio_read_less;
1456         }
1457
1458         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1459
1460         /* ENA device administration layer init */
1461         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1462         if (rc) {
1463                 PMD_DRV_LOG(ERR,
1464                         "Cannot initialize ENA admin queue\n");
1465                 goto err_mmio_read_less;
1466         }
1467
1468         /* To enable the msix interrupts the driver needs to know the number
1469          * of queues. So the driver uses polling mode to retrieve this
1470          * information.
1471          */
1472         ena_com_set_admin_polling_mode(ena_dev, true);
1473
1474         ena_config_host_info(ena_dev);
1475
1476         /* Get Device Attributes and features */
1477         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1478         if (rc) {
1479                 PMD_DRV_LOG(ERR,
1480                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1481                 goto err_admin_init;
1482         }
1483
1484         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1485                       BIT(ENA_ADMIN_NOTIFICATION) |
1486                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1487                       BIT(ENA_ADMIN_FATAL_ERROR) |
1488                       BIT(ENA_ADMIN_WARNING);
1489
1490         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1491         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1492         if (rc) {
1493                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1494                 goto err_admin_init;
1495         }
1496
1497         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1498
1499         return 0;
1500
1501 err_admin_init:
1502         ena_com_admin_destroy(ena_dev);
1503
1504 err_mmio_read_less:
1505         ena_com_mmio_reg_read_request_destroy(ena_dev);
1506
1507         return rc;
1508 }
1509
1510 static void ena_interrupt_handler_rte(void *cb_arg)
1511 {
1512         struct rte_eth_dev *dev = cb_arg;
1513         struct ena_adapter *adapter = dev->data->dev_private;
1514         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1515
1516         ena_com_admin_q_comp_intr_handler(ena_dev);
1517         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1518                 ena_com_aenq_intr_handler(ena_dev, dev);
1519 }
1520
1521 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1522 {
1523         if (!adapter->wd_state)
1524                 return;
1525
1526         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1527                 return;
1528
1529         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1530             adapter->keep_alive_timeout)) {
1531                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1532                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1533                 adapter->trigger_reset = true;
1534                 ++adapter->dev_stats.wd_expired;
1535         }
1536 }
1537
1538 /* Check if admin queue is enabled */
1539 static void check_for_admin_com_state(struct ena_adapter *adapter)
1540 {
1541         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1542                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1543                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1544                 adapter->trigger_reset = true;
1545         }
1546 }
1547
1548 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1549                                             struct ena_ring *tx_ring)
1550 {
1551         struct ena_tx_buffer *tx_buf;
1552         uint64_t timestamp;
1553         uint64_t completion_delay;
1554         uint32_t missed_tx = 0;
1555         unsigned int i;
1556         int rc = 0;
1557
1558         for (i = 0; i < tx_ring->ring_size; ++i) {
1559                 tx_buf = &tx_ring->tx_buffer_info[i];
1560                 timestamp = tx_buf->timestamp;
1561
1562                 if (timestamp == 0)
1563                         continue;
1564
1565                 completion_delay = rte_get_timer_cycles() - timestamp;
1566                 if (completion_delay > adapter->missing_tx_completion_to) {
1567                         if (unlikely(!tx_buf->print_once)) {
1568                                 PMD_TX_LOG(WARNING,
1569                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1570                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1571                                         tx_ring->id, i, completion_delay /
1572                                         rte_get_timer_hz() * 1000);
1573                                 tx_buf->print_once = true;
1574                         }
1575                         ++missed_tx;
1576                 }
1577         }
1578
1579         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1580                 PMD_DRV_LOG(ERR,
1581                         "The number of lost Tx completions is above the threshold (%d > %d). "
1582                         "Trigger the device reset.\n",
1583                         missed_tx,
1584                         tx_ring->missing_tx_completion_threshold);
1585                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1586                 adapter->trigger_reset = true;
1587                 rc = -EIO;
1588         }
1589
1590         tx_ring->tx_stats.missed_tx += missed_tx;
1591
1592         return rc;
1593 }
1594
1595 static void check_for_tx_completions(struct ena_adapter *adapter)
1596 {
1597         struct ena_ring *tx_ring;
1598         uint64_t tx_cleanup_delay;
1599         size_t qid;
1600         int budget;
1601         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1602
1603         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1604                 return;
1605
1606         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1607         budget = adapter->missing_tx_completion_budget;
1608
1609         qid = adapter->last_tx_comp_qid;
1610         while (budget-- > 0) {
1611                 tx_ring = &adapter->tx_ring[qid];
1612
1613                 /* Tx cleanup is called only by the burst function and can be
1614                  * called dynamically by the application. Also cleanup is
1615                  * limited by the threshold. To avoid false detection of the
1616                  * missing HW Tx completion, get the delay since last cleanup
1617                  * function was called.
1618                  */
1619                 tx_cleanup_delay = rte_get_timer_cycles() -
1620                         tx_ring->last_cleanup_ticks;
1621                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1622                         check_for_tx_completion_in_queue(adapter, tx_ring);
1623                 qid = (qid + 1) % nb_tx_queues;
1624         }
1625
1626         adapter->last_tx_comp_qid = qid;
1627 }
1628
1629 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1630                                   void *arg)
1631 {
1632         struct rte_eth_dev *dev = arg;
1633         struct ena_adapter *adapter = dev->data->dev_private;
1634
1635         check_for_missing_keep_alive(adapter);
1636         check_for_admin_com_state(adapter);
1637         check_for_tx_completions(adapter);
1638
1639         if (unlikely(adapter->trigger_reset)) {
1640                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1641                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1642                         NULL);
1643         }
1644 }
1645
1646 static inline void
1647 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1648                                struct ena_admin_feature_llq_desc *llq,
1649                                bool use_large_llq_hdr)
1650 {
1651         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1652         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1653         llq_config->llq_num_decs_before_header =
1654                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1655
1656         if (use_large_llq_hdr &&
1657             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1658                 llq_config->llq_ring_entry_size =
1659                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1660                 llq_config->llq_ring_entry_size_value = 256;
1661         } else {
1662                 llq_config->llq_ring_entry_size =
1663                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1664                 llq_config->llq_ring_entry_size_value = 128;
1665         }
1666 }
1667
1668 static int
1669 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1670                                 struct ena_com_dev *ena_dev,
1671                                 struct ena_admin_feature_llq_desc *llq,
1672                                 struct ena_llq_configurations *llq_default_configurations)
1673 {
1674         int rc;
1675         u32 llq_feature_mask;
1676
1677         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1678         if (!(ena_dev->supported_features & llq_feature_mask)) {
1679                 PMD_DRV_LOG(INFO,
1680                         "LLQ is not supported. Fallback to host mode policy.\n");
1681                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1682                 return 0;
1683         }
1684
1685         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1686         if (unlikely(rc)) {
1687                 PMD_INIT_LOG(WARNING,
1688                         "Failed to config dev mode. Fallback to host mode policy.\n");
1689                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1690                 return 0;
1691         }
1692
1693         /* Nothing to config, exit */
1694         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1695                 return 0;
1696
1697         if (!adapter->dev_mem_base) {
1698                 PMD_DRV_LOG(ERR,
1699                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1700                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1701                 return 0;
1702         }
1703
1704         ena_dev->mem_bar = adapter->dev_mem_base;
1705
1706         return 0;
1707 }
1708
1709 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1710         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1711 {
1712         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1713
1714         /* Regular queues capabilities */
1715         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1716                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1717                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1718                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1719                                     max_queue_ext->max_rx_cq_num);
1720                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1721                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1722         } else {
1723                 struct ena_admin_queue_feature_desc *max_queues =
1724                         &get_feat_ctx->max_queues;
1725                 io_tx_sq_num = max_queues->max_sq_num;
1726                 io_tx_cq_num = max_queues->max_cq_num;
1727                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1728         }
1729
1730         /* In case of LLQ use the llq number in the get feature cmd */
1731         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1732                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1733
1734         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1735         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1736         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1737
1738         if (unlikely(max_num_io_queues == 0)) {
1739                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1740                 return -EFAULT;
1741         }
1742
1743         return max_num_io_queues;
1744 }
1745
1746 static void
1747 ena_set_offloads(struct ena_offloads *offloads,
1748                  struct ena_admin_feature_offload_desc *offload_desc)
1749 {
1750         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1751                 offloads->tx_offloads |= ENA_IPV4_TSO;
1752
1753         /* Tx IPv4 checksum offloads */
1754         if (offload_desc->tx &
1755             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1756                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1757         if (offload_desc->tx &
1758             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1759                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1760         if (offload_desc->tx &
1761             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1762                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1763
1764         /* Tx IPv6 checksum offloads */
1765         if (offload_desc->tx &
1766             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1767                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1768         if (offload_desc->tx &
1769              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1770                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1771
1772         /* Rx IPv4 checksum offloads */
1773         if (offload_desc->rx_supported &
1774             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1775                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1776         if (offload_desc->rx_supported &
1777             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1778                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1779
1780         /* Rx IPv6 checksum offloads */
1781         if (offload_desc->rx_supported &
1782             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1783                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1784
1785         if (offload_desc->rx_supported &
1786             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1787                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1788 }
1789
1790 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1791 {
1792         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1793         struct rte_pci_device *pci_dev;
1794         struct rte_intr_handle *intr_handle;
1795         struct ena_adapter *adapter = eth_dev->data->dev_private;
1796         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1797         struct ena_com_dev_get_features_ctx get_feat_ctx;
1798         struct ena_llq_configurations llq_config;
1799         const char *queue_type_str;
1800         uint32_t max_num_io_queues;
1801         int rc;
1802         static int adapters_found;
1803         bool disable_meta_caching;
1804         bool wd_state = false;
1805
1806         eth_dev->dev_ops = &ena_dev_ops;
1807         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1808         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1809         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1810
1811         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1812                 return 0;
1813
1814         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1815
1816         memset(adapter, 0, sizeof(struct ena_adapter));
1817         ena_dev = &adapter->ena_dev;
1818
1819         adapter->edev_data = eth_dev->data;
1820
1821         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1822
1823         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1824                      pci_dev->addr.domain,
1825                      pci_dev->addr.bus,
1826                      pci_dev->addr.devid,
1827                      pci_dev->addr.function);
1828
1829         intr_handle = pci_dev->intr_handle;
1830
1831         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1832         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1833
1834         if (!adapter->regs) {
1835                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1836                              ENA_REGS_BAR);
1837                 return -ENXIO;
1838         }
1839
1840         ena_dev->reg_bar = adapter->regs;
1841         /* This is a dummy pointer for ena_com functions. */
1842         ena_dev->dmadev = adapter;
1843
1844         adapter->id_number = adapters_found;
1845
1846         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1847                  adapter->id_number);
1848
1849         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1850         if (rc != 0) {
1851                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1852                 goto err;
1853         }
1854
1855         /* device specific initialization routine */
1856         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1857         if (rc) {
1858                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1859                 goto err;
1860         }
1861         adapter->wd_state = wd_state;
1862
1863         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1864                 adapter->use_large_llq_hdr);
1865         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1866                                              &get_feat_ctx.llq, &llq_config);
1867         if (unlikely(rc)) {
1868                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1869                 return rc;
1870         }
1871
1872         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1873                 queue_type_str = "Regular";
1874         else
1875                 queue_type_str = "Low latency";
1876         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1877
1878         calc_queue_ctx.ena_dev = ena_dev;
1879         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1880
1881         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1882         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1883                 adapter->use_large_llq_hdr);
1884         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1885                 rc = -EFAULT;
1886                 goto err_device_destroy;
1887         }
1888
1889         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1890         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1891         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1892         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1893         adapter->max_num_io_queues = max_num_io_queues;
1894
1895         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1896                 disable_meta_caching =
1897                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1898                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1899         } else {
1900                 disable_meta_caching = false;
1901         }
1902
1903         /* prepare ring structures */
1904         ena_init_rings(adapter, disable_meta_caching);
1905
1906         ena_config_debug_area(adapter);
1907
1908         /* Set max MTU for this device */
1909         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1910
1911         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1912
1913         /* Copy MAC address and point DPDK to it */
1914         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1915         rte_ether_addr_copy((struct rte_ether_addr *)
1916                         get_feat_ctx.dev_attr.mac_addr,
1917                         (struct rte_ether_addr *)adapter->mac_addr);
1918
1919         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1920         if (unlikely(rc != 0)) {
1921                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1922                 goto err_delete_debug_area;
1923         }
1924
1925         adapter->drv_stats = rte_zmalloc("adapter stats",
1926                                          sizeof(*adapter->drv_stats),
1927                                          RTE_CACHE_LINE_SIZE);
1928         if (!adapter->drv_stats) {
1929                 PMD_DRV_LOG(ERR,
1930                         "Failed to allocate memory for adapter statistics\n");
1931                 rc = -ENOMEM;
1932                 goto err_rss_destroy;
1933         }
1934
1935         rte_spinlock_init(&adapter->admin_lock);
1936
1937         rte_intr_callback_register(intr_handle,
1938                                    ena_interrupt_handler_rte,
1939                                    eth_dev);
1940         rte_intr_enable(intr_handle);
1941         ena_com_set_admin_polling_mode(ena_dev, false);
1942         ena_com_admin_aenq_enable(ena_dev);
1943
1944         if (adapters_found == 0)
1945                 rte_timer_subsystem_init();
1946         rte_timer_init(&adapter->timer_wd);
1947
1948         adapters_found++;
1949         adapter->state = ENA_ADAPTER_STATE_INIT;
1950
1951         return 0;
1952
1953 err_rss_destroy:
1954         ena_com_rss_destroy(ena_dev);
1955 err_delete_debug_area:
1956         ena_com_delete_debug_area(ena_dev);
1957
1958 err_device_destroy:
1959         ena_com_delete_host_info(ena_dev);
1960         ena_com_admin_destroy(ena_dev);
1961
1962 err:
1963         return rc;
1964 }
1965
1966 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1967 {
1968         struct ena_adapter *adapter = eth_dev->data->dev_private;
1969         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1970
1971         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1972                 return;
1973
1974         ena_com_set_admin_running_state(ena_dev, false);
1975
1976         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1977                 ena_close(eth_dev);
1978
1979         ena_com_rss_destroy(ena_dev);
1980
1981         ena_com_delete_debug_area(ena_dev);
1982         ena_com_delete_host_info(ena_dev);
1983
1984         ena_com_abort_admin_commands(ena_dev);
1985         ena_com_wait_for_abort_completion(ena_dev);
1986         ena_com_admin_destroy(ena_dev);
1987         ena_com_mmio_reg_read_request_destroy(ena_dev);
1988
1989         adapter->state = ENA_ADAPTER_STATE_FREE;
1990 }
1991
1992 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1993 {
1994         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1995                 return 0;
1996
1997         ena_destroy_device(eth_dev);
1998
1999         return 0;
2000 }
2001
2002 static int ena_dev_configure(struct rte_eth_dev *dev)
2003 {
2004         struct ena_adapter *adapter = dev->data->dev_private;
2005
2006         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2007
2008         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2009                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2010         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2011
2012         /* Scattered Rx cannot be turned off in the HW, so this capability must
2013          * be forced.
2014          */
2015         dev->data->scattered_rx = 1;
2016
2017         adapter->last_tx_comp_qid = 0;
2018
2019         adapter->missing_tx_completion_budget =
2020                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2021
2022         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2023         /* To avoid detection of the spurious Tx completion timeout due to
2024          * application not calling the Tx cleanup function, set timeout for the
2025          * Tx queue which should be half of the missing completion timeout for a
2026          * safety. If there will be a lot of missing Tx completions in the
2027          * queue, they will be detected sooner or later.
2028          */
2029         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2030
2031         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2032         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2033
2034         return 0;
2035 }
2036
2037 static void ena_init_rings(struct ena_adapter *adapter,
2038                            bool disable_meta_caching)
2039 {
2040         size_t i;
2041
2042         for (i = 0; i < adapter->max_num_io_queues; i++) {
2043                 struct ena_ring *ring = &adapter->tx_ring[i];
2044
2045                 ring->configured = 0;
2046                 ring->type = ENA_RING_TYPE_TX;
2047                 ring->adapter = adapter;
2048                 ring->id = i;
2049                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2050                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2051                 ring->sgl_size = adapter->max_tx_sgl_size;
2052                 ring->disable_meta_caching = disable_meta_caching;
2053         }
2054
2055         for (i = 0; i < adapter->max_num_io_queues; i++) {
2056                 struct ena_ring *ring = &adapter->rx_ring[i];
2057
2058                 ring->configured = 0;
2059                 ring->type = ENA_RING_TYPE_RX;
2060                 ring->adapter = adapter;
2061                 ring->id = i;
2062                 ring->sgl_size = adapter->max_rx_sgl_size;
2063         }
2064 }
2065
2066 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2067 {
2068         uint64_t port_offloads = 0;
2069
2070         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2071                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2072
2073         if (adapter->offloads.rx_offloads &
2074             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2075                 port_offloads |=
2076                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2077
2078         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2079                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2080
2081         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2082
2083         return port_offloads;
2084 }
2085
2086 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2087 {
2088         uint64_t port_offloads = 0;
2089
2090         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2091                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2092
2093         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2094                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2095         if (adapter->offloads.tx_offloads &
2096             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2097              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2098                 port_offloads |=
2099                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2100
2101         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2102
2103         return port_offloads;
2104 }
2105
2106 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2107 {
2108         RTE_SET_USED(adapter);
2109
2110         return 0;
2111 }
2112
2113 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2114 {
2115         RTE_SET_USED(adapter);
2116
2117         return 0;
2118 }
2119
2120 static int ena_infos_get(struct rte_eth_dev *dev,
2121                           struct rte_eth_dev_info *dev_info)
2122 {
2123         struct ena_adapter *adapter;
2124         struct ena_com_dev *ena_dev;
2125
2126         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2127         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2128         adapter = dev->data->dev_private;
2129
2130         ena_dev = &adapter->ena_dev;
2131         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2132
2133         dev_info->speed_capa =
2134                         RTE_ETH_LINK_SPEED_1G   |
2135                         RTE_ETH_LINK_SPEED_2_5G |
2136                         RTE_ETH_LINK_SPEED_5G   |
2137                         RTE_ETH_LINK_SPEED_10G  |
2138                         RTE_ETH_LINK_SPEED_25G  |
2139                         RTE_ETH_LINK_SPEED_40G  |
2140                         RTE_ETH_LINK_SPEED_50G  |
2141                         RTE_ETH_LINK_SPEED_100G;
2142
2143         /* Inform framework about available features */
2144         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2145         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2146         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2147         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2148
2149         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2150         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2151
2152         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2153         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2154                 RTE_ETHER_CRC_LEN;
2155         dev_info->min_mtu = ENA_MIN_MTU;
2156         dev_info->max_mtu = adapter->max_mtu;
2157         dev_info->max_mac_addrs = 1;
2158
2159         dev_info->max_rx_queues = adapter->max_num_io_queues;
2160         dev_info->max_tx_queues = adapter->max_num_io_queues;
2161         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2162
2163         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2164         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2165         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2166                                         adapter->max_rx_sgl_size);
2167         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2168                                         adapter->max_rx_sgl_size);
2169
2170         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2171         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2172         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2173                                         adapter->max_tx_sgl_size);
2174         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2175                                         adapter->max_tx_sgl_size);
2176
2177         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2178         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2179
2180         return 0;
2181 }
2182
2183 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2184 {
2185         mbuf->data_len = len;
2186         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2187         mbuf->refcnt = 1;
2188         mbuf->next = NULL;
2189 }
2190
2191 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2192                                     struct ena_com_rx_buf_info *ena_bufs,
2193                                     uint32_t descs,
2194                                     uint16_t *next_to_clean,
2195                                     uint8_t offset)
2196 {
2197         struct rte_mbuf *mbuf;
2198         struct rte_mbuf *mbuf_head;
2199         struct ena_rx_buffer *rx_info;
2200         int rc;
2201         uint16_t ntc, len, req_id, buf = 0;
2202
2203         if (unlikely(descs == 0))
2204                 return NULL;
2205
2206         ntc = *next_to_clean;
2207
2208         len = ena_bufs[buf].len;
2209         req_id = ena_bufs[buf].req_id;
2210
2211         rx_info = &rx_ring->rx_buffer_info[req_id];
2212
2213         mbuf = rx_info->mbuf;
2214         RTE_ASSERT(mbuf != NULL);
2215
2216         ena_init_rx_mbuf(mbuf, len);
2217
2218         /* Fill the mbuf head with the data specific for 1st segment. */
2219         mbuf_head = mbuf;
2220         mbuf_head->nb_segs = descs;
2221         mbuf_head->port = rx_ring->port_id;
2222         mbuf_head->pkt_len = len;
2223         mbuf_head->data_off += offset;
2224
2225         rx_info->mbuf = NULL;
2226         rx_ring->empty_rx_reqs[ntc] = req_id;
2227         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2228
2229         while (--descs) {
2230                 ++buf;
2231                 len = ena_bufs[buf].len;
2232                 req_id = ena_bufs[buf].req_id;
2233
2234                 rx_info = &rx_ring->rx_buffer_info[req_id];
2235                 RTE_ASSERT(rx_info->mbuf != NULL);
2236
2237                 if (unlikely(len == 0)) {
2238                         /*
2239                          * Some devices can pass descriptor with the length 0.
2240                          * To avoid confusion, the PMD is simply putting the
2241                          * descriptor back, as it was never used. We'll avoid
2242                          * mbuf allocation that way.
2243                          */
2244                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2245                                 rx_info->mbuf, req_id);
2246                         if (unlikely(rc != 0)) {
2247                                 /* Free the mbuf in case of an error. */
2248                                 rte_mbuf_raw_free(rx_info->mbuf);
2249                         } else {
2250                                 /*
2251                                  * If there was no error, just exit the loop as
2252                                  * 0 length descriptor is always the last one.
2253                                  */
2254                                 break;
2255                         }
2256                 } else {
2257                         /* Create an mbuf chain. */
2258                         mbuf->next = rx_info->mbuf;
2259                         mbuf = mbuf->next;
2260
2261                         ena_init_rx_mbuf(mbuf, len);
2262                         mbuf_head->pkt_len += len;
2263                 }
2264
2265                 /*
2266                  * Mark the descriptor as depleted and perform necessary
2267                  * cleanup.
2268                  * This code will execute in two cases:
2269                  *  1. Descriptor len was greater than 0 - normal situation.
2270                  *  2. Descriptor len was 0 and we failed to add the descriptor
2271                  *     to the device. In that situation, we should try to add
2272                  *     the mbuf again in the populate routine and mark the
2273                  *     descriptor as used up by the device.
2274                  */
2275                 rx_info->mbuf = NULL;
2276                 rx_ring->empty_rx_reqs[ntc] = req_id;
2277                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2278         }
2279
2280         *next_to_clean = ntc;
2281
2282         return mbuf_head;
2283 }
2284
2285 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2286                                   uint16_t nb_pkts)
2287 {
2288         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2289         unsigned int free_queue_entries;
2290         uint16_t next_to_clean = rx_ring->next_to_clean;
2291         uint16_t descs_in_use;
2292         struct rte_mbuf *mbuf;
2293         uint16_t completed;
2294         struct ena_com_rx_ctx ena_rx_ctx;
2295         int i, rc = 0;
2296         bool fill_hash;
2297
2298 #ifdef RTE_ETHDEV_DEBUG_RX
2299         /* Check adapter state */
2300         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2301                 PMD_RX_LOG(ALERT,
2302                         "Trying to receive pkts while device is NOT running\n");
2303                 return 0;
2304         }
2305 #endif
2306
2307         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2308
2309         descs_in_use = rx_ring->ring_size -
2310                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2311         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2312
2313         for (completed = 0; completed < nb_pkts; completed++) {
2314                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2315                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2316                 ena_rx_ctx.descs = 0;
2317                 ena_rx_ctx.pkt_offset = 0;
2318                 /* receive packet context */
2319                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2320                                     rx_ring->ena_com_io_sq,
2321                                     &ena_rx_ctx);
2322                 if (unlikely(rc)) {
2323                         PMD_RX_LOG(ERR,
2324                                 "Failed to get the packet from the device, rc: %d\n",
2325                                 rc);
2326                         if (rc == ENA_COM_NO_SPACE) {
2327                                 ++rx_ring->rx_stats.bad_desc_num;
2328                                 rx_ring->adapter->reset_reason =
2329                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2330                         } else {
2331                                 ++rx_ring->rx_stats.bad_req_id;
2332                                 rx_ring->adapter->reset_reason =
2333                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2334                         }
2335                         rx_ring->adapter->trigger_reset = true;
2336                         return 0;
2337                 }
2338
2339                 mbuf = ena_rx_mbuf(rx_ring,
2340                         ena_rx_ctx.ena_bufs,
2341                         ena_rx_ctx.descs,
2342                         &next_to_clean,
2343                         ena_rx_ctx.pkt_offset);
2344                 if (unlikely(mbuf == NULL)) {
2345                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2346                                 rx_ring->empty_rx_reqs[next_to_clean] =
2347                                         rx_ring->ena_bufs[i].req_id;
2348                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2349                                         next_to_clean, rx_ring->size_mask);
2350                         }
2351                         break;
2352                 }
2353
2354                 /* fill mbuf attributes if any */
2355                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2356
2357                 if (unlikely(mbuf->ol_flags &
2358                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2359                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2360                         ++rx_ring->rx_stats.bad_csum;
2361                 }
2362
2363                 rx_pkts[completed] = mbuf;
2364                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2365         }
2366
2367         rx_ring->rx_stats.cnt += completed;
2368         rx_ring->next_to_clean = next_to_clean;
2369
2370         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2371
2372         /* Burst refill to save doorbells, memory barriers, const interval */
2373         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2374                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2375                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2376         }
2377
2378         return completed;
2379 }
2380
2381 static uint16_t
2382 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2383                 uint16_t nb_pkts)
2384 {
2385         int32_t ret;
2386         uint32_t i;
2387         struct rte_mbuf *m;
2388         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2389         struct ena_adapter *adapter = tx_ring->adapter;
2390         struct rte_ipv4_hdr *ip_hdr;
2391         uint64_t ol_flags;
2392         uint64_t l4_csum_flag;
2393         uint64_t dev_offload_capa;
2394         uint16_t frag_field;
2395         bool need_pseudo_csum;
2396
2397         dev_offload_capa = adapter->offloads.tx_offloads;
2398         for (i = 0; i != nb_pkts; i++) {
2399                 m = tx_pkts[i];
2400                 ol_flags = m->ol_flags;
2401
2402                 /* Check if any offload flag was set */
2403                 if (ol_flags == 0)
2404                         continue;
2405
2406                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2407                 /* SCTP checksum offload is not supported by the ENA. */
2408                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2409                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2410                         PMD_TX_LOG(DEBUG,
2411                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2412                                 i, ol_flags);
2413                         rte_errno = ENOTSUP;
2414                         return i;
2415                 }
2416
2417 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2418                 /* Check if requested offload is also enabled for the queue */
2419                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2420                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2421                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2422                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2423                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2424                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2425                         PMD_TX_LOG(DEBUG,
2426                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2427                                 i, m->nb_segs, tx_ring->id);
2428                         rte_errno = EINVAL;
2429                         return i;
2430                 }
2431
2432                 /* The caller is obligated to set l2 and l3 len if any cksum
2433                  * offload is enabled.
2434                  */
2435                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2436                     (m->l2_len == 0 || m->l3_len == 0))) {
2437                         PMD_TX_LOG(DEBUG,
2438                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2439                                 i);
2440                         rte_errno = EINVAL;
2441                         return i;
2442                 }
2443                 ret = rte_validate_tx_offload(m);
2444                 if (ret != 0) {
2445                         rte_errno = -ret;
2446                         return i;
2447                 }
2448 #endif
2449
2450                 /* Verify HW support for requested offloads and determine if
2451                  * pseudo header checksum is needed.
2452                  */
2453                 need_pseudo_csum = false;
2454                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2455                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2456                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2457                                 rte_errno = ENOTSUP;
2458                                 return i;
2459                         }
2460
2461                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2462                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2463                                 rte_errno = ENOTSUP;
2464                                 return i;
2465                         }
2466
2467                         /* Check HW capabilities and if pseudo csum is needed
2468                          * for L4 offloads.
2469                          */
2470                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2471                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2472                                 if (dev_offload_capa &
2473                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2474                                         need_pseudo_csum = true;
2475                                 } else {
2476                                         rte_errno = ENOTSUP;
2477                                         return i;
2478                                 }
2479                         }
2480
2481                         /* Parse the DF flag */
2482                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2483                                 struct rte_ipv4_hdr *, m->l2_len);
2484                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2485                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2486                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2487                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2488                                 /* In case we are supposed to TSO and have DF
2489                                  * not set (DF=0) hardware must be provided with
2490                                  * partial checksum.
2491                                  */
2492                                 need_pseudo_csum = true;
2493                         }
2494                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2495                         /* There is no support for IPv6 TSO as for now. */
2496                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2497                                 rte_errno = ENOTSUP;
2498                                 return i;
2499                         }
2500
2501                         /* Check HW capabilities and if pseudo csum is needed */
2502                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2503                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2504                                 if (dev_offload_capa &
2505                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2506                                         need_pseudo_csum = true;
2507                                 } else {
2508                                         rte_errno = ENOTSUP;
2509                                         return i;
2510                                 }
2511                         }
2512                 }
2513
2514                 if (need_pseudo_csum) {
2515                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2516                         if (ret != 0) {
2517                                 rte_errno = -ret;
2518                                 return i;
2519                         }
2520                 }
2521         }
2522
2523         return i;
2524 }
2525
2526 static void ena_update_hints(struct ena_adapter *adapter,
2527                              struct ena_admin_ena_hw_hints *hints)
2528 {
2529         if (hints->admin_completion_tx_timeout)
2530                 adapter->ena_dev.admin_queue.completion_timeout =
2531                         hints->admin_completion_tx_timeout * 1000;
2532
2533         if (hints->mmio_read_timeout)
2534                 /* convert to usec */
2535                 adapter->ena_dev.mmio_read.reg_read_to =
2536                         hints->mmio_read_timeout * 1000;
2537
2538         if (hints->missing_tx_completion_timeout) {
2539                 if (hints->missing_tx_completion_timeout ==
2540                     ENA_HW_HINTS_NO_TIMEOUT) {
2541                         adapter->missing_tx_completion_to =
2542                                 ENA_HW_HINTS_NO_TIMEOUT;
2543                 } else {
2544                         /* Convert from msecs to ticks */
2545                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2546                                 hints->missing_tx_completion_timeout / 1000;
2547                         adapter->tx_cleanup_stall_delay =
2548                                 adapter->missing_tx_completion_to / 2;
2549                 }
2550         }
2551
2552         if (hints->driver_watchdog_timeout) {
2553                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2554                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2555                 else
2556                         // Convert msecs to ticks
2557                         adapter->keep_alive_timeout =
2558                                 (hints->driver_watchdog_timeout *
2559                                 rte_get_timer_hz()) / 1000;
2560         }
2561 }
2562
2563 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2564                                               struct rte_mbuf *mbuf)
2565 {
2566         struct ena_com_dev *ena_dev;
2567         int num_segments, header_len, rc;
2568
2569         ena_dev = &tx_ring->adapter->ena_dev;
2570         num_segments = mbuf->nb_segs;
2571         header_len = mbuf->data_len;
2572
2573         if (likely(num_segments < tx_ring->sgl_size))
2574                 goto checkspace;
2575
2576         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2577             (num_segments == tx_ring->sgl_size) &&
2578             (header_len < tx_ring->tx_max_header_size))
2579                 goto checkspace;
2580
2581         /* Checking for space for 2 additional metadata descriptors due to
2582          * possible header split and metadata descriptor. Linearization will
2583          * be needed so we reduce the segments number from num_segments to 1
2584          */
2585         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2586                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2587                 return ENA_COM_NO_MEM;
2588         }
2589         ++tx_ring->tx_stats.linearize;
2590         rc = rte_pktmbuf_linearize(mbuf);
2591         if (unlikely(rc)) {
2592                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2593                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2594                 ++tx_ring->tx_stats.linearize_failed;
2595                 return rc;
2596         }
2597
2598         return 0;
2599
2600 checkspace:
2601         /* Checking for space for 2 additional metadata descriptors due to
2602          * possible header split and metadata descriptor
2603          */
2604         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2605                                           num_segments + 2)) {
2606                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2607                 return ENA_COM_NO_MEM;
2608         }
2609
2610         return 0;
2611 }
2612
2613 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2614         struct ena_tx_buffer *tx_info,
2615         struct rte_mbuf *mbuf,
2616         void **push_header,
2617         uint16_t *header_len)
2618 {
2619         struct ena_com_buf *ena_buf;
2620         uint16_t delta, seg_len, push_len;
2621
2622         delta = 0;
2623         seg_len = mbuf->data_len;
2624
2625         tx_info->mbuf = mbuf;
2626         ena_buf = tx_info->bufs;
2627
2628         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2629                 /*
2630                  * Tx header might be (and will be in most cases) smaller than
2631                  * tx_max_header_size. But it's not an issue to send more data
2632                  * to the device, than actually needed if the mbuf size is
2633                  * greater than tx_max_header_size.
2634                  */
2635                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2636                 *header_len = push_len;
2637
2638                 if (likely(push_len <= seg_len)) {
2639                         /* If the push header is in the single segment, then
2640                          * just point it to the 1st mbuf data.
2641                          */
2642                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2643                 } else {
2644                         /* If the push header lays in the several segments, copy
2645                          * it to the intermediate buffer.
2646                          */
2647                         rte_pktmbuf_read(mbuf, 0, push_len,
2648                                 tx_ring->push_buf_intermediate_buf);
2649                         *push_header = tx_ring->push_buf_intermediate_buf;
2650                         delta = push_len - seg_len;
2651                 }
2652         } else {
2653                 *push_header = NULL;
2654                 *header_len = 0;
2655                 push_len = 0;
2656         }
2657
2658         /* Process first segment taking into consideration pushed header */
2659         if (seg_len > push_len) {
2660                 ena_buf->paddr = mbuf->buf_iova +
2661                                 mbuf->data_off +
2662                                 push_len;
2663                 ena_buf->len = seg_len - push_len;
2664                 ena_buf++;
2665                 tx_info->num_of_bufs++;
2666         }
2667
2668         while ((mbuf = mbuf->next) != NULL) {
2669                 seg_len = mbuf->data_len;
2670
2671                 /* Skip mbufs if whole data is pushed as a header */
2672                 if (unlikely(delta > seg_len)) {
2673                         delta -= seg_len;
2674                         continue;
2675                 }
2676
2677                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2678                 ena_buf->len = seg_len - delta;
2679                 ena_buf++;
2680                 tx_info->num_of_bufs++;
2681
2682                 delta = 0;
2683         }
2684 }
2685
2686 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2687 {
2688         struct ena_tx_buffer *tx_info;
2689         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2690         uint16_t next_to_use;
2691         uint16_t header_len;
2692         uint16_t req_id;
2693         void *push_header;
2694         int nb_hw_desc;
2695         int rc;
2696
2697         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2698         if (unlikely(rc))
2699                 return rc;
2700
2701         next_to_use = tx_ring->next_to_use;
2702
2703         req_id = tx_ring->empty_tx_reqs[next_to_use];
2704         tx_info = &tx_ring->tx_buffer_info[req_id];
2705         tx_info->num_of_bufs = 0;
2706
2707         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2708
2709         ena_tx_ctx.ena_bufs = tx_info->bufs;
2710         ena_tx_ctx.push_header = push_header;
2711         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2712         ena_tx_ctx.req_id = req_id;
2713         ena_tx_ctx.header_len = header_len;
2714
2715         /* Set Tx offloads flags, if applicable */
2716         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2717                 tx_ring->disable_meta_caching);
2718
2719         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2720                         &ena_tx_ctx))) {
2721                 PMD_TX_LOG(DEBUG,
2722                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2723                         tx_ring->id);
2724                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2725                 tx_ring->tx_stats.doorbells++;
2726                 tx_ring->pkts_without_db = false;
2727         }
2728
2729         /* prepare the packet's descriptors to dma engine */
2730         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2731                 &nb_hw_desc);
2732         if (unlikely(rc)) {
2733                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2734                 ++tx_ring->tx_stats.prepare_ctx_err;
2735                 tx_ring->adapter->reset_reason =
2736                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2737                 tx_ring->adapter->trigger_reset = true;
2738                 return rc;
2739         }
2740
2741         tx_info->tx_descs = nb_hw_desc;
2742         tx_info->timestamp = rte_get_timer_cycles();
2743
2744         tx_ring->tx_stats.cnt++;
2745         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2746
2747         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2748                 tx_ring->size_mask);
2749
2750         return 0;
2751 }
2752
2753 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2754 {
2755         unsigned int total_tx_descs = 0;
2756         uint16_t cleanup_budget;
2757         uint16_t next_to_clean = tx_ring->next_to_clean;
2758
2759         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2760         cleanup_budget = tx_ring->size_mask;
2761
2762         while (likely(total_tx_descs < cleanup_budget)) {
2763                 struct rte_mbuf *mbuf;
2764                 struct ena_tx_buffer *tx_info;
2765                 uint16_t req_id;
2766
2767                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2768                         break;
2769
2770                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2771                         break;
2772
2773                 /* Get Tx info & store how many descs were processed  */
2774                 tx_info = &tx_ring->tx_buffer_info[req_id];
2775                 tx_info->timestamp = 0;
2776
2777                 mbuf = tx_info->mbuf;
2778                 rte_pktmbuf_free(mbuf);
2779
2780                 tx_info->mbuf = NULL;
2781                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2782
2783                 total_tx_descs += tx_info->tx_descs;
2784
2785                 /* Put back descriptor to the ring for reuse */
2786                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2787                         tx_ring->size_mask);
2788         }
2789
2790         if (likely(total_tx_descs > 0)) {
2791                 /* acknowledge completion of sent packets */
2792                 tx_ring->next_to_clean = next_to_clean;
2793                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2794                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2795         }
2796
2797         /* Notify completion handler that the cleanup was just called */
2798         tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2799 }
2800
2801 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2802                                   uint16_t nb_pkts)
2803 {
2804         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2805         int available_desc;
2806         uint16_t sent_idx = 0;
2807
2808 #ifdef RTE_ETHDEV_DEBUG_TX
2809         /* Check adapter state */
2810         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2811                 PMD_TX_LOG(ALERT,
2812                         "Trying to xmit pkts while device is NOT running\n");
2813                 return 0;
2814         }
2815 #endif
2816
2817         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2818                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2819                         break;
2820                 tx_ring->pkts_without_db = true;
2821                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2822                         tx_ring->size_mask)]);
2823         }
2824
2825         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2826         tx_ring->tx_stats.available_desc = available_desc;
2827
2828         /* If there are ready packets to be xmitted... */
2829         if (likely(tx_ring->pkts_without_db)) {
2830                 /* ...let HW do its best :-) */
2831                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2832                 tx_ring->tx_stats.doorbells++;
2833                 tx_ring->pkts_without_db = false;
2834         }
2835
2836         if (available_desc < tx_ring->tx_free_thresh)
2837                 ena_tx_cleanup(tx_ring);
2838
2839         tx_ring->tx_stats.available_desc =
2840                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2841         tx_ring->tx_stats.tx_poll++;
2842
2843         return sent_idx;
2844 }
2845
2846 int ena_copy_eni_stats(struct ena_adapter *adapter)
2847 {
2848         struct ena_admin_eni_stats admin_eni_stats;
2849         int rc;
2850
2851         rte_spinlock_lock(&adapter->admin_lock);
2852         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2853         rte_spinlock_unlock(&adapter->admin_lock);
2854         if (rc != 0) {
2855                 if (rc == ENA_COM_UNSUPPORTED) {
2856                         PMD_DRV_LOG(DEBUG,
2857                                 "Retrieving ENI metrics is not supported\n");
2858                 } else {
2859                         PMD_DRV_LOG(WARNING,
2860                                 "Failed to get ENI metrics, rc: %d\n", rc);
2861                 }
2862                 return rc;
2863         }
2864
2865         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2866                 sizeof(struct ena_stats_eni));
2867
2868         return 0;
2869 }
2870
2871 /**
2872  * DPDK callback to retrieve names of extended device statistics
2873  *
2874  * @param dev
2875  *   Pointer to Ethernet device structure.
2876  * @param[out] xstats_names
2877  *   Buffer to insert names into.
2878  * @param n
2879  *   Number of names.
2880  *
2881  * @return
2882  *   Number of xstats names.
2883  */
2884 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2885                                 struct rte_eth_xstat_name *xstats_names,
2886                                 unsigned int n)
2887 {
2888         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2889         unsigned int stat, i, count = 0;
2890
2891         if (n < xstats_count || !xstats_names)
2892                 return xstats_count;
2893
2894         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2895                 strcpy(xstats_names[count].name,
2896                         ena_stats_global_strings[stat].name);
2897
2898         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2899                 strcpy(xstats_names[count].name,
2900                         ena_stats_eni_strings[stat].name);
2901
2902         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2903                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2904                         snprintf(xstats_names[count].name,
2905                                 sizeof(xstats_names[count].name),
2906                                 "rx_q%d_%s", i,
2907                                 ena_stats_rx_strings[stat].name);
2908
2909         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2910                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2911                         snprintf(xstats_names[count].name,
2912                                 sizeof(xstats_names[count].name),
2913                                 "tx_q%d_%s", i,
2914                                 ena_stats_tx_strings[stat].name);
2915
2916         return xstats_count;
2917 }
2918
2919 /**
2920  * DPDK callback to get extended device statistics.
2921  *
2922  * @param dev
2923  *   Pointer to Ethernet device structure.
2924  * @param[out] stats
2925  *   Stats table output buffer.
2926  * @param n
2927  *   The size of the stats table.
2928  *
2929  * @return
2930  *   Number of xstats on success, negative on failure.
2931  */
2932 static int ena_xstats_get(struct rte_eth_dev *dev,
2933                           struct rte_eth_xstat *xstats,
2934                           unsigned int n)
2935 {
2936         struct ena_adapter *adapter = dev->data->dev_private;
2937         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2938         unsigned int stat, i, count = 0;
2939         int stat_offset;
2940         void *stats_begin;
2941
2942         if (n < xstats_count)
2943                 return xstats_count;
2944
2945         if (!xstats)
2946                 return 0;
2947
2948         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2949                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2950                 stats_begin = &adapter->dev_stats;
2951
2952                 xstats[count].id = count;
2953                 xstats[count].value = *((uint64_t *)
2954                         ((char *)stats_begin + stat_offset));
2955         }
2956
2957         /* Even if the function below fails, we should copy previous (or initial
2958          * values) to keep structure of rte_eth_xstat consistent.
2959          */
2960         ena_copy_eni_stats(adapter);
2961         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2962                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2963                 stats_begin = &adapter->eni_stats;
2964
2965                 xstats[count].id = count;
2966                 xstats[count].value = *((uint64_t *)
2967                     ((char *)stats_begin + stat_offset));
2968         }
2969
2970         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2971                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2972                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2973                         stats_begin = &adapter->rx_ring[i].rx_stats;
2974
2975                         xstats[count].id = count;
2976                         xstats[count].value = *((uint64_t *)
2977                                 ((char *)stats_begin + stat_offset));
2978                 }
2979         }
2980
2981         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2982                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2983                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2984                         stats_begin = &adapter->tx_ring[i].rx_stats;
2985
2986                         xstats[count].id = count;
2987                         xstats[count].value = *((uint64_t *)
2988                                 ((char *)stats_begin + stat_offset));
2989                 }
2990         }
2991
2992         return count;
2993 }
2994
2995 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2996                                 const uint64_t *ids,
2997                                 uint64_t *values,
2998                                 unsigned int n)
2999 {
3000         struct ena_adapter *adapter = dev->data->dev_private;
3001         uint64_t id;
3002         uint64_t rx_entries, tx_entries;
3003         unsigned int i;
3004         int qid;
3005         int valid = 0;
3006         bool was_eni_copied = false;
3007
3008         for (i = 0; i < n; ++i) {
3009                 id = ids[i];
3010                 /* Check if id belongs to global statistics */
3011                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3012                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3013                         ++valid;
3014                         continue;
3015                 }
3016
3017                 /* Check if id belongs to ENI statistics */
3018                 id -= ENA_STATS_ARRAY_GLOBAL;
3019                 if (id < ENA_STATS_ARRAY_ENI) {
3020                         /* Avoid reading ENI stats multiple times in a single
3021                          * function call, as it requires communication with the
3022                          * admin queue.
3023                          */
3024                         if (!was_eni_copied) {
3025                                 was_eni_copied = true;
3026                                 ena_copy_eni_stats(adapter);
3027                         }
3028                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
3029                         ++valid;
3030                         continue;
3031                 }
3032
3033                 /* Check if id belongs to rx queue statistics */
3034                 id -= ENA_STATS_ARRAY_ENI;
3035                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3036                 if (id < rx_entries) {
3037                         qid = id % dev->data->nb_rx_queues;
3038                         id /= dev->data->nb_rx_queues;
3039                         values[i] = *((uint64_t *)
3040                                 &adapter->rx_ring[qid].rx_stats + id);
3041                         ++valid;
3042                         continue;
3043                 }
3044                                 /* Check if id belongs to rx queue statistics */
3045                 id -= rx_entries;
3046                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3047                 if (id < tx_entries) {
3048                         qid = id % dev->data->nb_tx_queues;
3049                         id /= dev->data->nb_tx_queues;
3050                         values[i] = *((uint64_t *)
3051                                 &adapter->tx_ring[qid].tx_stats + id);
3052                         ++valid;
3053                         continue;
3054                 }
3055         }
3056
3057         return valid;
3058 }
3059
3060 static int ena_process_bool_devarg(const char *key,
3061                                    const char *value,
3062                                    void *opaque)
3063 {
3064         struct ena_adapter *adapter = opaque;
3065         bool bool_value;
3066
3067         /* Parse the value. */
3068         if (strcmp(value, "1") == 0) {
3069                 bool_value = true;
3070         } else if (strcmp(value, "0") == 0) {
3071                 bool_value = false;
3072         } else {
3073                 PMD_INIT_LOG(ERR,
3074                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3075                         value, key);
3076                 return -EINVAL;
3077         }
3078
3079         /* Now, assign it to the proper adapter field. */
3080         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3081                 adapter->use_large_llq_hdr = bool_value;
3082
3083         return 0;
3084 }
3085
3086 static int ena_parse_devargs(struct ena_adapter *adapter,
3087                              struct rte_devargs *devargs)
3088 {
3089         static const char * const allowed_args[] = {
3090                 ENA_DEVARG_LARGE_LLQ_HDR,
3091                 NULL,
3092         };
3093         struct rte_kvargs *kvlist;
3094         int rc;
3095
3096         if (devargs == NULL)
3097                 return 0;
3098
3099         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3100         if (kvlist == NULL) {
3101                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3102                         devargs->args);
3103                 return -EINVAL;
3104         }
3105
3106         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3107                 ena_process_bool_devarg, adapter);
3108
3109         rte_kvargs_free(kvlist);
3110
3111         return rc;
3112 }
3113
3114 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3115 {
3116         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3117         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3118         int rc;
3119         uint16_t vectors_nb, i;
3120         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3121
3122         if (!rx_intr_requested)
3123                 return 0;
3124
3125         if (!rte_intr_cap_multiple(intr_handle)) {
3126                 PMD_DRV_LOG(ERR,
3127                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3128                 return -ENOTSUP;
3129         }
3130
3131         /* Disable interrupt mapping before the configuration starts. */
3132         rte_intr_disable(intr_handle);
3133
3134         /* Verify if there are enough vectors available. */
3135         vectors_nb = dev->data->nb_rx_queues;
3136         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3137                 PMD_DRV_LOG(ERR,
3138                         "Too many Rx interrupts requested, maximum number: %d\n",
3139                         RTE_MAX_RXTX_INTR_VEC_ID);
3140                 rc = -ENOTSUP;
3141                 goto enable_intr;
3142         }
3143
3144         /* Allocate the vector list */
3145         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3146                                            dev->data->nb_rx_queues)) {
3147                 PMD_DRV_LOG(ERR,
3148                         "Failed to allocate interrupt vector for %d queues\n",
3149                         dev->data->nb_rx_queues);
3150                 rc = -ENOMEM;
3151                 goto enable_intr;
3152         }
3153
3154         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3155         if (rc != 0)
3156                 goto free_intr_vec;
3157
3158         if (!rte_intr_allow_others(intr_handle)) {
3159                 PMD_DRV_LOG(ERR,
3160                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3161                 goto disable_intr_efd;
3162         }
3163
3164         for (i = 0; i < vectors_nb; ++i)
3165                 if (rte_intr_vec_list_index_set(intr_handle, i,
3166                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3167                         goto disable_intr_efd;
3168
3169         rte_intr_enable(intr_handle);
3170         return 0;
3171
3172 disable_intr_efd:
3173         rte_intr_efd_disable(intr_handle);
3174 free_intr_vec:
3175         rte_intr_vec_list_free(intr_handle);
3176 enable_intr:
3177         rte_intr_enable(intr_handle);
3178         return rc;
3179 }
3180
3181 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3182                                  uint16_t queue_id,
3183                                  bool unmask)
3184 {
3185         struct ena_adapter *adapter = dev->data->dev_private;
3186         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3187         struct ena_eth_io_intr_reg intr_reg;
3188
3189         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3190         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3191 }
3192
3193 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3194                                     uint16_t queue_id)
3195 {
3196         ena_rx_queue_intr_set(dev, queue_id, true);
3197
3198         return 0;
3199 }
3200
3201 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3202                                      uint16_t queue_id)
3203 {
3204         ena_rx_queue_intr_set(dev, queue_id, false);
3205
3206         return 0;
3207 }
3208
3209 /*********************************************************************
3210  *  PMD configuration
3211  *********************************************************************/
3212 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3213         struct rte_pci_device *pci_dev)
3214 {
3215         return rte_eth_dev_pci_generic_probe(pci_dev,
3216                 sizeof(struct ena_adapter), eth_ena_dev_init);
3217 }
3218
3219 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3220 {
3221         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3222 }
3223
3224 static struct rte_pci_driver rte_ena_pmd = {
3225         .id_table = pci_id_ena_map,
3226         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3227                      RTE_PCI_DRV_WC_ACTIVATE,
3228         .probe = eth_ena_pci_probe,
3229         .remove = eth_ena_pci_remove,
3230 };
3231
3232 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3233 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3234 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3235 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3237 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3238 #ifdef RTE_ETHDEV_DEBUG_RX
3239 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3240 #endif
3241 #ifdef RTE_ETHDEV_DEBUG_TX
3242 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3243 #endif
3244 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3245
3246 /******************************************************************************
3247  ******************************** AENQ Handlers *******************************
3248  *****************************************************************************/
3249 static void ena_update_on_link_change(void *adapter_data,
3250                                       struct ena_admin_aenq_entry *aenq_e)
3251 {
3252         struct rte_eth_dev *eth_dev = adapter_data;
3253         struct ena_adapter *adapter = eth_dev->data->dev_private;
3254         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3255         uint32_t status;
3256
3257         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3258
3259         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3260         adapter->link_status = status;
3261
3262         ena_link_update(eth_dev, 0);
3263         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3264 }
3265
3266 static void ena_notification(void *adapter_data,
3267                              struct ena_admin_aenq_entry *aenq_e)
3268 {
3269         struct rte_eth_dev *eth_dev = adapter_data;
3270         struct ena_adapter *adapter = eth_dev->data->dev_private;
3271         struct ena_admin_ena_hw_hints *hints;
3272
3273         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3274                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3275                         aenq_e->aenq_common_desc.group,
3276                         ENA_ADMIN_NOTIFICATION);
3277
3278         switch (aenq_e->aenq_common_desc.syndrome) {
3279         case ENA_ADMIN_UPDATE_HINTS:
3280                 hints = (struct ena_admin_ena_hw_hints *)
3281                         (&aenq_e->inline_data_w4);
3282                 ena_update_hints(adapter, hints);
3283                 break;
3284         default:
3285                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3286                         aenq_e->aenq_common_desc.syndrome);
3287         }
3288 }
3289
3290 static void ena_keep_alive(void *adapter_data,
3291                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3292 {
3293         struct rte_eth_dev *eth_dev = adapter_data;
3294         struct ena_adapter *adapter = eth_dev->data->dev_private;
3295         struct ena_admin_aenq_keep_alive_desc *desc;
3296         uint64_t rx_drops;
3297         uint64_t tx_drops;
3298
3299         adapter->timestamp_wd = rte_get_timer_cycles();
3300
3301         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3302         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3303         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3304
3305         adapter->drv_stats->rx_drops = rx_drops;
3306         adapter->dev_stats.tx_drops = tx_drops;
3307 }
3308
3309 /**
3310  * This handler will called for unknown event group or unimplemented handlers
3311  **/
3312 static void unimplemented_aenq_handler(__rte_unused void *data,
3313                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3314 {
3315         PMD_DRV_LOG(ERR,
3316                 "Unknown event was received or event with unimplemented handler\n");
3317 }
3318
3319 static struct ena_aenq_handlers aenq_handlers = {
3320         .handlers = {
3321                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3322                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3323                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3324         },
3325         .unimplemented_handler = unimplemented_aenq_handler
3326 };