F: lib/librte_pmd_enic/
Intel e1000
-F: lib/librte_pmd_e1000/
+F: drivers/net/e1000/
F: doc/guides/nics/e1000em.rst
F: doc/guides/nics/intel_vf.rst
+-- librte_mempool # memory pool manager (fixedsized objects)
+-- librte_meter # QoS metering library
+-- librte_net # various IP-related headers
- +-- librte_pmd_e1000 # 1GbE poll mode drivers (igb and em)
+-- librte_pmd_fm10k # Host interface PMD driver for FM10000 Series
+-- librte_pmd_ixgbe # 10GbE poll mode driver
+-- librte_pmd_i40e # 40GbE poll mode driver
drivers/net
+-- af_packet # poll mode driver based on linux af_packet
+-- bonding # bonding poll mode driver
+ +-- e1000 # 1GbE poll mode drivers (igb and em)
Applications
------------
DIRS-$(CONFIG_RTE_LIBRTE_PMD_AF_PACKET) += af_packet
DIRS-$(CONFIG_RTE_LIBRTE_PMD_BOND) += bonding
+DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000
include $(RTE_SDK)/mk/rte.sharelib.mk
include $(RTE_SDK)/mk/rte.subdir.mk
--- /dev/null
+# BSD LICENSE
+#
+# Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# * Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+# * Neither the name of Intel Corporation nor the names of its
+# contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+#
+# library name
+#
+LIB = librte_pmd_e1000.a
+
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+
+EXPORT_MAP := rte_pmd_e1000_version.map
+
+LIBABIVER := 1
+
+ifeq ($(CC), icc)
+#
+# CFLAGS for icc
+#
+CFLAGS_BASE_DRIVER = -wd177 -wd181 -wd188 -wd869 -wd2259
+else
+#
+# CFLAGS for gcc
+#
+CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter
+CFLAGS_BASE_DRIVER += -Wno-unused-variable
+endif
+
+#
+# Add extra flags for base driver files (also known as shared code)
+# to disable warnings in them
+#
+BASE_DRIVER_OBJS=$(patsubst %.c,%.o,$(notdir $(wildcard $(SRCDIR)/base/*.c)))
+$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER)))
+
+VPATH += $(SRCDIR)/base
+
+#
+# all source are stored in SRCS-y
+#
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c
+
+# this lib depends upon:
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc
+
+include $(RTE_SDK)/mk/rte.lib.mk
--- /dev/null
+..
+ BSD LICENSE
+
+ Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ * Neither the name of Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+This directory contains source code of FreeBSD em & igb drivers of version
+cid-shared-code.2014.04.21 released by LAD. The sub-directory of lad/
+contains the original source package.
+Few changes to the original FreeBSD sources were made to:
+- Adopt it for PMD usage mode:
+ e1000_osdep.c
+ e1000_osdep.h
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
+ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 *data);
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 data);
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
+STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 data);
+STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/* A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+STATIC const u16 e1000_gg82563_cable_length_table[] = {
+ 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_gg82563_cable_length_table) / \
+ sizeof(e1000_gg82563_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ return E1000_SUCCESS;
+ } else {
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+ phy->type = e1000_phy_gg82563;
+
+ phy->ops.acquire = e1000_acquire_phy_80003es2lan;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.release = e1000_release_phy_80003es2lan;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
+ phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
+ phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
+
+ phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
+
+ /* This can only be done after all function pointers are setup. */
+ ret_val = e1000_get_phy_id(hw);
+
+ /* Verify phy id */
+ if (phy->id != GG82563_E_PHY_ID)
+ return -E1000_ERR_PHY;
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /* Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.release = e1000_release_nvm_80003es2lan;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_80003es2lan;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+ /* Set media type and media-dependent function pointers */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_generic;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ mac->ops.setup_physical_interface =
+ e1000_setup_copper_link_80003es2lan;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+ /* FWSM register */
+ mac->has_fwsm = true;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_MODE_MASK);
+ /* Adaptive IFS not supported */
+ mac->adaptive_ifs = false;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_80003es2lan;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
+ hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
+}
+
+/**
+ * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to acquire access rights to the correct PHY.
+ **/
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_release_phy_80003es2lan - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.
+ **/
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the Kumeran interface.
+ *
+ **/
+STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
+
+ mask = E1000_SWFW_CSR_SM;
+
+ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the Kumeran interface
+ **/
+STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
+
+ mask = E1000_SWFW_CSR_SM;
+
+ e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the EEPROM.
+ **/
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+ ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the EEPROM.
+ **/
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 i = 0;
+ s32 timeout = 50;
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw))
+ return -E1000_ERR_SWFW_SYNC;
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /* Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ return -E1000_ERR_SWFW_SYNC;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+ ; /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: pointer to the data returned from the operation
+ *
+ * Read the GG82563 PHY register.
+ **/
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /* Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+ if (ret_val) {
+ e1000_release_phy_80003es2lan(hw);
+ return ret_val;
+ }
+
+ if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
+ /* The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ e1000_release_phy_80003es2lan(hw);
+ return -E1000_ERR_PHY;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+ } else {
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ }
+
+ e1000_release_phy_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: value to write to the register
+ *
+ * Write to the GG82563 PHY register.
+ **/
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /* Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+ if (ret_val) {
+ e1000_release_phy_80003es2lan(hw);
+ return ret_val;
+ }
+
+ if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
+ /* The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ e1000_release_phy_80003es2lan(hw);
+ return -E1000_ERR_PHY;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+ } else {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ }
+
+ e1000_release_phy_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @words: number of words to write
+ * @data: buffer of data to write to the NVM
+ *
+ * Write "words" of data to the ESB2 NVM.
+ **/
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+ return e1000_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ * @hw: pointer to the HW structure
+ *
+ * Wait a specific amount of time for manageability processes to complete.
+ * This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+ if (hw->bus.func == 1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ return -E1000_ERR_RESET;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ * @hw: pointer to the HW structure
+ *
+ * Force the speed and duplex settings onto the PHY. This is a
+ * function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ /* Reset the phy to commit changes. */
+ phy_data |= MII_CR_RESET;
+
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(1);
+
+ if (hw->phy.autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ /* We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Resetting the phy means we need to verify the TX_CLK corresponds
+ * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
+ */
+ phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+ if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+ phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+ else
+ phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+ /* In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ phy_data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_80003es2lan - Set approximate cable length
+ * @hw: pointer to the HW structure
+ *
+ * Find the approximate cable length as measured by the GG82563 PHY.
+ * This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+ if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
+ return -E1000_ERR_PHY;
+
+ phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+ phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ **/
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+ hw->phy.ops.cfg_on_link_up(hw);
+ } else {
+ ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+ speed,
+ duplex);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Perform a global reset to the ESB2 controller.
+ **/
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 kum_reg_data;
+
+ DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ e1000_release_phy_80003es2lan(hw);
+
+ /* Disable IBIST slave mode (far-end loopback) */
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
+ if (ret_val)
+ return ret_val;
+ kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
+ e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+ kum_reg_data);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ return ret_val;
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ return e1000_check_alt_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ **/
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 kum_reg_data;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+ e1000_initialize_hw_bits_80003es2lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Disable IBIST slave mode (far-end loopback) */
+ e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+ &kum_reg_data);
+ kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
+ e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+ kum_reg_data);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+
+ /* Enable retransmit on late collisions */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL);
+ reg_data |= E1000_TCTL_RTLC;
+ E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+ /* Configure Gigabit Carry Extend Padding */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+ reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+ /* Configure Transmit Inter-Packet Gap */
+ reg_data = E1000_READ_REG(hw, E1000_TIPG);
+ reg_data &= ~E1000_TIPG_IPGT_MASK;
+ reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+ reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+ reg_data &= ~0x00100000;
+ E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+ /* default to true to enable the MDIC W/A */
+ hw->dev_spec._80003es2lan.mdic_wa_enable = true;
+
+ ret_val =
+ e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
+ E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
+ if (!ret_val) {
+ if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
+ E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
+ hw->dev_spec._80003es2lan.mdic_wa_enable = false;
+ }
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ if (hw->phy.media_type != e1000_media_type_copper)
+ reg &= ~(1 << 20);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+ /* Disable IPv6 extension header parsing because some malformed
+ * IPv6 headers can hang the Rx.
+ */
+ reg = E1000_READ_REG(hw, E1000_RFCTL);
+ reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+ E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+
+ return;
+}
+
+/**
+ * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ * @hw: pointer to the HW structure
+ *
+ * Setup some GG82563 PHY registers for obtaining link
+ **/
+STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 reg;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+ data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
+ if (ret_val)
+ return ret_val;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+ switch (phy->mdix) {
+ case 1:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+ break;
+ case 2:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+ break;
+ case 0:
+ default:
+ data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ if (phy->disable_polarity_correction)
+ data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+ if (ret_val)
+ return ret_val;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Bypass Rx and Tx FIFO's */
+ reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
+ data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
+ if (ret_val)
+ return ret_val;
+
+ reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
+ if (ret_val)
+ return ret_val;
+ data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+ if (ret_val)
+ return ret_val;
+
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ /* Do not init these registers when the HW is in IAMT mode, since the
+ * firmware will have already initialized them. We only initialize
+ * them if the HW is not in IAMT mode.
+ */
+ if (!hw->mac.ops.check_mng_mode(hw)) {
+ /* Enable Electrical Idle on the PHY */
+ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Workaround: Disable padding in Kumeran interface in the MAC
+ * and in the PHY to avoid CRC errors.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= GG82563_ICR_DIS_PADDING;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+ if (ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Essentially a wrapper for setting up all things "copper" related.
+ * This is a function pointer entry point called by the mac module.
+ **/
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Set the mac to wait the maximum time between each
+ * iteration and increase the max iterations when
+ * polling the phy; this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
+ 0xFFFF);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+ ®_data);
+ if (ret_val)
+ return ret_val;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+ reg_data);
+ if (ret_val)
+ return ret_val;
+ ret_val =
+ e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ ®_data);
+ if (ret_val)
+ return ret_val;
+ reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ **/
+STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 speed;
+ u16 duplex;
+
+ DEBUGFUNC("e1000_configure_on_link_up");
+
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
+ &duplex);
+ if (ret_val)
+ return ret_val;
+
+ if (speed == SPEED_1000)
+ ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+ else
+ ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ **/
+STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+ s32 ret_val;
+ u32 tipg;
+ u32 i = 0;
+ u16 reg_data, reg_data2;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+ do {
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data2);
+ if (ret_val)
+ return ret_val;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+ else
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+ return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+}
+
+/**
+ * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ * @hw: pointer to the HW structure
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * gigabit operation.
+ **/
+STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 reg_data, reg_data2;
+ u32 tipg;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+ do {
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ ®_data2);
+ if (ret_val)
+ return ret_val;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+ return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+}
+
+/**
+ * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquire semaphore, then read the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release the semaphore before exiting.
+ **/
+STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
+
+ ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ e1000_release_mac_csr_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquire semaphore, then write the data to PHY register
+ * at the offset using the kumeran interface. Release semaphore
+ * before exiting.
+ **/
+STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
+
+ ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(2);
+
+ e1000_release_mac_csr_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_80003es2lan - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
+
+ /* If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(hw->mac.ops.check_mng_mode(hw) ||
+ hw->phy.ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_80003ES2LAN_H_
+#define _E1000_80003ES2LAN_H_
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
+
+#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Dis */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Neg */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26)
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define GG82563_DSPD_CABLE_LENGTH 0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY 0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+/* 1=Enable SERDES Electrical Idle */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82540EM Gigabit Ethernet Controller
+ * 82540EP Gigabit Ethernet Controller
+ * 82545EM Gigabit Ethernet Controller (Copper)
+ * 82545EM Gigabit Ethernet Controller (Fiber)
+ * 82545GM Gigabit Ethernet Controller
+ * 82546EB Gigabit Ethernet Controller (Copper)
+ * 82546EB Gigabit Ethernet Controller (Fiber)
+ * 82546GB Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw);
+STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw);
+STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw);
+STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
+STATIC s32 e1000_read_mac_addr_82540(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82540;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (phy->id == M88E1011_I_PHY_ID)
+ break;
+ /* Fall Through */
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_init_nvm_params_82540");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ switch (nvm->override) {
+ case e1000_nvm_override_microwire_large:
+ nvm->address_bits = 8;
+ nvm->word_size = 256;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->address_bits = 6;
+ nvm->word_size = 64;
+ break;
+ default:
+ nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+ nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+ break;
+ }
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82540");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82540;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82540;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82540
+ : e1000_setup_fiber_serdes_link_82540;
+ /* check for link */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ break;
+ case e1000_media_type_fiber:
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ break;
+ case e1000_media_type_internal_serdes:
+ mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+ /* link info */
+ mac->ops.get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82540");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82540;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
+ hw->phy.ops.init_params = e1000_init_phy_params_82540;
+}
+
+/**
+ * e1000_reset_hw_82540 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+ u32 ctrl, manc;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82540");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for EEPROM reload */
+ msec_delay(5);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82540 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txdctl, ctrl_ext;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82540");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ if (mac->type < e1000_82545_rev_3)
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space. The *_rev_3 hardware at
+ * least doesn't respond correctly to every other dword in an
+ * MWB to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ if (mac->type < e1000_82545_rev_3)
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82540(hw);
+
+ if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+ (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /*
+ * Relaxed ordering must be disabled to avoid a parity
+ * error crash in a PCI slot.
+ */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82540 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_copper_link_82540");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_set_phy_mode_82540(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.type == e1000_82545_rev_3 ||
+ hw->mac.type == e1000_82546_rev_3) {
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+ data |= 0x00000008;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Set the output amplitude to the value in the EEPROM and adjust the VCO
+ * speed to improve Bit Error Rate (BER) performance. Configures collision
+ * distance and flow control for fiber and serdes links. Upon successful
+ * setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+ switch (mac->type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+ /*
+ * If we're on serdes media, adjust the output
+ * amplitude to value set in the EEPROM.
+ */
+ ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+ if (ret_val)
+ goto out;
+ }
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = e1000_set_vco_speed_82540(hw);
+ if (ret_val)
+ goto out;
+ default:
+ break;
+ }
+
+ ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Adjust the SERDES output amplitude based on the EEPROM settings.
+ **/
+STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+ if (ret_val)
+ goto out;
+
+ if (nvm_data != NVM_RESERVED_WORD) {
+ /* Adjust serdes output amplitude only. */
+ nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
+ nvm_data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ * @hw: pointer to the HW structure
+ *
+ * Set the VCO speed to improve Bit Error Rate (BER) performance.
+ **/
+STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 default_page = 0;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_set_vco_speed_82540");
+
+ /* Set PHY register 30, page 5, bit 8 to 0 */
+
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ default_page);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_phy_mode_82540 - Set PHY to class A mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY to class A mode and assumes the following operations will
+ * follow to enable the new class mode:
+ * 1. Do a PHY soft reset.
+ * 2. Restart auto-negotiation or force link.
+ **/
+STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_phy_mode_82540");
+
+ if (hw->mac.type != e1000_82545_rev_3)
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ 0x000B);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
+ 0x8104);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
+/**
+ * e1000_read_mac_addr_82540 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ *
+ * This version is being used over generic because of customer issues
+ * with VmWare and Virtual Box when using generic. It seems in
+ * the emulated 82545, RAR[0] does NOT have a valid address after a
+ * reset, this older method works and using this breaks nothing for
+ * these legacy adapters.
+ **/
+s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82541EI Gigabit Ethernet Controller
+ * 82541ER Gigabit Ethernet Controller
+ * 82541GI Gigabit Ethernet Controller
+ * 82541PI Gigabit Ethernet Controller
+ * 82547EI Gigabit Ethernet Controller
+ * 82547GI Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw);
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw);
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up);
+STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
+
+STATIC const u16 e1000_igp_cable_length_table[] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
+ 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30,
+ 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60,
+ 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80,
+ 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110,
+ 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120,
+ 120, 120, 120, 120, 120, 120, 120, 120};
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_cable_length_table) / \
+ sizeof(e1000_igp_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_params_82541 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_params_82541");
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_igp;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.reset = e1000_phy_hw_reset_82541;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82541;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ if (phy->id != IGP01E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = E1000_SUCCESS;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82541");
+
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd |= E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd &= ~E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_microwire_large:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd |= E1000_EECD_SIZE;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd &= ~E1000_EECD_SIZE;
+ break;
+ default:
+ nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi
+ : e1000_nvm_eeprom_microwire;
+ break;
+ }
+
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8;
+ nvm->delay_usec = 1;
+ nvm->opcode_bits = 8;
+ nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_spi;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_spi;
+
+ /*
+ * nvm->word_size must be discovered after the pointers
+ * are set so we can verify the size from the nvm image
+ * itself. Temporarily set it to a dummy value so the
+ * read will work.
+ */
+ nvm->word_size = 64;
+ ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
+ if (ret_val)
+ goto out;
+ size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+ /*
+ * if size != 0, it can be added to a constant and become
+ * the left-shift value to set the word_size. Otherwise,
+ * word_size stays at 64.
+ */
+ if (size) {
+ size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+ nvm->word_size = 1 << size;
+ }
+ } else {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mac_params_82541 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82541");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_copper;
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+
+ /* Function Pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82541;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82541;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82541;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_82541;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_82541;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82541 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82541");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82541;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
+ hw->phy.ops.init_params = e1000_init_phy_params_82541;
+}
+
+/**
+ * e1000_reset_hw_82541 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+ u32 ledctl, ctrl, manc;
+
+ DEBUGFUNC("e1000_reset_hw_82541");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Must reset the Phy before resetting the MAC */
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+
+ DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for NVM reload */
+ msec_delay(20);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ e1000_phy_init_script_82541(hw);
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+ /* Once again, mask the interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ /* Clear any pending interrupt events. */
+ E1000_READ_REG(hw, E1000_ICR);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw_82541 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ u32 i, txdctl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_hw_82541");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Storing the Speed Power Down value for later use */
+ ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
+ &dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82541(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ **/
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_get_link_up_info_82541");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ goto out;
+
+ if (!phy->speed_downgraded)
+ goto out;
+
+ /*
+ * IGP01 PHY may advertise full duplex operation after speed
+ * downgrade even if it is operating at half duplex.
+ * Here we set the duplex settings to match the duplex in the
+ * link partner's capabilities.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+ *duplex = HALF_DUPLEX;
+ } else {
+ ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
+ if (ret_val)
+ goto out;
+
+ if (*speed == SPEED_100) {
+ if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ } else if (*speed == SPEED_10) {
+ if (!(data & NWAY_LPAR_10T_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82541 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u32 ledctl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_init_script_82541(hw);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82541 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+ u32 ctrl, ledctl;
+
+ DEBUGFUNC("e1000_setup_copper_link_82541");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+
+ /* Earlier revs of the IGP phy require us to force MDI. */
+ if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+ dev_spec->dsp_config = e1000_dsp_config_disabled;
+ phy->mdix = 1;
+ } else {
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ if (dev_spec->ffe_config == e1000_ffe_config_active)
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82541 - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure.
+ **/
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_link_82541");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
+ goto out; /* No link detected */
+ }
+
+ mac->get_link_status = false;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ mac->ops.config_collision_dist(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ * @hw: pointer to the HW structure
+ * @link_up: boolean flag for link up status
+ *
+ * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ * at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ **/
+STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+ u32 idle_errs = 0;
+ u16 phy_data, phy_saved_data, speed, duplex, i;
+ u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
+ IGP01E1000_PHY_AGC_PARAM_A,
+ IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C,
+ IGP01E1000_PHY_AGC_PARAM_D};
+
+ DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+ if (link_up) {
+ ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (speed != SPEED_1000) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+ phy->min_cable_length >= 50) {
+
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val = phy->ops.write_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+ dev_spec->dsp_config = e1000_dsp_config_activated;
+ }
+
+ if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+ (phy->min_cable_length >= 50)) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* clear previous idle error counts */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
+ usec_delay(1000);
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+ if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ dev_spec->ffe_config = e1000_ffe_config_active;
+
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if (ret_val)
+ goto out;
+ break;
+ }
+
+ if (idle_errs)
+ ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ } else {
+ if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = phy->ops.read_reg(hw, 0x2F5B,
+ &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = phy->ops.write_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val = phy->ops.write_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = phy->ops.write_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B,
+ phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ if (dev_spec->ffe_config != e1000_ffe_config_active) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = phy->ops.write_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ goto out;
+
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, data;
+ u16 cur_agc_value, agc_value = 0;
+ u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A,
+ IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C,
+ IGP01E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
+ if (ret_val)
+ goto out;
+
+ cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Bounds checking */
+ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc_value == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ agc_value += cur_agc_value;
+
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+ agc_value -= min_agc_value;
+ /* Average the three remaining channels for the length. */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Average the channels for the length. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+ IGP01E1000_AGC_RANGE)
+ ? (e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE)
+ : 0;
+ phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+ switch (hw->mac.type) {
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ break;
+ default:
+ ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+ goto out;
+ break;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_82541 - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_led_82541");
+
+ ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
+ &dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
+ (u16)(dev_spec->spd_default &
+ ~IGP01E1000_GMII_SPD));
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_82541 - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_cleanup_led_82541");
+
+ ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
+ dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_init_script_82541 - Initialize GbE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the IGP PHY.
+ **/
+STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ u32 ret_val;
+ u16 phy_saved_data;
+
+ DEBUGFUNC("e1000_phy_init_script_82541");
+
+ if (!dev_spec->phy_init_script) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Delay after phy reset to enable NVM configuration to load */
+ msec_delay(20);
+
+ /*
+ * Save off the current value of register 0x2F5B to be restored at
+ * the end of this routine.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
+
+ msec_delay(20);
+
+ hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+
+ msec_delay(5);
+
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82547:
+ hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
+
+ hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
+
+ hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
+
+ hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
+
+ hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
+
+ hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
+
+ hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
+
+ hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
+
+ hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
+ break;
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac.type == e1000_82547) {
+ u16 fused, fine, coarse;
+
+ /* Move to analog registers page */
+ hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+ &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS,
+ &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse ==
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ hw->phy.ops.write_reg(hw,
+ IGP01E1000_ANALOG_FUSE_CONTROL,
+ fused);
+ hw->phy.ops.write_reg(hw,
+ IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_script_state_82541 - Enable/Disable PHY init script
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to enable/disable PHY init script
+ *
+ * Allows the driver to enable/disable the PHY init script, if the PHY is an
+ * IGP PHY.
+ **/
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+
+ DEBUGFUNC("e1000_init_script_state_82541");
+
+ if (hw->phy.type != e1000_phy_igp) {
+ DEBUGOUT("Initialization script not necessary.\n");
+ goto out;
+ }
+
+ dev_spec->phy_init_script = state;
+
+out:
+ return;
+}
+
+/**
+ * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82541_H_
+#define _E1000_82541_H_
+
+#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define IGP01E1000_PHY_CHANNEL_NUM 4
+
+#define IGP01E1000_PHY_AGC_A 0x1172
+#define IGP01E1000_PHY_AGC_B 0x1272
+#define IGP01E1000_PHY_AGC_C 0x1472
+#define IGP01E1000_PHY_AGC_D 0x1872
+
+#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_DSP_RESET 0x1F33
+
+#define IGP01E1000_PHY_DSP_FFE 0x1F35
+#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
+
+#define IGP01E1000_IEEE_FORCE_GIG 0x0140
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7
+#define IGP01E1000_AGC_RANGE 10
+
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
+
+#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
+#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
+
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_MSE_CHANNEL_D 0x000F
+#define IGP01E1000_MSE_CHANNEL_C 0x00F0
+#define IGP01E1000_MSE_CHANNEL_B 0x0F00
+#define IGP01E1000_MSE_CHANNEL_A 0xF000
+
+
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82542 Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw);
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw);
+STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+STATIC s32 e1000_read_mac_addr_82542(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82542 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82542");
+
+ phy->type = e1000_phy_none;
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+
+ DEBUGFUNC("e1000_init_nvm_params_82542");
+
+ nvm->address_bits = 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+
+ /* Function Pointers */
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_stop_nvm;
+ nvm->ops.write = e1000_write_nvm_microwire;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82542 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82542");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_fiber;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_82542;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82542;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82542;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82542;
+ /* phy/fiber/serdes setup */
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_generic;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
+ /* set RAR */
+ mac->ops.rar_set = e1000_rar_set_82542;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_82542;
+ mac->ops.led_off = e1000_led_off_82542;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+ /* link info */
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82542 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82542");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82542;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
+ hw->phy.ops.init_params = e1000_init_phy_params_82542;
+}
+
+/**
+ * e1000_get_bus_info_82542 - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adapter is attached and stores it in the hw structure.
+ **/
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_bus_info_82542");
+
+ hw->bus.type = e1000_bus_type_pci;
+ hw->bus.speed = e1000_bus_speed_unknown;
+ hw->bus.width = e1000_bus_width_unknown;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_82542 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_reset_hw_82542");
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+ e1000_pci_clear_mwi(hw);
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ hw->nvm.ops.reload(hw);
+ msec_delay(2);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82542 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82542");
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ mac->ops.clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->revision_id == E1000_REVISION_2) {
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link_82542(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82542(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82542 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_link_82542");
+
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+
+ hw->fc.requested_mode &= ~e1000_fc_tx_pause;
+
+ if (mac->report_tx_early)
+ hw->fc.requested_mode &= ~e1000_fc_rx_pause;
+
+ /*
+ * Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = mac->ops.setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_led_on_82542 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.
+ **/
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82542");
+
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82542 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.
+ **/
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82542");
+
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_82542 - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_82542");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ * e1000_translate_register_82542 - Translate the proper register offset
+ * @reg: e1000 register to be read
+ *
+ * Registers in 82542 are located in different offsets than other adapters
+ * even though they function in the same manner. This function takes in
+ * the name of the register to read and returns the correct offset for
+ * 82542 silicon.
+ **/
+u32 e1000_translate_register_82542(u32 reg)
+{
+ /*
+ * Some of the 82542 registers are located at different
+ * offsets than they are in newer adapters.
+ * Despite the difference in location, the registers
+ * function in the same manner.
+ */
+ switch (reg) {
+ case E1000_RA:
+ reg = 0x00040;
+ break;
+ case E1000_RDTR:
+ reg = 0x00108;
+ break;
+ case E1000_RDBAL(0):
+ reg = 0x00110;
+ break;
+ case E1000_RDBAH(0):
+ reg = 0x00114;
+ break;
+ case E1000_RDLEN(0):
+ reg = 0x00118;
+ break;
+ case E1000_RDH(0):
+ reg = 0x00120;
+ break;
+ case E1000_RDT(0):
+ reg = 0x00128;
+ break;
+ case E1000_RDBAL(1):
+ reg = 0x00138;
+ break;
+ case E1000_RDBAH(1):
+ reg = 0x0013C;
+ break;
+ case E1000_RDLEN(1):
+ reg = 0x00140;
+ break;
+ case E1000_RDH(1):
+ reg = 0x00148;
+ break;
+ case E1000_RDT(1):
+ reg = 0x00150;
+ break;
+ case E1000_FCRTH:
+ reg = 0x00160;
+ break;
+ case E1000_FCRTL:
+ reg = 0x00168;
+ break;
+ case E1000_MTA:
+ reg = 0x00200;
+ break;
+ case E1000_TDBAL(0):
+ reg = 0x00420;
+ break;
+ case E1000_TDBAH(0):
+ reg = 0x00424;
+ break;
+ case E1000_TDLEN(0):
+ reg = 0x00428;
+ break;
+ case E1000_TDH(0):
+ reg = 0x00430;
+ break;
+ case E1000_TDT(0):
+ reg = 0x00438;
+ break;
+ case E1000_TIDV:
+ reg = 0x00440;
+ break;
+ case E1000_VFTA:
+ reg = 0x00600;
+ break;
+ case E1000_TDFH:
+ reg = 0x08010;
+ break;
+ case E1000_TDFT:
+ reg = 0x08018;
+ break;
+ default:
+ break;
+ }
+
+ return reg;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+}
+
+/**
+ * e1000_read_mac_addr_82542 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ **/
+s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82543GC Gigabit Ethernet Controller (Fiber)
+ * 82543GC Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Fiber)
+ * 82544GC Gigabit Ethernet Controller (Copper)
+ * 82544GC Gigabit Ethernet Controller (LOM)
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 data);
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+ u32 value);
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count);
+STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
+
+/**
+ * e1000_init_phy_params_82543 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82543");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.read_reg = (hw->mac.type == e1000_82543)
+ ? e1000_read_phy_reg_82543
+ : e1000_read_phy_reg_m88;
+ phy->ops.reset = (hw->mac.type == e1000_82543)
+ ? e1000_phy_hw_reset_82543
+ : e1000_phy_hw_reset_generic;
+ phy->ops.write_reg = (hw->mac.type == e1000_82543)
+ ? e1000_write_phy_reg_82543
+ : e1000_write_phy_reg_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+
+ /*
+ * The external PHY of the 82543 can be in a funky state.
+ * Resetting helps us read the PHY registers for acquiring
+ * the PHY ID.
+ */
+ if (!e1000_init_phy_disabled_82543(hw)) {
+ ret_val = phy->ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Resetting PHY during init failed.\n");
+ goto out;
+ }
+ msec_delay(20);
+ }
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82543:
+ if (phy->id != M88E1000_E_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ case e1000_82544:
+ if (phy->id != M88E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+
+ DEBUGFUNC("e1000_init_nvm_params_82543");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+ nvm->delay_usec = 50;
+ nvm->address_bits = 6;
+ nvm->opcode_bits = 3;
+
+ /* Function Pointers */
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82543 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82543");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82543;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82543;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82543;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
+ /* check for link */
+ mac->ops.check_for_link =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_check_for_copper_link_82543
+ : e1000_check_for_fiber_link_82543;
+ /* link info */
+ mac->ops.get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_82543;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_82543;
+ mac->ops.led_off = e1000_led_off_82543;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+ /* Set tbi compatibility */
+ if ((hw->mac.type != e1000_82543) ||
+ (hw->phy.media_type == e1000_media_type_fiber))
+ e1000_set_tbi_compatibility_82543(hw, false);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82543 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82543");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82543;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
+ hw->phy.ops.init_params = e1000_init_phy_params_82543;
+}
+
+/**
+ * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of 10-bit Interface (TBI) compatibility
+ * (enabled/disabled).
+ **/
+STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool state = false;
+
+ DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI compatibility
+ *
+ * Enables or disabled 10-bit Interface (TBI) compatibility.
+ **/
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+ DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ if (state)
+ dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+
+out:
+ return;
+}
+
+/**
+ * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
+ * (enabled/disabled).
+ **/
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool state = false;
+
+ DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_sbp_82543 - Set TBI SBP
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI store bad packet
+ *
+ * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ **/
+STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+ DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+ if (state && e1000_tbi_compatibility_enabled_82543(hw))
+ dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+
+ return;
+}
+
+/**
+ * e1000_init_phy_disabled_82543 - Returns init PHY status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of whether PHY initialization is disabled.
+ * True if PHY initialization is disabled else false.
+ **/
+STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool ret_val;
+
+ DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ ret_val = false;
+ goto out;
+ }
+
+ ret_val = dev_spec->init_phy_disabled;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ * @hw: pointer to the HW structure
+ * @stats: Struct containing statistic register values
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ * @max_frame_size: The maximum frame size
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ **/
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats, u32 frame_len,
+ u8 *mac_addr, u32 max_frame_size)
+{
+ if (!(e1000_tbi_sbp_enabled_82543(hw)))
+ goto out;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /*
+ * We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ stats->gorc += frame_len;
+
+ /*
+ * Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if (*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ /*
+ * In this case, the hardware has over counted the number of
+ * oversize frames.
+ */
+ if ((frame_len == max_frame_size) && (stats->roc > 0))
+ stats->roc--;
+
+ /*
+ * Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if (frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if (frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if (frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if (frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if (frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if (frame_len == 1522) {
+ stats->prc1522++;
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_read_phy_reg_82543 - Read PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY at offset and stores the information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format
+ * of an MII read instruction consists of a shift out of 14 bits and
+ * is defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Offset>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = (offset | (hw->phy.addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+ /*
+ * Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82543 - Write PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be written
+ * @data: pointer to the data to be written at offset
+ *
+ * Writes data to the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (u32)data;
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Raise the management data input clock by setting the MDC bit in the control
+ * register.
+ **/
+STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Raise the clock input to the Management Data Clock (by setting the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Lower the management data input clock by clearing the MDC bit in the
+ * control register.
+ **/
+STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Lower the clock input to the Management Data Clock (by clearing the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ * @hw: pointer to the HW structure
+ * @data: data to send to the PHY
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the PHY. So, the value in the
+ * "data" parameter will be shifted out to the PHY one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count)
+{
+ u32 ctrl, mask;
+
+ /*
+ * We need to shift "count" number of bits out to the PHY. So, the
+ * value in the "data" parameter will be shifted out to the PHY one
+ * bit at a time. In order to do this, "data" must be broken down
+ * into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /*
+ * A "1" is shifted out to the PHY by setting the MDIO bit to
+ * "1" and then raising and lowering the Management Data Clock.
+ * A "0" is shifted out to the PHY by setting the MDIO bit to
+ * "0" and then raising and lowering the clock.
+ */
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(10);
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ mask >>= 1;
+ }
+}
+
+/**
+ * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ * @hw: pointer to the HW structure
+ *
+ * In order to read a register from the PHY, we need to shift 18 bits
+ * in from the PHY. Bits are "shifted in" by raising the clock input to
+ * the PHY (setting the MDC bit), and then reading the value of the data out
+ * MDIO bit.
+ **/
+STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ u16 data = 0;
+ u8 i;
+
+ /*
+ * In order to read a register from the PHY, we need to shift in a
+ * total of 18 bits from the PHY. The first two bit (turnaround)
+ * times are used to avoid contention on the MDIO pin when a read
+ * operation is performed. These two bits are ignored by us and
+ * thrown away. Bits are "shifted in" by raising the input to the
+ * Management Data Clock (setting the MDC bit) and then reading the
+ * value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+ * input.
+ */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Raise and lower the clock before reading in the data. This accounts
+ * for the turnaround bits. The first clock occurred when we clocked
+ * out the last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data <<= 1;
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ return data;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the function to force speed and duplex for the m88 PHY, and
+ * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ * then call the function for polarity reversal workaround.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+ ret_val = e1000_phy_force_speed_duplex_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
+ E1000_ALL_10_SPEED))
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ * @hw: pointer to the HW structure
+ *
+ * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ * inadvertently. To workaround the issue, we disable the transmitter on
+ * the PHY until we have established the link partner's link parameters.
+ **/
+STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg;
+ u16 i;
+ bool link;
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ /* Polarity reversal workaround for forced 10F/10H links. */
+
+ /* Disable the transmitter on the PHY */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * This loop will early-out if the NO link condition has been met.
+ * In other words, DO NOT use e1000_phy_has_link_generic() here.
+ */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
+ break;
+ msec_delay_irq(100);
+ }
+
+ /* Recommended delay time after link has been lost */
+ msec_delay_irq(1000);
+
+ /* Now we will re-enable the transmitter on the PHY */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+ if (ret_val)
+ goto out;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82543 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY_RESET_DIR bit in the extended device control register
+ * to put the PHY into a reset and waits for completion. Once the reset
+ * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ * of reset.
+ **/
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+ /*
+ * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset...
+ */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* ...then take it out of reset. */
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ if (!(hw->phy.ops.get_cfg_done))
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.get_cfg_done(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82543 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82543");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_set_tbi_sbp_82543(hw, false);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+ if (hw->mac.type == e1000_82543) {
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ } else {
+ /*
+ * The 82544 can't ACK the 64-bit write when issuing the
+ * reset, so use IO-mapping as a workaround.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ }
+
+ /*
+ * After MAC reset, force reload of NVM to restore power-on
+ * settings to device.
+ */
+ hw->nvm.ops.reload(hw);
+ msec_delay(2);
+
+ /* Masking off and clearing any pending interrupts */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82543 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ u32 ctrl;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82543");
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82543(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82543 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM to determine the initial polarity value and write the
+ * extended device control register with the information before calling
+ * the generic setup link function, which does the following:
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_link_82543");
+
+ /*
+ * Take the 4 bits from NVM word 0xF that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before phy setup.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+ NVM_SWDPIO_EXT_SHIFT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ ret_val = e1000_setup_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82543 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+ /*
+ * With 82543, we need to force speed and duplex on the MAC
+ * equal to what the PHY speed and duplex configuration is.
+ * In addition, we need to perform a hardware reset on the
+ * PHY to take it out of reset.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ }
+
+ /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ /* Config the MAC and PHY after link is up */
+ if (hw->mac.type == e1000_82544) {
+ hw->mac.ops.config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val)
+ goto out;
+ }
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_link_82543 - Setup link for fiber
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber links. Upon
+ * successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW definable pin 1 is cleared when the
+ * optics detect a signal. If we have a signal, then poll for a
+ * "Link-Up" indication.
+ */
+ if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ else
+ DEBUGOUT("No signal detected\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_copper_link_82543 - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks the phy for link, if link exists, do the following:
+ * - check for downshift
+ * - do polarity workaround (if necessary)
+ * - configure collision distance
+ * - configure flow control after link up
+ * - configure tbi compatibility
+ **/
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 icr, rctl;
+ s32 ret_val;
+ u16 speed, duplex;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = false;
+
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we can return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ /*
+ * If speed and duplex are forced to 10H or 10F, then we will
+ * implement the polarity reversal workaround. We disable
+ * interrupts first, and upon returning, place the devices
+ * interrupt state to its previous value except for the link
+ * status change interrupt which will happened due to the
+ * execution of this workaround.
+ */
+ if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+ E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+ }
+
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if (mac->type == e1000_82544)
+ hw->mac.ops.config_collision_dist(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+ /*
+ * At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * partner capability register. We use the link speed to determine if
+ * TBI compatibility needs to be turned on or off. If the link is not
+ * at gigabit speed, then TBI compatibility is not needed. If we are
+ * at gigabit speed, we turn on TBI compatibility.
+ */
+ if (e1000_tbi_compatibility_enabled_82543(hw)) {
+ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
+ /*
+ * If link speed is not set to gigabit speed,
+ * we do not need to enable TBI compatibility.
+ */
+ if (e1000_tbi_sbp_enabled_82543(hw)) {
+ /*
+ * If we previously were in the mode,
+ * turn it off.
+ */
+ e1000_set_tbi_sbp_82543(hw, false);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ } else {
+ /*
+ * If TBI compatibility is was previously off,
+ * turn it on. For compatibility with a TBI link
+ * partner, we will store bad packets. Some
+ * frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if (!e1000_tbi_sbp_enabled_82543(hw)) {
+ e1000_set_tbi_sbp_82543(hw, true);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw, ctrl, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+ if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (!mac->autoneg_failed) {
+ mac->autoneg_failed = true;
+ ret_val = 0;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = true;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ * @hw: pointer to the HW structure
+ *
+ * For the 82543 silicon, we need to set the MAC to match the settings
+ * of the PHY, even if the PHY is auto-negotiating.
+ **/
+STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ /* Set the bits to force speed and duplex */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /*
+ * Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ ctrl &= ~E1000_CTRL_FD;
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ /*
+ * Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_vfta_82543 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table.
+ **/
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ u32 temp;
+
+ DEBUGFUNC("e1000_write_vfta_82543");
+
+ if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ e1000_write_vfta_generic(hw, offset, value);
+ }
+}
+
+/**
+ * e1000_led_on_82543 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.
+ **/
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Clear SW-definable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Fiber 82544 and all 82543 use this method */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82543 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.
+ **/
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Set SW-definable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82543_H_
+#define _E1000_82543_H_
+
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_PREAMBLE_SIZE 32
+#define PHY_SOF 0x1
+#define PHY_OP_READ 0x2
+#define PHY_OP_WRITE 0x1
+#define PHY_TURNAROUND 0x2
+
+#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define TBI_SBP_ENABLED 0x2
+
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats,
+ u32 frame_len, u8 *mac_addr,
+ u32 max_frame_size);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+ bool state);
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 82571EB Gigabit Ethernet Controller
+ * 82571EB Gigabit Ethernet Controller (Copper)
+ * 82571EB Gigabit Ethernet Controller (Fiber)
+ * 82571EB Dual Port Gigabit Mezzanine Adapter
+ * 82571EB Quad Port Gigabit Mezzanine Adapter
+ * 82571PT Gigabit PT Quad Port Server ExpressModule
+ * 82572EI Gigabit Ethernet Controller (Copper)
+ * 82572EI Gigabit Ethernet Controller (Fiber)
+ * 82572EI Gigabit Ethernet Controller
+ * 82573V Gigabit Ethernet Controller (Copper)
+ * 82573E Gigabit Ethernet Controller (Copper)
+ * 82573L Gigabit Ethernet Controller
+ * 82574L Gigabit Network Connection
+ * 82583V Gigabit Network Connection
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw);
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
+STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
+STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
+ bool active);
+STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82571 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_params_82571");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ return E1000_SUCCESS;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82571;
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ phy->type = e1000_phy_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
+ break;
+ case e1000_82573:
+ phy->type = e1000_phy_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
+
+ phy->type = e1000_phy_bm;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_bm2;
+ phy->ops.write_reg = e1000_write_phy_reg_bm2;
+ phy->ops.acquire = e1000_get_hw_semaphore_82574;
+ phy->ops.release = e1000_put_hw_semaphore_82574;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+
+ /* This can only be done after all function pointers are setup. */
+ ret_val = e1000_get_phy_id_82571(hw);
+ if (ret_val) {
+ DEBUGOUT("Error getting PHY ID\n");
+ return ret_val;
+ }
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ if (phy->id != IGP01E1000_I_PHY_ID)
+ ret_val = -E1000_ERR_PHY;
+ break;
+ case e1000_82573:
+ if (phy->id != M88E1111_I_PHY_ID)
+ ret_val = -E1000_ERR_PHY;
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ if (phy->id != BME1000_E_PHY_ID_R2)
+ ret_val = -E1000_ERR_PHY;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82571");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (((eecd >> 15) & 0x3) == 0x3) {
+ nvm->type = e1000_nvm_flash_hw;
+ nvm->word_size = 2048;
+ /* Autonomous Flash update bit must be cleared due
+ * to Flash update issue.
+ */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ break;
+ }
+ /* Fall Through */
+ default:
+ nvm->type = e1000_nvm_eeprom_spi;
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ /* Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+ break;
+ }
+
+ /* Function Pointers */
+ switch (hw->mac.type) {
+ case e1000_82574:
+ case e1000_82583:
+ nvm->ops.acquire = e1000_get_hw_semaphore_82574;
+ nvm->ops.release = e1000_put_hw_semaphore_82574;
+ break;
+ default:
+ nvm->ops.acquire = e1000_acquire_nvm_82571;
+ nvm->ops.release = e1000_release_nvm_82571;
+ break;
+ }
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.update = e1000_update_nvm_checksum_82571;
+ nvm->ops.validate = e1000_validate_nvm_checksum_82571;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82571;
+ nvm->ops.write = e1000_write_nvm_82571;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82571 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 swsm = 0;
+ u32 swsm2 = 0;
+ bool force_clear_smbi = false;
+
+ DEBUGFUNC("e1000_init_mac_params_82571");
+
+ /* Set media type and media-dependent function pointers */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_82571;
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_fiber_serdes_generic;
+ break;
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82572EI_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_82571;
+ mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_fiber_serdes_generic;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ mac->ops.setup_physical_interface =
+ e1000_setup_copper_link_82571;
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_copper_generic;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+ /* Adaptive IFS supported */
+ mac->adaptive_ifs = true;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82571;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82571;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82571;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_82571;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn off LED */
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+
+ /* MAC-specific function pointers */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.blink_led = e1000_blink_led_generic;
+
+ /* FWSM register */
+ mac->has_fwsm = true;
+ /* ARC supported; valid only if manageability features are
+ * enabled.
+ */
+ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_MODE_MASK);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
+ mac->ops.led_on = e1000_led_on_82574;
+ break;
+ default:
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.blink_led = e1000_blink_led_generic;
+
+ /* FWSM register */
+ mac->has_fwsm = true;
+ break;
+ }
+
+ /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
+ * first NVM or PHY access. This should be done for single-port
+ * devices, and for one port only on dual-port devices so that
+ * for those devices we can still use the SMBI lock to synchronize
+ * inter-port accesses to the PHY & NVM.
+ */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
+
+ if (!(swsm2 & E1000_SWSM2_LOCK)) {
+ /* Only do this for the first interface on this card */
+ E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
+ E1000_SWSM2_LOCK);
+ force_clear_smbi = true;
+ } else {
+ force_clear_smbi = false;
+ }
+ break;
+ default:
+ force_clear_smbi = true;
+ break;
+ }
+
+ if (force_clear_smbi) {
+ /* Make sure SWSM.SMBI is clear */
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (swsm & E1000_SWSM_SMBI) {
+ /* This bit should not be set on a first interface, and
+ * indicates that the bootagent or EFI code has
+ * improperly left this bit enabled
+ */
+ DEBUGOUT("Please update your 82571 Bootagent\n");
+ }
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
+ }
+
+ /* Initialze device specific counter of SMBI acquisition timeouts. */
+ hw->dev_spec._82571.smb_counter = 0;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82571 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82571");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82571;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
+ hw->phy.ops.init_params = e1000_init_phy_params_82571;
+}
+
+/**
+ * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_id = 0;
+
+ DEBUGFUNC("e1000_get_phy_id_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* The 82571 firmware may still be configuring the PHY.
+ * In this case, we cannot access the PHY until the
+ * configuration is done. So we explicitly set the
+ * PHY ID.
+ */
+ phy->id = IGP01E1000_I_PHY_ID;
+ break;
+ case e1000_82573:
+ return e1000_get_phy_id(hw);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id |= (u32)(phy_id);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 sw_timeout = hw->nvm.word_size + 1;
+ s32 fw_timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+ /* If we have timedout 3 times on trying to acquire
+ * the inter-port SMBI semaphore, there is old code
+ * operating on the other port, and it is not
+ * releasing SMBI. Modify the number of times that
+ * we try for the semaphore to interwork with this
+ * older code.
+ */
+ if (hw->dev_spec._82571.smb_counter > 2)
+ sw_timeout = 1;
+
+ /* Get the SW semaphore */
+ while (i < sw_timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == sw_timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ hw->dev_spec._82571.smb_counter++;
+ }
+ /* Get the FW semaphore. */
+ for (i = 0; i < fw_timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == fw_timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_82571(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ return -E1000_ERR_NVM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore during reset.
+ *
+ **/
+STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82573");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ do {
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ break;
+
+ msec_delay(2);
+ i++;
+ } while (i < MDIO_OWNERSHIP_TIMEOUT);
+
+ if (i == MDIO_OWNERSHIP_TIMEOUT) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_82573(hw);
+ DEBUGOUT("Driver can't access the PHY\n");
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_put_hw_semaphore_82573 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used during reset.
+ *
+ **/
+STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_82573");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/**
+ * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM.
+ *
+ **/
+STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82574");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
+ ret_val = e1000_get_hw_semaphore_82573(hw);
+ if (ret_val)
+ E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_82574 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ *
+ **/
+STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_put_hw_semaphore_82574");
+
+ e1000_put_hw_semaphore_82573(hw);
+ E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+}
+
+/**
+ * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D0 state according to the active flag.
+ * LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+ u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82574");
+
+ if (active)
+ data |= E1000_PHY_CTRL_D0A_LPLU;
+ else
+ data &= ~E1000_PHY_CTRL_D0A_LPLU;
+
+ E1000_WRITE_REG(hw, E1000_POEMB, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * when active is true, else clear lplu for D3. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+ u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82574");
+
+ if (!active) {
+ data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= E1000_PHY_CTRL_NOND0A_LPLU;
+ }
+
+ E1000_WRITE_REG(hw, E1000_POEMB, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ * Then for non-82573 hardware, set the EEPROM access request bit and wait
+ * for EEPROM access grant bit. If the access grant bit is not set, release
+ * hardware semaphore.
+ **/
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82571");
+
+ ret_val = e1000_get_hw_semaphore_82571(hw);
+ if (ret_val)
+ return ret_val;
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ break;
+ default:
+ ret_val = e1000_acquire_nvm_generic(hw);
+ break;
+ }
+
+ if (ret_val)
+ e1000_put_hw_semaphore_82571(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82571");
+
+ e1000_release_nvm_generic(hw);
+ e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_nvm_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+ break;
+ default:
+ ret_val = -E1000_ERR_NVM;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ u32 eecd;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* If our nvm is an EEPROM, then we're done
+ * otherwise, commit the checksum to the flash NVM.
+ */
+ if (hw->nvm.type != e1000_nvm_flash_hw)
+ return E1000_SUCCESS;
+
+ /* Check for pending operations. */
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES)
+ return -E1000_ERR_NVM;
+
+ /* Reset the firmware if using STM opcode. */
+ if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+ /* The enabling of and the actual reset must be done
+ * in two write cycles.
+ */
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+ }
+
+ /* Commit the write to flash */
+ eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES)
+ return -E1000_ERR_NVM;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+ if (hw->nvm.type == e1000_nvm_flash_hw)
+ e1000_fix_nvm_checksum_82571(hw);
+
+ return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * After checking for invalid values, poll the EEPROM to ensure the previous
+ * command has completed before trying to write the next word. After write
+ * poll for completion.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eewr = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ for (i = 0; i < words; i++) {
+ eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
+ ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
+ E1000_NVM_RW_REG_START);
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+
+ E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_82571 - Poll for configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Reads the management control register for the config done bit to be set.
+ **/
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+
+ DEBUGFUNC("e1000_get_cfg_done_82571");
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
+ E1000_NVM_CFG_DONE_PORT_0)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ return -E1000_ERR_RESET;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When activating LPLU
+ * this function also disables smart speed and vice versa. LPLU will not be
+ * activated unless the device autonegotiation advertisement meets standards
+ * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
+ * pointer entry point only called by PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+ if (!(phy->ops.read_reg))
+ return E1000_SUCCESS;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_82571 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+ u32 ctrl, ctrl_ext, eecd, tctl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82571");
+
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_EN;
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Must acquire the MDIO ownership before MAC reset.
+ * Ownership defaults to firmware after a reset.
+ */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ ret_val = e1000_get_hw_semaphore_82573(hw);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = e1000_get_hw_semaphore_82574(hw);
+ break;
+ default:
+ break;
+ }
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ /* Must release MDIO ownership and mutex after MAC reset. */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ /* Release mutex only if the hw semaphore is acquired */
+ if (!ret_val)
+ e1000_put_hw_semaphore_82573(hw);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ /* Release mutex only if the hw semaphore is acquired */
+ if (!ret_val)
+ e1000_put_hw_semaphore_82574(hw);
+ break;
+ default:
+ break;
+ }
+
+ if (hw->nvm.type == e1000_nvm_flash_hw) {
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ return ret_val;
+
+ /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ * Need to wait for Phy configuration completion before accessing
+ * NVM and Phy.
+ */
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* REQ and GNT bits need to be cleared when using AUTO_RD
+ * to access the EEPROM.
+ */
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ break;
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ msec_delay(25);
+ break;
+ default:
+ break;
+ }
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ if (hw->mac.type == e1000_82571) {
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ e1000_set_laa_state_82571(hw, true);
+ }
+
+ /* Reinitialize the 82571 serdes link state machine */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes)
+ hw->mac.serdes_link_state = e1000_serdes_link_down;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw_82571 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82571");
+
+ e1000_initialize_hw_bits_82571(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address.
+ * If, however, a locally administered address was assigned to the
+ * 82571, we must reserve a RAR for it to work around an issue where
+ * resetting one port will reload the MAC on the other port.
+ */
+ if (e1000_get_laa_state_82571(hw))
+ rar_count--;
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ switch (mac->type) {
+ case e1000_82573:
+ e1000_enable_tx_pkt_filtering_generic(hw);
+ /* fall through */
+ case e1000_82574:
+ case e1000_82583:
+ reg_data = E1000_READ_REG(hw, E1000_GCR);
+ reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+ break;
+ default:
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+ break;
+ }
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82571(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ reg |= (1 << 26);
+ break;
+ default:
+ break;
+ }
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg &= ~((1 << 29) | (1 << 30));
+ reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Device Control */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~(1 << 29);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Extended Device Control */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~(1 << 23);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ break;
+ default:
+ break;
+ }
+
+ if (hw->mac.type == e1000_82571) {
+ reg = E1000_READ_REG(hw, E1000_PBA_ECC);
+ reg |= E1000_PBA_ECC_CORR_EN;
+ E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
+ }
+
+ /* Workaround for hardware errata.
+ * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
+ */
+ if ((hw->mac.type == e1000_82571) ||
+ (hw->mac.type == e1000_82572)) {
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ }
+
+ /* Disable IPv6 extension header parsing because some malformed
+ * IPv6 headers can hang the Rx.
+ */
+ if (hw->mac.type <= e1000_82573) {
+ reg = E1000_READ_REG(hw, E1000_RFCTL);
+ reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+ E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+ }
+
+ /* PCI-Ex Control Registers */
+ switch (hw->mac.type) {
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_GCR);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_GCR, reg);
+
+ /* Workaround for hardware errata.
+ * apply workaround for hardware errata documented in errata
+ * docs Fixes issue where some error prone or unreliable PCIe
+ * completions are occurring, particularly with ASPM enabled.
+ * Without fix, issue can cause Tx timeouts.
+ */
+ reg = E1000_READ_REG(hw, E1000_GCR2);
+ reg |= 1;
+ E1000_WRITE_REG(hw, E1000_GCR2, reg);
+ break;
+ default:
+ break;
+ }
+
+ return;
+}
+
+/**
+ * e1000_clear_vfta_82571 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+ u32 offset;
+ u32 vfta_value = 0;
+ u32 vfta_offset = 0;
+ u32 vfta_bit_in_reg = 0;
+
+ DEBUGFUNC("e1000_clear_vfta_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (hw->mng_cookie.vlan_id != 0) {
+ /* The VFTA is a 4096b bit-field, each identifying
+ * a single VLAN ID. The following operations
+ * determine which 32b entry (i.e. offset) into the
+ * array we want to set the VLAN ID (i.e. bit) of
+ * the manageability unit.
+ */
+ vfta_offset = (hw->mng_cookie.vlan_id >>
+ E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK;
+ vfta_bit_in_reg =
+ 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ }
+ break;
+ default:
+ break;
+ }
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /* If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of
+ * the manageability unit.
+ */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_check_mng_mode_82574 - Check manageability is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Reads the NVM Initialization Control Word 2 and returns true
+ * (>0) if any manageability is enabled, else false (0).
+ **/
+STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
+{
+ u16 data;
+
+ DEBUGFUNC("e1000_check_mng_mode_82574");
+
+ hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+ return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
+}
+
+/**
+ * e1000_led_on_82574 - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ u32 i;
+
+ DEBUGFUNC("e1000_led_on_82574");
+
+ ctrl = hw->mac.ledctl_mode2;
+ if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
+ /* If no link, then turn LED on by setting the invert bit
+ * for each LED that's "on" (0x0E) in ledctl_mode2.
+ */
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
+ }
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_phy_82574 - check 82574 phy hung state
+ * @hw: pointer to the HW structure
+ *
+ * Returns whether phy is hung or not
+ **/
+bool e1000_check_phy_82574(struct e1000_hw *hw)
+{
+ u16 status_1kbt = 0;
+ u16 receive_errors = 0;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_check_phy_82574");
+
+ /* Read PHY Receive Error counter first, if its is max - all F's then
+ * read the Base1000T status register If both are max then PHY is hung.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
+ &receive_errors);
+ if (ret_val)
+ return false;
+ if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
+ ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
+ &status_1kbt);
+ if (ret_val)
+ return false;
+ if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
+ E1000_IDLE_ERROR_COUNT_MASK)
+ return true;
+ }
+
+ return false;
+}
+
+
+/**
+ * e1000_setup_link_82571 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_link_82571");
+
+ /* 82573 does not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (hw->fc.requested_mode == e1000_fc_default)
+ hw->fc.requested_mode = e1000_fc_full;
+ break;
+ default:
+ break;
+ }
+
+ return e1000_setup_link_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_82571 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_82571");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ case e1000_phy_bm:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_2:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ return ret_val;
+
+ return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes links.
+ * Upon successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* If SerDes loopback mode is entered, there is no form
+ * of reset to take the adapter out of that mode. So we
+ * have to explicitly take the adapter out of loopback
+ * mode. This prevents drivers from twiddling their thumbs
+ * if another tool failed to take it out of loopback mode.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL,
+ E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+ break;
+ default:
+ break;
+ }
+
+ return e1000_setup_fiber_serdes_link_generic(hw);
+}
+
+/**
+ * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Reports the link state as up or down.
+ *
+ * If autonegotiation is supported by the link partner, the link state is
+ * determined by the result of autonegotiation. This is the most likely case.
+ * If autonegotiation is not supported by the link partner, and the link
+ * has a valid signal, force the link up.
+ *
+ * The link state is represented internally here by 4 states:
+ *
+ * 1) down
+ * 2) autoneg_progress
+ * 3) autoneg_complete (the link successfully autonegotiated)
+ * 4) forced_up (the link has been forced up, it did not autonegotiate)
+ *
+ **/
+STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ u32 txcw;
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_82571");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ E1000_READ_REG(hw, E1000_RXCW);
+ /* SYNCH bit and IV bit are sticky */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
+ /* Receiver is synchronized with no invalid bits. */
+ switch (mac->serdes_link_state) {
+ case e1000_serdes_link_autoneg_complete:
+ if (!(status & E1000_STATUS_LU)) {
+ /* We have lost link, retry autoneg before
+ * reporting link failure
+ */
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = false;
+ DEBUGOUT("AN_UP -> AN_PROG\n");
+ } else {
+ mac->serdes_has_link = true;
+ }
+ break;
+
+ case e1000_serdes_link_forced_up:
+ /* If we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable
+ * forced link in the Device Control register in an
+ * attempt to auto-negotiate with our link partner.
+ */
+ if (rxcw & E1000_RXCW_C) {
+ /* Enable autoneg, and unforce link up */
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL,
+ (ctrl & ~E1000_CTRL_SLU));
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = false;
+ DEBUGOUT("FORCED_UP -> AN_PROG\n");
+ } else {
+ mac->serdes_has_link = true;
+ }
+ break;
+
+ case e1000_serdes_link_autoneg_progress:
+ if (rxcw & E1000_RXCW_C) {
+ /* We received /C/ ordered sets, meaning the
+ * link partner has autonegotiated, and we can
+ * trust the Link Up (LU) status bit.
+ */
+ if (status & E1000_STATUS_LU) {
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_complete;
+ DEBUGOUT("AN_PROG -> AN_UP\n");
+ mac->serdes_has_link = true;
+ } else {
+ /* Autoneg completed, but failed. */
+ mac->serdes_link_state =
+ e1000_serdes_link_down;
+ DEBUGOUT("AN_PROG -> DOWN\n");
+ }
+ } else {
+ /* The link partner did not autoneg.
+ * Force link up and full duplex, and change
+ * state to forced.
+ */
+ E1000_WRITE_REG(hw, E1000_TXCW,
+ (mac->txcw & ~E1000_TXCW_ANE));
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after link up. */
+ ret_val =
+ e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error config flow control\n");
+ break;
+ }
+ mac->serdes_link_state =
+ e1000_serdes_link_forced_up;
+ mac->serdes_has_link = true;
+ DEBUGOUT("AN_PROG -> FORCED_UP\n");
+ }
+ break;
+
+ case e1000_serdes_link_down:
+ default:
+ /* The link was down but the receiver has now gained
+ * valid sync, so lets see if we can bring the link
+ * up.
+ */
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
+ ~E1000_CTRL_SLU));
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = false;
+ DEBUGOUT("DOWN -> AN_PROG\n");
+ break;
+ }
+ } else {
+ if (!(rxcw & E1000_RXCW_SYNCH)) {
+ mac->serdes_has_link = false;
+ mac->serdes_link_state = e1000_serdes_link_down;
+ DEBUGOUT("ANYSTATE -> DOWN\n");
+ } else {
+ /* Check several times, if SYNCH bit and CONFIG
+ * bit both are consistently 1 then simply ignore
+ * the IV bit and restart Autoneg
+ */
+ for (i = 0; i < AN_RETRY_COUNT; i++) {
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if ((rxcw & E1000_RXCW_SYNCH) &&
+ (rxcw & E1000_RXCW_C))
+ continue;
+
+ if (rxcw & E1000_RXCW_IV) {
+ mac->serdes_has_link = false;
+ mac->serdes_link_state =
+ e1000_serdes_link_down;
+ DEBUGOUT("ANYSTATE -> DOWN\n");
+ break;
+ }
+ }
+
+ if (i == AN_RETRY_COUNT) {
+ txcw = E1000_READ_REG(hw, E1000_TXCW);
+ txcw |= E1000_TXCW_ANE;
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = false;
+ DEBUGOUT("ANYSTATE -> AN_PROG\n");
+ }
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_82571 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82571");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (*data == ID_LED_RESERVED_F746)
+ *data = ID_LED_DEFAULT_82573;
+ break;
+ default:
+ if (*data == ID_LED_RESERVED_0000 ||
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_laa_state_82571 - Get locally administered address state
+ * @hw: pointer to the HW structure
+ *
+ * Retrieve and return the current locally administered address state.
+ **/
+bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ return false;
+
+ return hw->dev_spec._82571.laa_is_present;
+}
+
+/**
+ * e1000_set_laa_state_82571 - Set locally administered address state
+ * @hw: pointer to the HW structure
+ * @state: enable/disable locally administered address
+ *
+ * Enable/Disable the current locally administered address state.
+ **/
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+ DEBUGFUNC("e1000_set_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ return;
+
+ hw->dev_spec._82571.laa_is_present = state;
+
+ /* If workaround is activated... */
+ if (state)
+ /* Hold a copy of the LAA in RAR[14] This is done so that
+ * between the time RAR[0] gets clobbered and the time it
+ * gets fixed, the actual LAA is in one of the RARs and no
+ * incoming packets directed to this port are dropped.
+ * Eventually the LAA will be in RAR[0] and RAR[14].
+ */
+ hw->mac.ops.rar_set(hw, hw->mac.addr,
+ hw->mac.rar_entry_count - 1);
+ return;
+}
+
+/**
+ * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Verifies that the EEPROM has completed the update. After updating the
+ * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
+ * the checksum fix is not implemented, we need to set the bit and update
+ * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
+ * we need to return bad checksum.
+ **/
+STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+ if (nvm->type != e1000_nvm_flash_hw)
+ return E1000_SUCCESS;
+
+ /* Check bit 4 of word 10h. If it is 0, firmware is done updating
+ * 10h-12h. Checksum may need to be fixed.
+ */
+ ret_val = nvm->ops.read(hw, 0x10, 1, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (!(data & 0x10)) {
+ /* Read 0x23 and check bit 15. This bit is a 1
+ * when the checksum has already been fixed. If
+ * the checksum is still wrong and this bit is a
+ * 1, we need to return bad checksum. Otherwise,
+ * we need to set this bit to a 1 and update the
+ * checksum.
+ */
+ ret_val = nvm->ops.read(hw, 0x23, 1, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (!(data & 0x8000)) {
+ data |= 0x8000;
+ ret_val = nvm->ops.write(hw, 0x23, 1, &data);
+ if (ret_val)
+ return ret_val;
+ ret_val = nvm->ops.update(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_read_mac_addr_82571 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_read_mac_addr_82571");
+
+ if (hw->mac.type == e1000_82571) {
+ s32 ret_val;
+
+ /* If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_mac_info *mac = &hw->mac;
+
+ if (!phy->ops.check_reset_block)
+ return;
+
+ /* If the management interface is not enabled, then power down */
+ if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82571_H_
+#define _E1000_82571_H_
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_ON2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
+
+/* Intr Throttling - RW */
+#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n)))
+
+#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAC_MASK_82574 0x01F00000
+
+#define E1000_IVAR_INT_ALLOC_VALID 0x8
+
+/* Manageability Operation Mode mask */
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000
+
+#define E1000_BASE1000T_STATUS 10
+#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
+#define E1000_RECEIVE_ERROR_COUNTER 21
+#define E1000_RECEIVE_ERROR_MAX 0xFFFF
+bool e1000_check_phy_82574(struct e1000_hw *hw);
+bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82575EB Gigabit Network Connection
+ * 82575EB Gigabit Backplane Connection
+ * 82575GB Gigabit Network Connection
+ * 82576 Gigabit Network Connection
+ * 82576 Quad Port Gigabit Mezzanine Adapter
+ * 82580 Gigabit Network Connection
+ * I350 Gigabit Network Connection
+ */
+
+#include "e1000_api.h"
+#include "e1000_i210.h"
+
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw);
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw);
+STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 data);
+STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw);
+STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
+STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
+STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
+STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
+STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw);
+
+STATIC void e1000_i2c_start(struct e1000_hw *hw);
+STATIC void e1000_i2c_stop(struct e1000_hw *hw);
+STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
+STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
+STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw);
+STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
+STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
+STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
+STATIC bool e1000_get_i2c_data(u32 *i2cctl);
+
+STATIC const u16 e1000_82580_rxpbs_table[] = {
+ 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
+#define E1000_82580_RXPBS_TABLE_SIZE \
+ (sizeof(e1000_82580_rxpbs_table) / \
+ sizeof(e1000_82580_rxpbs_table[0]))
+
+
+/**
+ * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
+ * @hw: pointer to the HW structure
+ *
+ * Called to determine if the I2C pins are being used for I2C or as an
+ * external MDIO interface since the two options are mutually exclusive.
+ **/
+STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
+{
+ u32 reg = 0;
+ bool ext_mdio = false;
+
+ DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
+
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ reg = E1000_READ_REG(hw, E1000_MDIC);
+ ext_mdio = !!(reg & E1000_MDIC_DEST);
+ break;
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i354:
+ case e1000_i210:
+ case e1000_i211:
+ reg = E1000_READ_REG(hw, E1000_MDICNFG);
+ ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
+ break;
+ default:
+ break;
+ }
+ return ext_mdio;
+}
+
+/**
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
+ phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ }
+
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82575;
+
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_phy_82575;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
+ phy->ops.release = e1000_release_phy_82575;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ if (e1000_sgmii_active_82575(hw)) {
+ phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_reset_mdicnfg_82580(hw);
+
+ if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
+ phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+ phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
+ } else {
+ switch (hw->mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i354:
+ phy->ops.read_reg = e1000_read_phy_reg_82580;
+ phy->ops.write_reg = e1000_write_phy_reg_82580;
+ break;
+ case e1000_i210:
+ case e1000_i211:
+ phy->ops.read_reg = e1000_read_phy_reg_gs40g;
+ phy->ops.write_reg = e1000_write_phy_reg_gs40g;
+ break;
+ default:
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ }
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ if (phy->id == I347AT4_E_PHY_ID ||
+ phy->id == M88E1112_E_PHY_ID ||
+ phy->id == M88E1340M_E_PHY_ID)
+ phy->ops.get_cable_length =
+ e1000_get_cable_length_m88_gen2;
+ else if (phy->id == M88E1543_E_PHY_ID ||
+ phy->id == M88E1512_E_PHY_ID)
+ phy->ops.get_cable_length =
+ e1000_get_cable_length_m88_gen2;
+ else
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ /* Check if this PHY is confgured for media swap. */
+ if (phy->id == M88E1112_E_PHY_ID) {
+ u16 data;
+
+ ret_val = phy->ops.write_reg(hw,
+ E1000_M88E1112_PAGE_ADDR,
+ 2);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw,
+ E1000_M88E1112_MAC_CTRL_1,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
+ E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
+ if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
+ data == E1000_M88E1112_AUTO_COPPER_BASEX)
+ hw->mac.ops.check_for_link =
+ e1000_check_for_link_media_swap;
+ }
+ if (phy->id == M88E1512_E_PHY_ID) {
+ ret_val = e1000_initialize_M88E1512_phy(hw);
+ if (ret_val)
+ goto out;
+ }
+ break;
+ case IGP03E1000_E_PHY_ID:
+ case IGP04E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ break;
+ case I82580_I_PHY_ID:
+ case I350_I_PHY_ID:
+ phy->type = e1000_phy_82580;
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex =
+ e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ break;
+ case I210_I_PHY_ID:
+ phy->type = e1000_phy_i210;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* Just in case size is out of range, cap it to the largest
+ * EEPROM size supported
+ */
+ if (size > 15)
+ size = 15;
+
+ nvm->word_size = 1 << size;
+ if (hw->mac.type < e1000_i210) {
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
+ 16 : 8;
+ break;
+ }
+ if (nvm->word_size == (1 << 15))
+ nvm->page_size = 128;
+
+ nvm->type = e1000_nvm_eeprom_spi;
+ } else {
+ nvm->type = e1000_nvm_flash_hw;
+ }
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_82575;
+ nvm->ops.release = e1000_release_nvm_82575;
+ if (nvm->word_size < (1 << 15))
+ nvm->ops.read = e1000_read_nvm_eerd;
+ else
+ nvm->ops.read = e1000_read_nvm_spi;
+
+ nvm->ops.write = e1000_write_nvm_spi;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82575;
+
+ /* override generic family function pointers for specific descendants */
+ switch (hw->mac.type) {
+ case e1000_82580:
+ nvm->ops.validate = e1000_validate_nvm_checksum_82580;
+ nvm->ops.update = e1000_update_nvm_checksum_82580;
+ break;
+ case e1000_i350:
+ case e1000_i354:
+ nvm->ops.validate = e1000_validate_nvm_checksum_i350;
+ nvm->ops.update = e1000_update_nvm_checksum_i350;
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+
+ DEBUGFUNC("e1000_init_mac_params_82575");
+
+ /* Derives media type */
+ e1000_get_media_type_82575(hw);
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set uta register count */
+ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ if (mac->type == e1000_82576)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+ if (mac->type == e1000_82580)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ if (mac->type == e1000_i350 || mac->type == e1000_i354)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
+
+ /* Enable EEE default settings for EEE supported devices */
+ if (mac->type >= e1000_i350)
+ dev_spec->eee_disable = false;
+
+ /* Allow a single clear of the SW semaphore on I210 and newer */
+ if (mac->type >= e1000_i210)
+ dev_spec->clear_semaphore_once = true;
+
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+ /* FWSM register */
+ mac->has_fwsm = true;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ if (mac->type >= e1000_82580)
+ mac->ops.reset_hw = e1000_reset_hw_82580;
+ else
+ mac->ops.reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
+ mac->ops.init_hw = e1000_init_hw_i210;
+ else
+ mac->ops.init_hw = e1000_init_hw_82575;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
+ /* physical interface shutdown */
+ mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
+ /* physical interface power up */
+ mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82575;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
+ /* configure collision distance */
+ mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_i350;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_i350;
+ } else {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ }
+ if (hw->mac.type >= e1000_82580)
+ mac->ops.validate_mdi_setting =
+ e1000_validate_mdi_setting_crossover_generic;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+ /* acquire SW_FW sync */
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
+ if (mac->type >= e1000_i210) {
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
+ }
+
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82575;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
+ hw->phy.ops.init_params = e1000_init_phy_params_82575;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
+}
+
+/**
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * Acquire access rights to the correct PHY.
+ **/
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ return hw->mac.ops.acquire_swfw_sync(hw, mask);
+}
+
+/**
+ * e1000_release_phy_82575 - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.
+ **/
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_release_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ hw->mac.ops.release_swfw_sync(hw, mask);
+}
+
+/**
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the serial gigabit media independent
+ * interface and stores the retrieved information in data.
+ **/
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the serial gigabit
+ * media independent interface.
+ **/
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_id_82575 - Retrieve PHY addr and id
+ * @hw: pointer to the HW structure
+ *
+ * Retrieves the PHY address and ID for both PHY's which do and do not use
+ * sgmi interface.
+ **/
+STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+ u32 ctrl_ext;
+ u32 mdic;
+
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /* some i354 devices need an extra read for phy id */
+ if (hw->mac.type == e1000_i354)
+ e1000_get_phy_id(hw);
+
+ /*
+ * For SGMII PHYs, we try the list of possible addresses until
+ * we find one that works. For non-SGMII PHYs
+ * (e.g. integrated copper PHYs), an address of 1 should
+ * work. The result of this function should mean phy->phy_addr
+ * and phy->id are set correctly.
+ */
+ if (!e1000_sgmii_active_82575(hw)) {
+ phy->addr = 1;
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ mdic &= E1000_MDIC_PHY_MASK;
+ phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
+ break;
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i354:
+ case e1000_i210:
+ case e1000_i211:
+ mdic = E1000_READ_REG(hw, E1000_MDICNFG);
+ mdic &= E1000_MDICNFG_PHY_MASK;
+ phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ /* Power on sgmii phy if it is disabled */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(300);
+
+ /*
+ * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+ * Therefore, we need to test 1-7
+ */
+ for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id, phy->addr);
+ /*
+ * At the time of this writing, The M88 part is
+ * the only supported SGMII PHY product.
+ */
+ if (phy_id == M88_VENDOR)
+ break;
+ } else {
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
+ }
+ }
+
+ /* A valid PHY type couldn't be found. */
+ if (phy->addr == 8) {
+ phy->addr = 0;
+ ret_val = -E1000_ERR_PHY;
+ } else {
+ ret_val = e1000_get_phy_id(hw);
+ }
+
+ /* restore previous sfp cage power state */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY using the serial gigabit media independent interface.
+ **/
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ struct e1000_phy_info *phy = &hw->phy;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+ /*
+ * This isn't a true "hard" reset, but is the only reset
+ * available to us at this time.
+ */
+
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ /*
+ * SFP documentation requires the following to configure the SPF module
+ * to work on SGMII. No further documentation is given.
+ */
+ ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ goto out;
+
+ if (phy->id == M88E1512_E_PHY_ID)
+ ret_val = e1000_initialize_M88E1512_phy(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (active) {
+ data |= E1000_82580_PM_D0_LPLU;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ } else {
+ data &= ~E1000_82580_PM_D0_LPLU;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on)
+ data |= E1000_82580_PM_SPD;
+ else if (phy->smart_speed == e1000_smart_speed_off)
+ data &= ~E1000_82580_PM_SPD;
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (!active) {
+ data &= ~E1000_82580_PM_D3_LPLU;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on)
+ data |= E1000_82580_PM_SPD;
+ else if (phy->smart_speed == e1000_smart_speed_off)
+ data &= ~E1000_82580_PM_SPD;
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= E1000_82580_PM_D3_LPLU;
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclusive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Check if there is some access
+ * error this access may hook on
+ */
+ if (hw->mac.type == e1000_i350) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
+ E1000_EECD_TIMEOUT)) {
+ /* Clear all access error flags */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_ERROR_CLR);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+ if (hw->mac.type == e1000_82580) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_BLOCKED) {
+ /* Clear access error flag */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_BLOCKED);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+ if (ret_val)
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_nvm_generic(hw);
+
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+ ; /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_get_cfg_done_82575 - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_NVM_CFG_DONE_PORT_2;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_NVM_CFG_DONE_PORT_3;
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout)
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+
+ /* If EEPROM is not marked present, init the PHY manually */
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
+ (hw->phy.type == e1000_phy_igp_3))
+ e1000_phy_init_script_igp3(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use PCS to retrieve the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper)
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ else
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82575 - Check for link
+ * @hw: pointer to the HW structure
+ *
+ * If sgmii is enabled, then use the pcs register to determine link, otherwise
+ * use the generic interface for determining link.
+ **/
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_check_for_link_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
+ /*
+ * Use this flag to determine if link needs to be checked or
+ * not. If we have link clear the flag so that we do not
+ * continue to check for link.
+ */
+ hw->mac.get_link_status = !hw->mac.serdes_has_link;
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+ } else {
+ ret_val = e1000_check_for_copper_link_generic(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_media_swap - Check which M88E1112 interface linked
+ * @hw: pointer to the HW structure
+ *
+ * Poll the M88E1112 interfaces to see which interface achieved link.
+ */
+STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ u8 port = 0;
+
+ DEBUGFUNC("e1000_check_for_link_media_swap");
+
+ /* Check the copper medium. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (data & E1000_M88E1112_STATUS_LINK)
+ port = E1000_MEDIA_PORT_COPPER;
+
+ /* Check the other medium. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ /* reset page to 0 */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+ if (ret_val)
+ return ret_val;
+
+ if (data & E1000_M88E1112_STATUS_LINK)
+ port = E1000_MEDIA_PORT_OTHER;
+
+ /* Determine if a swap needs to happen. */
+ if (port && (hw->dev_spec._82575.media_port != port)) {
+ hw->dev_spec._82575.media_port = port;
+ hw->dev_spec._82575.media_changed = true;
+ } else {
+ ret_val = e1000_check_for_link_82575(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
+ * @hw: pointer to the HW structure
+ **/
+STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_power_up_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ /* Enable PCS to turn on link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg |= E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* Power up the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+}
+
+/**
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Using the physical coding sub-layer (PCS), retrieve the current speed and
+ * duplex, then store the values in the pointers provided.
+ **/
+STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 pcs;
+ u32 status;
+
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+ /*
+ * Read the PCS Status register for link state. For non-copper mode,
+ * the status register is not accurate. The PCS status register is
+ * used instead.
+ */
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ /*
+ * The link up bit determines when link is up on autoneg.
+ */
+ if (pcs & E1000_PCS_LSTS_LINK_OK) {
+ mac->serdes_has_link = true;
+
+ /* Detect and store PCS speed */
+ if (pcs & E1000_PCS_LSTS_SPEED_1000)
+ *speed = SPEED_1000;
+ else if (pcs & E1000_PCS_LSTS_SPEED_100)
+ *speed = SPEED_100;
+ else
+ *speed = SPEED_10;
+
+ /* Detect and store PCS duplex */
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
+ *duplex = FULL_DUPLEX;
+ else
+ *duplex = HALF_DUPLEX;
+
+ /* Check if it is an I354 2.5Gb backplane connection. */
+ if (mac->type == e1000_i354) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if ((status & E1000_STATUS_2P5_SKU) &&
+ !(status & E1000_STATUS_2P5_SKU_OVER)) {
+ *speed = SPEED_2500;
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("2500 Mbs, ");
+ DEBUGOUT("Full Duplex\n");
+ }
+ }
+
+ } else {
+ mac->serdes_has_link = false;
+ *speed = 0;
+ *duplex = 0;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_shutdown_serdes_link_82575 - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of serdes shut down sfp and PCS on driver unload
+ * when management pass thru is not enabled.
+ **/
+void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_shutdown_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ if (!e1000_enable_mng_pass_thru(hw)) {
+ /* Disable PCS to turn off link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg &= ~E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* shutdown the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ }
+
+ return;
+}
+
+/**
+ * e1000_reset_hw_82575 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82575");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ /* set the completion timeout for interface */
+ ret_val = e1000_set_pcie_completion_timeout(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Set completion timeout has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
+ e1000_reset_init_script_82575(hw);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82575 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82575");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address */
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Zero out the Unicast HASH table */
+ DEBUGOUT("Zeroing the UTA\n");
+ for (i = 0; i < mac->uta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the default MTU size */
+ hw->dev_spec._82575.mtu = 1500;
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82575(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82575 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u32 phpm_reg;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Clear Go Link Disconnect bit on supported devices */
+ switch (hw->mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i210:
+ case e1000_i211:
+ phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+ phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+ break;
+ default:
+ break;
+ }
+
+ ret_val = e1000_setup_serdes_link_82575(hw);
+ if (ret_val)
+ goto out;
+
+ if (e1000_sgmii_active_82575(hw)) {
+ /* allow time for SFP cage time to power up phy */
+ msec_delay(300);
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+ }
+ switch (hw->phy.type) {
+ case e1000_phy_i210:
+ case e1000_phy_m88:
+ switch (hw->phy.id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I210_I_PHY_ID:
+ ret_val = e1000_copper_link_setup_m88_gen2(hw);
+ break;
+ default:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ }
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ break;
+ case e1000_phy_82580:
+ ret_val = e1000_copper_link_setup_82577(hw);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_serdes_link_82575 - Setup link for serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configure the physical coding sub-layer (PCS) link. The PCS link is
+ * used on copper connections where the serialized gigabit media independent
+ * interface (sgmii), or serdes fiber is being used. Configures the link
+ * for auto-negotiation or forces speed/duplex.
+ **/
+STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
+ bool pcs_autoneg;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return ret_val;
+
+ /*
+ * On the 82575, SerDes loopback mode persists until it is
+ * explicitly turned off or a power cycle is performed. A read to
+ * the register does not indicate its status. Therefore, we ensure
+ * loopback mode is disabled during initialization.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+ /* power on the sfp cage if present */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl_reg |= E1000_CTRL_SLU;
+
+ /* set both sw defined pins on 82575/82576*/
+ if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
+ ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
+
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ /* default pcs_autoneg to the same setting as mac autoneg */
+ pcs_autoneg = hw->mac.autoneg;
+
+ switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* sgmii mode lets the phy handle forcing speed/duplex */
+ pcs_autoneg = true;
+ /* autoneg time out should be disabled for SGMII mode */
+ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ /* disable PCS autoneg and support parallel detect only */
+ pcs_autoneg = false;
+ /* fall through to default case */
+ default:
+ if (hw->mac.type == e1000_82575 ||
+ hw->mac.type == e1000_82576) {
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
+ pcs_autoneg = false;
+ }
+
+ /*
+ * non-SGMII modes only supports a speed of 1000/Full for the
+ * link so it is best to just force the MAC and let the pcs
+ * link either autoneg or be forced to 1000/Full
+ */
+ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
+ E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+
+ /* set speed of 1000/Full if speed/duplex is forced */
+ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+
+ /*
+ * New SerDes mode allows for forcing speed or autonegotiating speed
+ * at 1gb. Autoneg should be default set by most drivers. This is the
+ * mode that will be compatible with older link partners and switches.
+ * However, both are supported by the hardware and some drivers/tools.
+ */
+ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ if (pcs_autoneg) {
+ /* Set PCS register for autoneg */
+ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+
+ /* Disable force flow control for autoneg */
+ reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
+
+ /* Configure flow control advertisement for autoneg */
+ anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+ anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
+
+ switch (hw->fc.requested_mode) {
+ case e1000_fc_full:
+ case e1000_fc_rx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ anadv_reg |= E1000_TXCW_PAUSE;
+ break;
+ case e1000_fc_tx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ break;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
+
+ DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
+ } else {
+ /* Set PCS register for forced link */
+ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+
+ /* Force flow control for forced link */
+ reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
+ DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
+ e1000_force_mac_fc_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_media_type_82575 - derives current media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen reflecting few settings.
+ * The following are taken into account:
+ * - link mode set in the current port Init Control Word #3
+ * - current link mode settings in CSR register
+ * - MDIO vs. I2C PHY control interface chosen
+ * - SFP module media type
+ **/
+STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext = 0;
+ u32 link_mode = 0;
+
+ /* Set internal phy as default */
+ dev_spec->sgmii_active = false;
+ dev_spec->module_plugged = false;
+
+ /* Get CSR setting */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ /* extract link mode setting */
+ link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ switch (link_mode) {
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_GMII:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* Get phy control interface type set (MDIO vs. I2C)*/
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = true;
+ break;
+ }
+ /* fall through for I2C based SGMII */
+ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+ /* read media type from SFP EEPROM */
+ ret_val = e1000_set_sfp_media_type_82575(hw);
+ if ((ret_val != E1000_SUCCESS) ||
+ (hw->phy.media_type == e1000_media_type_unknown)) {
+ /*
+ * If media type was not identified then return media
+ * type defined by the CTRL_EXT settings.
+ */
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+
+ if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = true;
+ }
+
+ break;
+ }
+
+ /* do not change link mode for 100BaseFX */
+ if (dev_spec->eth_flags.e100_base_fx)
+ break;
+
+ /* change current link mode setting */
+ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
+ else
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_sfp_media_type_82575 - derives SFP module media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen based on SFP module.
+ * compatibility flags retrieved from SFP ID EEPROM.
+ **/
+STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_ERR_CONFIG;
+ u32 ctrl_ext = 0;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
+ u8 tranceiver_type = 0;
+ s32 timeout = 3;
+
+ /* Turn I2C interface ON and power on sfp cage */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
+
+ E1000_WRITE_FLUSH(hw);
+
+ /* Read SFP module data */
+ while (timeout) {
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
+ &tranceiver_type);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ msec_delay(100);
+ timeout--;
+ }
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
+ (u8 *)eth_flags);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ /* Check if there is some SFP module plugged and powered */
+ if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
+ (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
+ dev_spec->module_plugged = true;
+ if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e100_base_fx) {
+ dev_spec->sgmii_active = true;
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e1000_base_t) {
+ dev_spec->sgmii_active = true;
+ hw->phy.media_type = e1000_media_type_copper;
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ DEBUGOUT("PHY module has not been recognized\n");
+ goto out;
+ }
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ }
+ ret_val = E1000_SUCCESS;
+out:
+ /* Restore I2C interface setting */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_82575 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82575");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+ switch (hw->phy.media_type) {
+ case e1000_media_type_internal_serdes:
+ *data = ID_LED_DEFAULT_82575_SERDES;
+ break;
+ case e1000_media_type_copper:
+ default:
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_sgmii_active_82575 - Return sgmii state
+ * @hw: pointer to the HW structure
+ *
+ * 82575 silicon has a serialized gigabit media independent interface (sgmii)
+ * which can be enabled for use in the embedded applications. Simply
+ * return the current state of the sgmii interface.
+ **/
+STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ return dev_spec->sgmii_active;
+}
+
+/**
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
+ * @hw: pointer to the HW structure
+ *
+ * Inits recommended HW defaults after a reset when there is no EEPROM
+ * detected. This is only for the 82575.
+ **/
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
+ if (hw->mac.type == e1000_82575) {
+ DEBUGOUT("Running reset init script for 82575\n");
+ /* SerDes configuration via SERDESCTRL */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
+
+ /* CCM configuration via CCMCTL register */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
+
+ /* PCIe lanes configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+ /* PCIe PLL Configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr_82575 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
+
+ /*
+ * If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_82575 - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw)
+{
+ u32 tctl_ext;
+
+ DEBUGFUNC("e1000_config_collision_dist_82575");
+
+ tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
+
+ tctl_ext &= ~E1000_TCTL_EXT_COLD;
+ tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+
+ if (!(phy->ops.check_reset_block))
+ return;
+
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ E1000_READ_REG(hw, E1000_CBTMPC);
+ E1000_READ_REG(hw, E1000_HTDPMC);
+ E1000_READ_REG(hw, E1000_CBRMPC);
+ E1000_READ_REG(hw, E1000_RPTHC);
+ E1000_READ_REG(hw, E1000_HGPTC);
+ E1000_READ_REG(hw, E1000_HTCBDPC);
+ E1000_READ_REG(hw, E1000_HGORCL);
+ E1000_READ_REG(hw, E1000_HGORCH);
+ E1000_READ_REG(hw, E1000_HGOTCL);
+ E1000_READ_REG(hw, E1000_HGOTCH);
+ E1000_READ_REG(hw, E1000_LENERRS);
+
+ /* This register should not be read in copper configurations */
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
+ e1000_sgmii_active_82575(hw))
+ E1000_READ_REG(hw, E1000_SCVPC);
+}
+
+/**
+ * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
+ * @hw: pointer to the HW structure
+ *
+ * After rx enable if managability is enabled then there is likely some
+ * bad data at the start of the fifo and possibly in the DMA fifo. This
+ * function clears the fifos and flushes any packets that came in as rx was
+ * being enabled.
+ **/
+void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
+{
+ u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
+ int i, ms_wait;
+
+ DEBUGFUNC("e1000_rx_fifo_workaround_82575");
+ if (hw->mac.type != e1000_82575 ||
+ !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
+ return;
+
+ /* Disable all Rx queues */
+ for (i = 0; i < 4; i++) {
+ rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i),
+ rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+ }
+ /* Poll all queues to verify they have shut down */
+ for (ms_wait = 0; ms_wait < 10; ms_wait++) {
+ msec_delay(1);
+ rx_enabled = 0;
+ for (i = 0; i < 4; i++)
+ rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
+ if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
+ break;
+ }
+
+ if (ms_wait == 10)
+ DEBUGOUT("Queue disable timed out after 10ms\n");
+
+ /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
+ * incoming packets are rejected. Set enable and wait 2ms so that
+ * any packet that was coming in as RCTL.EN was set is flushed
+ */
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
+
+ rlpml = E1000_READ_REG(hw, E1000_RLPML);
+ E1000_WRITE_REG(hw, E1000_RLPML, 0);
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
+ temp_rctl |= E1000_RCTL_LPE;
+
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(2);
+
+ /* Enable Rx queues that were previously enabled and restore our
+ * previous state
+ */
+ for (i = 0; i < 4; i++)
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+ /* Flush receive errors generated by workaround */
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_MPC);
+}
+
+/**
+ * e1000_set_pcie_completion_timeout - set pci-e completion timeout
+ * @hw: pointer to the HW structure
+ *
+ * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
+ * however the hardware default for these parts is 500us to 1ms which is less
+ * than the 10ms recommended by the pci-e spec. To address this we need to
+ * increase the value to either 10ms to 200ms for capability version 1 config,
+ * or 16ms to 55ms for version 2.
+ **/
+STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
+{
+ u32 gcr = E1000_READ_REG(hw, E1000_GCR);
+ s32 ret_val = E1000_SUCCESS;
+ u16 pcie_devctl2;
+
+ /* only take action if timeout value is defaulted to 0 */
+ if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
+ goto out;
+
+ /*
+ * if capababilities version is type 1 we can write the
+ * timeout of 10ms to 200ms through the GCR register
+ */
+ if (!(gcr & E1000_GCR_CAP_VER2)) {
+ gcr |= E1000_GCR_CMPL_TMOUT_10ms;
+ goto out;
+ }
+
+ /*
+ * for version 2 capabilities we need to write the config space
+ * directly in order to set the completion timeout value for
+ * 16ms to 55ms
+ */
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+ if (ret_val)
+ goto out;
+
+ pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
+
+ ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+out:
+ /* disable completion timeout resend */
+ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
+
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ return ret_val;
+}
+
+/**
+ * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ * @pf: Physical Function pool - do not set anti-spoofing for the PF
+ *
+ * enables/disables L2 switch anti-spoofing functionality.
+ **/
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
+{
+ u32 reg_val, reg_offset;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ reg_offset = E1000_DTXSWC;
+ break;
+ case e1000_i350:
+ case e1000_i354:
+ reg_offset = E1000_TXSWC;
+ break;
+ default:
+ return;
+ }
+
+ reg_val = E1000_READ_REG(hw, reg_offset);
+ if (enable) {
+ reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs
+ */
+ reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ } else {
+ reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, reg_offset, reg_val);
+}
+
+/**
+ * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables L2 switch loopback functionality.
+ **/
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ case e1000_i350:
+ case e1000_i354:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+ break;
+ default:
+ /* Currently no other hardware supports loopback */
+ break;
+ }
+
+
+}
+
+/**
+ * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables replication of packets across multiple pools.
+ **/
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+
+ if (enable)
+ vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
+ else
+ vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
+
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+}
+
+/**
+ * e1000_read_phy_reg_82580 - Read 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82580 - Write 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
+ * @hw: pointer to the HW structure
+ *
+ * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
+ * the values found in the EEPROM. This addresses an issue in which these
+ * bits are not restored from EEPROM after reset.
+ **/
+STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 mdicnfg;
+ u16 nvm_data = 0;
+
+ DEBUGFUNC("e1000_reset_mdicnfg_82580");
+
+ if (hw->mac.type != e1000_82580)
+ goto out;
+ if (!e1000_sgmii_active_82575(hw))
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
+ NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+ if (nvm_data & NVM_WORD24_EXT_MDIO)
+ mdicnfg |= E1000_MDICNFG_EXT_MDIO;
+ if (nvm_data & NVM_WORD24_COM_MDIO)
+ mdicnfg |= E1000_MDICNFG_COM_MDIO;
+ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82580 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets function or entire device (all ports, etc.)
+ * to a known state.
+ **/
+STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ /* BH SW mailbox bit in SW_FW_SYNC */
+ u16 swmbsw_mask = E1000_SW_SYNCH_MB;
+ u32 ctrl;
+ bool global_device_reset = hw->dev_spec._82575.global_device_reset;
+
+ DEBUGFUNC("e1000_reset_hw_82580");
+
+ hw->dev_spec._82575.global_device_reset = false;
+
+ /* 82580 does not reliably do global_device_reset due to hw errata */
+ if (hw->mac.type == e1000_82580)
+ global_device_reset = false;
+
+ /* Get current control state. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Determine whether or not a global dev reset is requested */
+ if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
+ swmbsw_mask))
+ global_device_reset = false;
+
+ if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STAT_DEV_RST_SET))
+ ctrl |= E1000_CTRL_DEV_RST;
+ else
+ ctrl |= E1000_CTRL_RST;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Add delay to insure DEV_RST has time to complete */
+ if (global_device_reset)
+ msec_delay(5);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* clear global device reset status bit */
+ E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ ret_val = e1000_reset_mdicnfg_82580(hw);
+ if (ret_val)
+ DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ /* Release semaphore */
+ if (global_device_reset)
+ hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
+
+ return ret_val;
+}
+
+/**
+ * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
+ * @data: data received by reading RXPBS register
+ *
+ * The 82580 uses a table based approach for packet buffer allocation sizes.
+ * This function converts the retrieved value into the correct table value
+ * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
+ * 0x0 36 72 144 1 2 4 8 16
+ * 0x8 35 70 140 rsv rsv rsv rsv rsv
+ */
+u16 e1000_rxpbs_adjust_82580(u32 data)
+{
+ u16 ret_val = 0;
+
+ if (data < E1000_82580_RXPBS_TABLE_SIZE)
+ ret_val = e1000_82580_rxpbs_table[data];
+
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
+
+ for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_with_offset - Update EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
+
+ for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
+ &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 eeprom_regions_count = 1;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
+ /* if chekcsums compatibility bit is set validate checksums
+ * for all 4 ports. */
+ eeprom_regions_count = 4;
+ }
+
+ for (j = 0; j < eeprom_regions_count; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
+ goto out;
+ }
+
+ if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
+ /* set compatibility bit to validate checksums appropriately */
+ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
+ ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
+ goto out;
+ }
+ }
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * __e1000_access_emi_reg - Read/write EMI register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: pointer to value to read/write from/to the EMI address
+ * @read: boolean flag to indicate read or write
+ **/
+STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("__e1000_access_emi_reg");
+
+ ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
+ if (ret_val)
+ return ret_val;
+
+ if (read)
+ ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
+ else
+ ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_emi_reg - Read Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be read from the EMI address
+ **/
+s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+ DEBUGFUNC("e1000_read_emi_reg");
+
+ return __e1000_access_emi_reg(hw, addr, data, true);
+}
+
+/**
+ * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initialize Marverl 1512 to work correctly with Avoton.
+ **/
+s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_initialize_M88E1512_phy");
+
+ /* Check if this is correct PHY. */
+ if (phy->id != M88E1512_E_PHY_ID)
+ goto out;
+
+ /* Switch to PHY page 0xFF. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
+ if (ret_val)
+ goto out;
+
+ /* Switch to PHY page 0xFB. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
+ if (ret_val)
+ goto out;
+
+ /* Switch to PHY page 0x12. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
+ if (ret_val)
+ goto out;
+
+ /* Change mode to SGMII-to-Copper */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
+ if (ret_val)
+ goto out;
+
+ /* Return the PHY to page 0. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+
+ msec_delay(1000);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_eee_i350 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ipcnfg, eeer;
+
+ DEBUGFUNC("e1000_set_eee_i350");
+
+ if ((hw->mac.type < e1000_i350) ||
+ (hw->phy.media_type != e1000_media_type_copper))
+ goto out;
+ ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
+ eeer = E1000_READ_REG(hw, E1000_EEER);
+
+ /* enable or disable per user setting */
+ if (!(hw->dev_spec._82575.eee_disable)) {
+ u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
+
+ ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+
+ /* This bit should not be set in normal operation. */
+ if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
+ DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
+ } else {
+ ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+ }
+ E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
+ E1000_WRITE_REG(hw, E1000_EEER, eeer);
+ E1000_READ_REG(hw, E1000_IPCNFG);
+ E1000_READ_REG(hw, E1000_EEER);
+out:
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_eee_i354 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE legacy mode based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i354(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_set_eee_i354");
+
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ ((phy->id != M88E1543_E_PHY_ID) &&
+ (phy->id != M88E1512_E_PHY_ID)))
+ goto out;
+
+ if (!hw->dev_spec._82575.eee_disable) {
+ /* Switch to PHY page 18. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+ phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Return the PHY to page 0. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+ if (ret_val)
+ goto out;
+
+ /* Turn on EEE advertisement. */
+ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= E1000_EEE_ADV_100_SUPPORTED |
+ E1000_EEE_ADV_1000_SUPPORTED;
+ ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ phy_data);
+ } else {
+ /* Turn off EEE advertisement. */
+ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
+ E1000_EEE_ADV_1000_SUPPORTED);
+ ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ phy_data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_eee_status_i354 - Get EEE status
+ * @hw: pointer to the HW structure
+ * @status: EEE status
+ *
+ * Get EEE status by guessing based on whether Tx or Rx LPI indications have
+ * been received.
+ **/
+s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_get_eee_status_i354");
+
+ /* Check if EEE is supported on this device. */
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ ((phy->id != M88E1543_E_PHY_ID) &&
+ (phy->id != M88E1512_E_PHY_ID)))
+ goto out;
+
+ ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
+ E1000_PCS_STATUS_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
+ E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
+
+out:
+ return ret_val;
+}
+
+/* Due to a hw errata, if the host tries to configure the VFTA register
+ * while performing queries from the BMC or DMA, then the VFTA in some
+ * cases won't be written.
+ */
+
+/**
+ * e1000_clear_vfta_i350 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_i350(struct e1000_hw *hw)
+{
+ u32 offset;
+ int i;
+
+ DEBUGFUNC("e1000_clear_vfta_350");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_i350 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ int i;
+
+ DEBUGFUNC("e1000_write_vfta_350");
+
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+
+/**
+ * e1000_set_i2c_bb - Enable I2C bit-bang
+ * @hw: pointer to the HW structure
+ *
+ * Enable I2C bit-bang interface
+ *
+ **/
+s32 e1000_set_i2c_bb(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext, i2cparams;
+
+ DEBUGFUNC("e1000_set_i2c_bb");
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ i2cparams |= E1000_I2CBB_EN;
+ i2cparams |= E1000_I2C_DATA_OE_N;
+ i2cparams |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
+ E1000_WRITE_FLUSH(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to read
+ * @dev_addr: device address
+ * @data: value read
+ *
+ * Performs byte read operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 10;
+ u32 retry = 1;
+ u16 swfw_mask = 0;
+
+ bool nack = true;
+
+ DEBUGFUNC("e1000_read_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ do {
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
+ != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto read_byte_out;
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and write indication */
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and read indication */
+ status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_in_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_bit(hw, nack);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
+
+fail:
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+ msec_delay(100);
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte read error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte read error.\n");
+
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+read_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: value to write
+ *
+ * Performs byte write operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 1;
+ u32 retry = 0;
+ u16 swfw_mask = 0;
+
+ DEBUGFUNC("e1000_write_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto write_byte_out;
+ }
+
+ do {
+ e1000_i2c_start(hw);
+
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
+
+fail:
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte write error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte write error.\n");
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+write_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_i2c_start - Sets I2C start condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C start condition (High -> Low on SDA while SCL is High)
+ **/
+STATIC void e1000_i2c_start(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_start");
+
+ /* Start condition must begin with data and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for start condition (4.7us) */
+ usec_delay(E1000_I2C_T_SU_STA);
+
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+
+ /* Hold time for start condition (4us) */
+ usec_delay(E1000_I2C_T_HD_STA);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+}
+
+/**
+ * e1000_i2c_stop - Sets I2C stop condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C stop condition (Low -> High on SDA while SCL is High)
+ **/
+STATIC void e1000_i2c_stop(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_stop");
+
+ /* Stop condition must begin with data low and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for stop condition (4us) */
+ usec_delay(E1000_I2C_T_SU_STO);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ /* bus free time between stop and start (4.7us)*/
+ usec_delay(E1000_I2C_T_BUF);
+}
+
+/**
+ * e1000_clock_in_i2c_byte - Clocks in one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte to clock in
+ *
+ * Clocks in one byte data via I2C data/clock
+ **/
+STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
+{
+ s32 i;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_in_i2c_byte");
+
+ *data = 0;
+ for (i = 7; i >= 0; i--) {
+ e1000_clock_in_i2c_bit(hw, &bit);
+ *data |= bit << i;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_byte - Clocks out one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte clocked out
+ *
+ * Clocks out one byte data via I2C data/clock
+ **/
+STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ s32 i;
+ u32 i2cctl;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_out_i2c_byte");
+
+ for (i = 7; i >= 0; i--) {
+ bit = (data >> i) & 0x1;
+ status = e1000_clock_out_i2c_bit(hw, bit);
+
+ if (status != E1000_SUCCESS)
+ break;
+ }
+
+ /* Release SDA line (set high) */
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ i2cctl |= E1000_I2C_DATA_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_ack - Polls for I2C ACK
+ * @hw: pointer to hardware structure
+ *
+ * Clocks in/out one bit via I2C data/clock
+ **/
+STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ u32 i = 0;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 timeout = 10;
+ bool ack = true;
+
+ DEBUGFUNC("e1000_get_i2c_ack");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ /* Wait until SCL returns high */
+ for (i = 0; i < timeout; i++) {
+ usec_delay(1);
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (i2cctl & E1000_I2C_CLK_IN)
+ break;
+ }
+ if (!(i2cctl & E1000_I2C_CLK_IN))
+ return E1000_ERR_I2C;
+
+ ack = e1000_get_i2c_data(&i2cctl);
+ if (ack) {
+ DEBUGOUT("I2C ack was not received.\n");
+ status = E1000_ERR_I2C;
+ }
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return status;
+}
+
+/**
+ * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: read data value
+ *
+ * Clocks in one bit via I2C data/clock
+ **/
+STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_in_i2c_bit");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ *data = e1000_get_i2c_data(&i2cctl);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: data value to write
+ *
+ * Clocks out one bit via I2C data/clock
+ **/
+STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
+{
+ s32 status;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_out_i2c_bit");
+
+ status = e1000_set_i2c_data(hw, &i2cctl, data);
+ if (status == E1000_SUCCESS) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us.
+ * This also takes care of the data hold time.
+ */
+ usec_delay(E1000_I2C_T_LOW);
+ } else {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("I2C data was not set to %X\n", data);
+ }
+
+ return status;
+}
+/**
+ * e1000_raise_i2c_clk - Raises the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Raises the I2C clock line '0'->'1'
+ **/
+STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+ DEBUGFUNC("e1000_raise_i2c_clk");
+
+ *i2cctl |= E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL rise time (1000ns) */
+ usec_delay(E1000_I2C_T_RISE);
+}
+
+/**
+ * e1000_lower_i2c_clk - Lowers the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Lowers the I2C clock line '1'->'0'
+ **/
+STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+
+ DEBUGFUNC("e1000_lower_i2c_clk");
+
+ *i2cctl &= ~E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL fall time (300ns) */
+ usec_delay(E1000_I2C_T_FALL);
+}
+
+/**
+ * e1000_set_i2c_data - Sets the I2C data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ * @data: I2C data value (0 or 1) to set
+ *
+ * Sets the I2C data bit
+ **/
+STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
+{
+ s32 status = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_i2c_data");
+
+ if (data)
+ *i2cctl |= E1000_I2C_DATA_OUT;
+ else
+ *i2cctl &= ~E1000_I2C_DATA_OUT;
+
+ *i2cctl &= ~E1000_I2C_DATA_OE_N;
+ *i2cctl |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
+ usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
+
+ *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (data != e1000_get_i2c_data(i2cctl)) {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
+ }
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_data - Reads the I2C SDA data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Returns the I2C data bit value
+ **/
+STATIC bool e1000_get_i2c_data(u32 *i2cctl)
+{
+ bool data;
+
+ DEBUGFUNC("e1000_get_i2c_data");
+
+ if (*i2cctl & E1000_I2C_DATA_IN)
+ data = 1;
+ else
+ data = 0;
+
+ return data;
+}
+
+/**
+ * e1000_i2c_bus_clear - Clears the I2C bus
+ * @hw: pointer to hardware structure
+ *
+ * Clears the I2C bus by sending nine clock pulses.
+ * Used when data line is stuck low.
+ **/
+void e1000_i2c_bus_clear(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 i;
+
+ DEBUGFUNC("e1000_i2c_bus_clear");
+
+ e1000_i2c_start(hw);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ for (i = 0; i < 9; i++) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Min high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Min low period of clock is 4.7us*/
+ usec_delay(E1000_I2C_T_LOW);
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Put the i2c bus back to default state */
+ e1000_i2c_stop(hw);
+}
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82575_H_
+#define _E1000_82575_H_
+
+#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_ON2))
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+/*
+ * For 82576, there are an additional set of RARs that begin at an offset
+ * separate from the first set of RARs.
+ */
+#define E1000_RAR_ENTRIES_82575 16
+#define E1000_RAR_ENTRIES_82576 24
+#define E1000_RAR_ENTRIES_82580 24
+#define E1000_RAR_ENTRIES_I350 32
+#define E1000_SW_SYNCH_MB 0x00000100
+#define E1000_STAT_DEV_RST_SET 0x00100000
+#define E1000_CTRL_DEV_RST 0x20000000
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u32 datalen:16; /* Data buffer length */
+ u32 rsvd:4;
+ u32 dtyp:4; /* Descriptor type */
+ u32 dcmd:8; /* Descriptor command */
+ } config;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u32 status:4; /* Descriptor status */
+ u32 idx:4;
+ u32 popts:6; /* Packet Options */
+ u32 paylen:18; /* Payload length */
+ } options;
+ } upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+/* Extended Device Control */
+#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
+
+struct e1000_adv_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u32 iplen:9;
+ u32 maclen:7;
+ u32 vlan_tag:16;
+ } fields;
+ } ip_setup;
+ u32 seq_num;
+ union {
+ u64 l4_config;
+ struct {
+ u32 mkrloc:9;
+ u32 tucmd:11;
+ u32 dtyp:4;
+ u32 adv:8;
+ u32 rsvd:4;
+ u32 idx:4;
+ u32 l4len:8;
+ u32 mss:16;
+ } fields;
+ } l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_TIMESTAMP 0x40000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_ENABLE_VMDQ 0x00000003
+#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
+
+#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
+#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \
+ E1000_VMRCTL_MIRROR_PORT_SHIFT)
+#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
+#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
+#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
+
+#define E1000_EICR_TX_QUEUE ( \
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ __le64 pkt_addr; /* Packet buffer address */
+ __le64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ __le32 data;
+ struct {
+ __le16 pkt_info; /*RSS type, Pkt type*/
+ /* Split Header, header buffer len */
+ __le16 hdr_info;
+ } hs_rss;
+ } lo_dword;
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length; /* Packet length */
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
+#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
+#define E1000_RXDADV_ERR_HBO 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0
+#define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
+#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
+#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
+#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
+#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
+#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
+
+/* LinkSec results */
+/* Security Processing bit Indication */
+#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
+#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
+#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
+
+#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
+#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ __le64 buffer_addr; /* Address of descriptor's data buf */
+ __le32 cmd_type_len;
+ __le32 olinfo_status;
+ } read;
+ struct {
+ __le64 rsvd; /* Reserved */
+ __le32 nxtseq_seed;
+ __le32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+/* 1st & Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ __le32 vlan_macip_lens;
+ __le32 seqnum_seed;
+ __le32 type_tucmd_mlhl;
+ __le32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+/* Req requires Markers and CRC */
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY 0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */
+#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
+#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
+#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
+#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
+
+/* Additional interrupt register bit definitions */
+#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
+#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+
+/* ETQF register bit definitions */
+#define E1000_ETQF_FILTER_ENABLE (1 << 26)
+#define E1000_ETQF_IMM_INT (1 << 29)
+#define E1000_ETQF_1588 (1 << 30)
+#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
+/*
+ * ETQF filter list: one static filter per filter consumer. This is
+ * to avoid filter collisions later. Add new filters
+ * here!!
+ *
+ * Current filters:
+ * EAPOL 802.1x (0x888e): Filter 0
+ */
+#define E1000_ETQF_FILTER_EAPOL 0
+
+#define E1000_FTQF_VF_BP 0x00008000
+#define E1000_FTQF_1588_TIME_STAMP 0x08000000
+#define E1000_FTQF_MASK 0xF0000000
+#define E1000_FTQF_MASK_PROTO_BP 0x10000000
+#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
+#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
+#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
+
+#define E1000_NVM_APME_82575 0x0400
+#define MAX_NUM_VFS 7
+
+#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */
+#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */
+#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
+#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
+#define E1000_DTXSWC_LLE_SHIFT 16
+#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
+
+/* Easy defines for setting default pool, would normally be left a zero */
+#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
+#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
+
+/* Other useful VMD_CTL register defines */
+#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
+#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
+#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
+
+/* Per VM Offload register setup */
+#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
+#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
+#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
+#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
+#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
+#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
+#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
+#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
+#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */
+#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */
+#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */
+#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */
+#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */
+
+#define E1000_VLVF_ARRAY_SIZE 32
+#define E1000_VLVF_VLANID_MASK 0x00000FFF
+#define E1000_VLVF_POOLSEL_SHIFT 12
+#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
+#define E1000_VLVF_LVLAN 0x00100000
+#define E1000_VLVF_VLANID_ENABLE 0x80000000
+
+#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
+#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+#define E1000_IOVCTL 0x05BBC
+#define E1000_IOVCTL_REUSE_VFQ 0x00000001
+
+#define E1000_RPLOLR_STRVLAN 0x40000000
+#define E1000_RPLOLR_STRCRC 0x80000000
+
+#define E1000_TCTL_EXT_COLD 0x000FFC00
+#define E1000_TCTL_EXT_COLD_SHIFT 10
+
+#define E1000_DTXCTL_8023LL 0x0004
+#define E1000_DTXCTL_VLAN_ADDED 0x0008
+#define E1000_DTXCTL_OOS_ENABLE 0x0010
+#define E1000_DTXCTL_MDP_EN 0x0020
+#define E1000_DTXCTL_SPOOF_INT 0x0040
+
+#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14)
+
+#define ALL_QUEUES 0xFFFF
+
+/* Rx packet buffer size defines */
+#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+s32 e1000_init_hw_82575(struct e1000_hw *hw);
+
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
+u16 e1000_rxpbs_adjust_82580(u32 data);
+s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data);
+s32 e1000_set_eee_i350(struct e1000_hw *);
+s32 e1000_set_eee_i354(struct e1000_hw *);
+s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *);
+s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw);
+
+/* I2C SDA and SCL timing parameters for standard mode */
+#define E1000_I2C_T_HD_STA 4
+#define E1000_I2C_T_LOW 5
+#define E1000_I2C_T_HIGH 4
+#define E1000_I2C_T_SU_STA 5
+#define E1000_I2C_T_HD_DATA 5
+#define E1000_I2C_T_SU_DATA 1
+#define E1000_I2C_T_RISE 1
+#define E1000_I2C_T_FALL 1
+#define E1000_I2C_T_SU_STO 4
+#define E1000_I2C_T_BUF 5
+
+s32 e1000_set_i2c_bb(struct e1000_hw *hw);
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data);
+void e1000_i2c_bus_clear(struct e1000_hw *hw);
+#endif /* _E1000_82575_H_ */
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+/**
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mac.ops.init_params) {
+ ret_val = hw->mac.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("MAC Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mac.init_mac_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->nvm.ops.init_params) {
+ ret_val = hw->nvm.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("NVM Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("nvm.init_nvm_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->phy.ops.init_params) {
+ ret_val = hw->phy.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("PHY Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("phy.init_phy_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params - Initialize mailbox function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mbx_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mbx.ops.init_params) {
+ ret_val = hw->mbx.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("Mailbox Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mbx.init_mbx_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ mac->type = e1000_82542;
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ mac->type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ mac->type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ mac->type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ mac->type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ mac->type = e1000_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ mac->type = e1000_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ mac->type = e1000_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
+ mac->type = e1000_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ mac->type = e1000_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ case E1000_DEV_ID_82547EI_MOBILE:
+ mac->type = e1000_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ mac->type = e1000_82547_rev_2;
+ break;
+ case E1000_DEV_ID_82571EB_COPPER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571PT_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ mac->type = e1000_82571;
+ break;
+ case E1000_DEV_ID_82572EI:
+ case E1000_DEV_ID_82572EI_COPPER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82572EI_SERDES:
+ mac->type = e1000_82572;
+ break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ case E1000_DEV_ID_82573L:
+ mac->type = e1000_82573;
+ break;
+ case E1000_DEV_ID_82574L:
+ case E1000_DEV_ID_82574LA:
+ mac->type = e1000_82574;
+ break;
+ case E1000_DEV_ID_82583V:
+ mac->type = e1000_82583;
+ break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+ mac->type = e1000_80003es2lan;
+ break;
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IFE_G:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ case E1000_DEV_ID_ICH8_82567V_3:
+ mac->type = e1000_ich8lan;
+ break;
+ case E1000_DEV_ID_ICH9_IFE:
+ case E1000_DEV_ID_ICH9_IFE_GT:
+ case E1000_DEV_ID_ICH9_IFE_G:
+ case E1000_DEV_ID_ICH9_IGP_M:
+ case E1000_DEV_ID_ICH9_IGP_M_AMT:
+ case E1000_DEV_ID_ICH9_IGP_M_V:
+ case E1000_DEV_ID_ICH9_IGP_AMT:
+ case E1000_DEV_ID_ICH9_BM:
+ case E1000_DEV_ID_ICH9_IGP_C:
+ case E1000_DEV_ID_ICH10_R_BM_LM:
+ case E1000_DEV_ID_ICH10_R_BM_LF:
+ case E1000_DEV_ID_ICH10_R_BM_V:
+ mac->type = e1000_ich9lan;
+ break;
+ case E1000_DEV_ID_ICH10_D_BM_LM:
+ case E1000_DEV_ID_ICH10_D_BM_LF:
+ case E1000_DEV_ID_ICH10_D_BM_V:
+ mac->type = e1000_ich10lan;
+ break;
+ case E1000_DEV_ID_PCH_D_HV_DM:
+ case E1000_DEV_ID_PCH_D_HV_DC:
+ case E1000_DEV_ID_PCH_M_HV_LM:
+ case E1000_DEV_ID_PCH_M_HV_LC:
+ mac->type = e1000_pchlan;
+ break;
+ case E1000_DEV_ID_PCH2_LV_LM:
+ case E1000_DEV_ID_PCH2_LV_V:
+ mac->type = e1000_pch2lan;
+ break;
+ case E1000_DEV_ID_PCH_LPT_I217_LM:
+ case E1000_DEV_ID_PCH_LPT_I217_V:
+ case E1000_DEV_ID_PCH_LPTLP_I218_LM:
+ case E1000_DEV_ID_PCH_LPTLP_I218_V:
+ mac->type = e1000_pch_lpt;
+ break;
+ case E1000_DEV_ID_82575EB_COPPER:
+ case E1000_DEV_ID_82575EB_FIBER_SERDES:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER:
+ mac->type = e1000_82575;
+ break;
+ case E1000_DEV_ID_82576:
+ case E1000_DEV_ID_82576_FIBER:
+ case E1000_DEV_ID_82576_SERDES:
+ case E1000_DEV_ID_82576_QUAD_COPPER:
+ case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
+ case E1000_DEV_ID_82576_NS:
+ case E1000_DEV_ID_82576_NS_SERDES:
+ case E1000_DEV_ID_82576_SERDES_QUAD:
+ mac->type = e1000_82576;
+ break;
+ case E1000_DEV_ID_82580_COPPER:
+ case E1000_DEV_ID_82580_FIBER:
+ case E1000_DEV_ID_82580_SERDES:
+ case E1000_DEV_ID_82580_SGMII:
+ case E1000_DEV_ID_82580_COPPER_DUAL:
+ case E1000_DEV_ID_82580_QUAD_FIBER:
+ case E1000_DEV_ID_DH89XXCC_SGMII:
+ case E1000_DEV_ID_DH89XXCC_SERDES:
+ case E1000_DEV_ID_DH89XXCC_BACKPLANE:
+ case E1000_DEV_ID_DH89XXCC_SFP:
+ mac->type = e1000_82580;
+ break;
+ case E1000_DEV_ID_I350_COPPER:
+ case E1000_DEV_ID_I350_FIBER:
+ case E1000_DEV_ID_I350_SERDES:
+ case E1000_DEV_ID_I350_SGMII:
+ case E1000_DEV_ID_I350_DA4:
+ mac->type = e1000_i350;
+ break;
+ case E1000_DEV_ID_I210_COPPER_FLASHLESS:
+ case E1000_DEV_ID_I210_SERDES_FLASHLESS:
+ case E1000_DEV_ID_I210_COPPER:
+ case E1000_DEV_ID_I210_COPPER_OEM1:
+ case E1000_DEV_ID_I210_COPPER_IT:
+ case E1000_DEV_ID_I210_FIBER:
+ case E1000_DEV_ID_I210_SERDES:
+ case E1000_DEV_ID_I210_SGMII:
+ mac->type = e1000_i210;
+ break;
+ case E1000_DEV_ID_I211_COPPER:
+ mac->type = e1000_i211;
+ break;
+ case E1000_DEV_ID_82576_VF:
+ case E1000_DEV_ID_82576_VF_HV:
+ mac->type = e1000_vfadapt;
+ break;
+ case E1000_DEV_ID_I350_VF:
+ case E1000_DEV_ID_I350_VF_HV:
+ mac->type = e1000_vfadapt_i350;
+ break;
+
+ case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
+ case E1000_DEV_ID_I354_SGMII:
+ case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
+ mac->type = e1000_i354;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ ret_val = -E1000_ERR_MAC_INIT;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: true will initialize the rest of the function pointers
+ * getting the device ready for use. false will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing false will not generate any hardware
+ * reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+ s32 ret_val;
+
+ /* Can't do much good without knowing the MAC type. */
+ ret_val = e1000_set_mac_type(hw);
+ if (ret_val) {
+ DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+ goto out;
+ }
+
+ if (!hw->hw_addr) {
+ DEBUGOUT("ERROR: Registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Init function pointers to generic implementations. We do this first
+ * allowing a driver module to override it afterward.
+ */
+ e1000_init_mac_ops_generic(hw);
+ e1000_init_phy_ops_generic(hw);
+ e1000_init_nvm_ops_generic(hw);
+ e1000_init_mbx_ops_generic(hw);
+
+ /*
+ * Set up the init function pointers. These are functions within the
+ * adapter family file that sets up function pointers for the rest of
+ * the functions in that family.
+ */
+ switch (hw->mac.type) {
+ case e1000_82542:
+ e1000_init_function_pointers_82542(hw);
+ break;
+ case e1000_82543:
+ case e1000_82544:
+ e1000_init_function_pointers_82543(hw);
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ e1000_init_function_pointers_82540(hw);
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ e1000_init_function_pointers_82541(hw);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ e1000_init_function_pointers_82571(hw);
+ break;
+ case e1000_80003es2lan:
+ e1000_init_function_pointers_80003es2lan(hw);
+ break;
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ e1000_init_function_pointers_ich8lan(hw);
+ break;
+ case e1000_82575:
+ case e1000_82576:
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i354:
+ e1000_init_function_pointers_82575(hw);
+ break;
+ case e1000_i210:
+ case e1000_i211:
+ e1000_init_function_pointers_i210(hw);
+ break;
+ case e1000_vfadapt:
+ e1000_init_function_pointers_vf(hw);
+ break;
+ case e1000_vfadapt_i350:
+ e1000_init_function_pointers_vf(hw);
+ break;
+ default:
+ DEBUGOUT("Hardware not supported\n");
+ ret_val = -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /*
+ * Initialize the rest of the function pointers. These require some
+ * register reads/writes in some cases.
+ */
+ if (!(ret_val) && init_device) {
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_nvm_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_phy_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_mbx_params(hw);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adapter is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.get_bus_info)
+ return hw->mac.ops.get_bus_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.clear_vfta)
+ hw->mac.ops.clear_vfta(hw);
+}
+
+/**
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ if (hw->mac.ops.write_vfta)
+ hw->mac.ops.write_vfta(hw, offset, value);
+}
+
+/**
+ * e1000_update_mc_addr_list - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count)
+{
+ if (hw->mac.ops.update_mc_addr_list)
+ hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
+ mc_addr_count);
+}
+
+/**
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_for_link)
+ return hw->mac.ops.check_for_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_mng_mode)
+ return hw->mac.ops.check_mng_mode(hw);
+
+ return false;
+}
+
+/**
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+ return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.reset_hw)
+ return hw->mac.ops.reset_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.init_hw)
+ return hw->mac.ops.init_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_link)
+ return hw->mac.ops.setup_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ if (hw->mac.ops.get_link_up_info)
+ return hw->mac.ops.get_link_up_info(hw, speed, duplex);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_led)
+ return hw->mac.ops.setup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.cleanup_led)
+ return hw->mac.ops.cleanup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.blink_led)
+ return hw->mac.ops.blink_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_id_led_init - store LED configurations in SW
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the LED config in SW. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.id_led_init)
+ return hw->mac.ops.id_led_init(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_on)
+ return hw->mac.ops.led_on(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_off)
+ return hw->mac.ops.led_off(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+ e1000_update_adaptive_generic(hw);
+}
+
+/**
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+ return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.config_collision_dist)
+ hw->mac.ops.config_collision_dist(hw);
+}
+
+/**
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ if (hw->mac.ops.rar_set)
+ hw->mac.ops.rar_set(hw, addr, index);
+}
+
+/**
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.validate_mdi_setting)
+ return hw->mac.ops.validate_mdi_setting(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+ return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
+{
+ return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
+}
+
+/**
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ return e1000_mng_write_cmd_header_generic(hw, hdr);
+}
+
+/**
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+ return e1000_mng_enable_host_if_generic(hw);
+}
+
+/**
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.check_reset_block)
+ return hw->phy.ops.check_reset_block(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ if (hw->phy.ops.read_reg)
+ return hw->phy.ops.read_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ if (hw->phy.ops.write_reg)
+ return hw->phy.ops.write_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.release)
+ hw->phy.ops.release(hw);
+}
+
+/**
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.acquire)
+ return hw->phy.ops.acquire(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cfg_on_link_up - Configure PHY upon link up
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.cfg_on_link_up)
+ return hw->phy.ops.cfg_on_link_up(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_cable_length)
+ return hw->phy.ops.get_cable_length(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_info)
+ return hw->phy.ops.get_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.reset)
+ return hw->phy.ops.reset(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.commit)
+ return hw->phy.ops.commit(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d0_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is true, else clear lplu for D0
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d0_lplu_state)
+ return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d3_lplu_state)
+ return hw->phy.ops.set_d3_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.read_mac_addr)
+ return hw->mac.ops.read_mac_addr(hw);
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_read_pba_string - Read device part number string
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
+{
+ return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
+}
+
+/**
+ * e1000_read_pba_length - Read device part number string length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ return e1000_read_pba_length_generic(hw, pba_num_size);
+}
+
+/**
+ * e1000_read_pba_num - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+ return e1000_read_pba_num_generic(hw, pba_num);
+}
+
+/**
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.validate)
+ return hw->nvm.ops.validate(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.update)
+ return hw->nvm.ops.update(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.reload)
+ hw->nvm.ops.reload(hw);
+}
+
+/**
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.read)
+ return hw->nvm.ops.read(hw, offset, words, data);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.write)
+ return hw->nvm.ops.write(hw, offset, words, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+ u8 data)
+{
+ return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_up)
+ hw->phy.ops.power_up(hw);
+
+ e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_down)
+ hw->phy.ops.power_down(hw);
+}
+
+/**
+ * e1000_power_up_fiber_serdes_link - Power up serdes link
+ * @hw: pointer to the HW structure
+ *
+ * Power on the optics and PCS.
+ **/
+void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.power_up_serdes)
+ hw->mac.ops.power_up_serdes(hw);
+}
+
+/**
+ * e1000_shutdown_fiber_serdes_link - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * Shutdown the optics and PCS on driver unload.
+ **/
+void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.shutdown_serdes)
+ hw->mac.ops.shutdown_serdes(hw);
+}
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_API_H_
+#define _E1000_API_H_
+
+#include "e1000_hw.h"
+
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_i210(struct e1000_hw *hw);
+
+s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+s32 e1000_init_mbx_params(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_id_led_init(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+ u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+void e1000_release_phy(struct e1000_hw *hw);
+s32 e1000_acquire_phy(struct e1000_hw *hw);
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size);
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
+u32 e1000_translate_register_82542(u32 reg);
+
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the Rx descriptor with EOP set
+ * error = the 8 bit error field of the Rx descriptor with EOP set
+ * length = the sum of all the length fields of the Rx descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = true;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = false;
+ * }
+ * ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, \
+ min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b))
+#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */
+#endif /* _E1000_API_H_ */
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */
+/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
+#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+/* Physical Func Reset Done Indication */
+#define E1000_CTRL_EXT_PFRSTD 0x00004000
+#define E1000_CTRL_EXT_SDLPE 0X00040000 /* SerDes Low Power Enable */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+/* Offset of the link mode field in Ctrl Ext register */
+#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22
+#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_LSECCK 0x00001000
+#define E1000_CTRL_EXT_PHYPDEN 0x00100000
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a))
+#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a))
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+#define E1000_IVAR_VALID 0x80
+#define E1000_GPIE_NSICR 0x00000001
+#define E1000_GPIE_MSIX_MODE 0x00000010
+#define E1000_GPIE_EIAME 0x40000000
+#define E1000_GPIE_PBA 0x80000000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+
+#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */
+#define E1000_RXDEXT_STATERR_LB 0x00040000
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ)
+#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
+#endif /* !EXTERNAL_RELEASE || E1000E_MQ */
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+
+#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM 0x01
+#define E1000_SWFW_PHY0_SM 0x02
+#define E1000_SWFW_PHY1_SM 0x04
+#define E1000_SWFW_CSR_SM 0x08
+#define E1000_SWFW_PHY2_SM 0x20
+#define E1000_SWFW_PHY3_SM 0x40
+#define E1000_SWFW_SW_MNG_SM 0x400
+
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
+#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_CONNSW_PHYSD 0x400
+#define E1000_CONNSW_PHY_PDN 0x800
+#define E1000_CONNSW_SERDESD 0x200
+#define E1000_CONNSW_AUTOSENSE_CONF 0x2
+#define E1000_CONNSW_AUTOSENSE_EN 0x1
+#define E1000_PCS_CFG_PCS_EN 8
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */
+#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */
+#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define SPEED_2500 2500
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME 20
+
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX ( \
+ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+ ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG ( \
+ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+ ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_PHY_LED0_MODE_MASK 0x00000007
+#define E1000_PHY_LED0_IVRT 0x00000008
+#define E1000_PHY_LED0_MASK 0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */
+
+/* Transmit Control */
+#define E1000_TCTL_EN 0x00000002 /* enable Tx */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+#define E1000_RFCTL_LEF 0x00040000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* Low Power IDLE Control */
+#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_10K 0x000A /* 10KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_14K 0x000E /* 14KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_18K 0x0012
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_26K 0x001A
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_35K 0x0023
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBA_RXA_MASK 0xFFFF
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Uncorrectable/correctable ECC Error counts and enable bits */
+#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8
+#define E1000_PBECCSTS_ECC_ENABLE 0x00010000
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* Rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */
+#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */
+#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
+/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_INT_ASSERTED 0x80000000
+#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
+#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
+#define E1000_ICR_FER 0x00400000 /* Fatal Error */
+
+#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/
+#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */
+
+/* PBA ECC Register */
+#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */
+#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */
+#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */
+#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
+#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
+#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
+
+#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
+#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
+/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
+#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
+#define E1000_EITR_INTERVAL 0x00007FFC
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots. However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+#define E1000_RAH_QUEUE_MASK_82575 0x000C0000
+#define E1000_RAH_POOL_1 0x00040000
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+#define E1000_ERR_MBX 15
+#define E1000_ERR_INVALID_ARGUMENT 16
+#define E1000_ERR_NO_SPACE 17
+#define E1000_ERR_NVM_PBA_SECTION 18
+#define E1000_ERR_I2C 19
+#define E1000_ERR_INVM_VALUE_NOT_FOUND 20
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT 10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT 10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+
+#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
+#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */
+
+#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */
+#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */
+#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
+#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
+#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
+#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
+#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
+#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */
+#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */
+
+#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000
+#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000
+
+#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000
+#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000
+
+#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
+#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
+#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
+#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
+
+#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
+#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
+#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
+#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
+#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
+#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
+
+#define E1000_TIMINCA_16NS_SHIFT 24
+#define E1000_TIMINCA_INCPERIOD_SHIFT 24
+#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF
+
+#define E1000_TSICR_TXTS 0x00000002
+#define E1000_TSIM_TXTS 0x00000002
+/* TUPLE Filtering Configuration */
+#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
+#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
+#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
+/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
+#define E1000_TTQF_PROTOCOL_TCP 0x0
+/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_UDP 0x1
+/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_SCTP 0x2
+#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
+#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
+#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
+#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
+#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
+#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
+#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
+#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
+
+#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
+#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
+#define E1000_MDICNFG_PHY_MASK 0x03E00000
+#define E1000_MDICNFG_PHY_SHIFT 21
+
+#define E1000_MEDIA_PORT_COPPER 1
+#define E1000_MEDIA_PORT_OTHER 2
+#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2
+#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3
+#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */
+#define E1000_M88E1112_MAC_CTRL_1 0x10
+#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */
+#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7
+#define E1000_M88E1112_PAGE_ADDR 0x16
+#define E1000_M88E1112_STATUS 0x01
+
+#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */
+#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */
+#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */
+#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */
+#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */
+
+/* I350 EEE defines */
+#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */
+#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */
+#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */
+#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */
+#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */
+/* EEE status */
+#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */
+#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */
+#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */
+#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */
+#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */
+#define E1000_M88E1543_EEE_CTRL_1 0x0
+#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */
+#define E1000_EEE_ADV_DEV_I354 7
+#define E1000_EEE_ADV_ADDR_I354 60
+#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */
+#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */
+#define E1000_PCS_STATUS_DEV_I354 3
+#define E1000_PCS_STATUS_ADDR_I354 1
+#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400
+#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800
+#define E1000_M88E1512_CFG_REG_1 0x0010
+#define E1000_M88E1512_CFG_REG_2 0x0011
+#define E1000_M88E1512_CFG_REG_3 0x0007
+#define E1000_M88E1512_MODE 0x0014
+#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */
+#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */
+#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
+#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
+#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
+#define E1000_GCR_CAP_VER2 0x00040000
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */
+
+/* mPHY address control and data registers */
+#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */
+#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000
+#define E1000_MPHY_DATA 0x0E10 /* Data Register */
+
+/* AFE CSR Offset for PCS CLK */
+#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004
+/* Override for near end digital loopback. */
+#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+/* 1=Repeater/switch device port 0=DTE device */
+#define CR_1000T_REPEATER_DTE 0x0400
+/* 1=Configure PHY as Master 0=Configure PHY as Slave */
+#define CR_1000T_MS_VALUE 0x0800
+/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */
+#define CR_1000T_MS_ENABLE 0x1000
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Register */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */
+#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */
+#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */
+#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */
+#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */
+#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */
+#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */
+#define E1000_FLUDONE_ATTEMPTS 20000
+#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */
+#define E1000_I210_FIFO_SEL_RX 0x00
+#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i))
+#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0)
+#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06
+#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01
+
+#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */
+/* Secure FLASH mode requires removing MSb */
+#define E1000_I210_FW_PTR_MASK 0x7FFF
+/* Firmware code revision field word offset*/
+#define E1000_I210_FW_VER_OFFSET 328
+
+#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_VERSION 0x0005
+#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
+#define NVM_PHY_CLASS_WORD 0x0007
+#define E1000_I210_NVM_FW_MODULE_PTR 0x0010
+#define E1000_I350_NVM_FW_MODULE_PTR 0x0051
+#define NVM_FUTURE_INIT_WORD1 0x0019
+#define NVM_ETRACK_WORD 0x0042
+#define NVM_ETRACK_HIWORD 0x0043
+#define NVM_COMB_VER_OFF 0x0083
+#define NVM_COMB_VER_PTR 0x003d
+
+/* NVM version defines */
+#define NVM_MAJOR_MASK 0xF000
+#define NVM_MINOR_MASK 0x0FF0
+#define NVM_IMAGE_ID_MASK 0x000F
+#define NVM_COMB_VER_MASK 0x00FF
+#define NVM_MAJOR_SHIFT 12
+#define NVM_MINOR_SHIFT 4
+#define NVM_COMB_VER_SHFT 8
+#define NVM_VER_INVALID 0xFFFF
+#define NVM_ETRACK_SHIFT 16
+#define NVM_ETRACK_VALID 0x8000
+#define NVM_NEW_DEC_MASK 0x0F00
+#define NVM_HEX_CONV 16
+#define NVM_HEX_TENS 10
+
+/* FW version defines */
+/* Offset of "Loader patch ptr" in Firmware Header */
+#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01
+/* Patch generation hour & minutes */
+#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04
+/* Patch generation month & day */
+#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05
+/* Patch generation year */
+#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06
+/* Patch major & minor numbers */
+#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07
+
+#define NVM_MAC_ADDR 0x0000
+#define NVM_SUB_DEV_ID 0x000B
+#define NVM_SUB_VEN_ID 0x000C
+#define NVM_DEV_ID 0x000D
+#define NVM_VEN_ID 0x000E
+#define NVM_INIT_CTRL_2 0x000F
+#define NVM_INIT_CTRL_4 0x0013
+#define NVM_LED_1_CFG 0x001C
+#define NVM_LED_0_2_CFG 0x001F
+
+#define NVM_COMPAT_VALID_CSUM 0x0001
+#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040
+
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+#define NVM_COMPATIBILITY_REG_3 0x0003
+#define NVM_COMPATIBILITY_BIT_MASK 0x8000
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
+#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
+#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
+
+#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0)
+
+/* Mask bits for fields in Word 0x24 of the NVM */
+#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
+#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */
+/* Offset of Link Mode bits for 82575/82576 */
+#define NVM_WORD24_LNK_MODE_OFFSET 8
+/* Offset of Link Mode bits for 82580 up */
+#define NVM_WORD24_82580_LNK_MODE_OFFSET 4
+
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK 0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM 0x0800
+
+/* length of string needed to store PBA number */
+#define E1000_PBANUM_LENGTH 11
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM 0xBABA
+
+/* PBA (printed board assembly) number words */
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_PBA_PTR_GUARD 0xFAFA
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI 0x01
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+#define PCIE_DEVICE_CONTROL2 0x28
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+#define PCIE_LINK_SPEED_MASK 0x0F
+#define PCIE_LINK_SPEED_2500 0x01
+#define PCIE_LINK_SPEED_5000 0x02
+#define PCIE_DEVICE_CONTROL2_16ms 0x0005
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs.
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define M88E1543_E_PHY_ID 0x01410EA0
+#define M88E1512_E_PHY_ID 0x01410DD0
+#define M88E1112_E_PHY_ID 0x01410C90
+#define I347AT4_E_PHY_ID 0x01410DC0
+#define M88E1340M_E_PHY_ID 0x01410DF0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define BME1000_E_PHY_ID 0x01410CB0
+#define BME1000_E_PHY_ID_R2 0x01410CB1
+#define I82577_E_PHY_ID 0x01540050
+#define I82578_E_PHY_ID 0x004DD040
+#define I82579_E_PHY_ID 0x01540090
+#define I217_E_PHY_ID 0x015400A0
+#define I82580_I_PHY_ID 0x015403A0
+#define I350_I_PHY_ID 0x015403B0
+#define I210_I_PHY_ID 0x01410C00
+#define IGP04E1000_E_PHY_ID 0x02A80391
+#define M88_VENDOR 0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
+/* MDI Crossover Mode bits 6:5 Manual MDI configuration */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/* 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+
+/* Intel I347AT4 Registers */
+#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */
+#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */
+#define I347AT4_PAGE_SELECT 0x16
+
+/* I347AT4 Extended PHY Specific Control Register */
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
+#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000
+#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000
+#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000
+#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000
+#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000
+#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000
+#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000
+#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000
+#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000
+
+/* I347AT4 PHY Cable Diagnostics Control */
+#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */
+
+/* M88E1112 only registers */
+#define M88E1112_VCT_DSP_DISTANCE 0x001A
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */
+#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */
+#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */
+
+/* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21)
+
+#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+/* Kumeran Mode Control */
+#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16)
+#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */
+
+/* MDI Control */
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_ERROR 0x40000000
+#define E1000_MDIC_DEST 0x80000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT 16
+#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT 16
+
+#define E1000_LSECTXCTRL_EN_MASK 0x00000003
+#define E1000_LSECTXCTRL_DISABLE 0x0
+#define E1000_LSECTXCTRL_AUTH 0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
+#define E1000_LSECTXCTRL_AISCI 0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT 2
+#define E1000_LSECRXCTRL_DISABLE 0x0
+#define E1000_LSECRXCTRL_CHECK 0x1
+#define E1000_LSECRXCTRL_STRICT 0x2
+#define E1000_LSECRXCTRL_DROP 0x3
+#define E1000_LSECRXCTRL_PLSH 0x00000040
+#define E1000_LSECRXCTRL_RP 0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
+
+/* Tx Rate-Scheduler Config fields */
+#define E1000_RTTBCNRC_RS_ENA 0x80000000
+#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF
+#define E1000_RTTBCNRC_RF_INT_SHIFT 14
+#define E1000_RTTBCNRC_RF_INT_MASK \
+ (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
+
+/* DMA Coalescing register fields */
+/* DMA Coalescing Watchdog Timer */
+#define E1000_DMACR_DMACWT_MASK 0x00003FFF
+/* DMA Coalescing Rx Threshold */
+#define E1000_DMACR_DMACTHR_MASK 0x00FF0000
+#define E1000_DMACR_DMACTHR_SHIFT 16
+/* Lx when no PCIe transactions */
+#define E1000_DMACR_DMAC_LX_MASK 0x30000000
+#define E1000_DMACR_DMAC_LX_SHIFT 28
+#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
+/* DMA Coalescing BMC-to-OS Watchdog Enable */
+#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000
+
+/* DMA Coalescing Transmit Threshold */
+#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF
+
+#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
+
+/* Rx Traffic Rate Threshold */
+#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF
+/* Rx packet rate in current window */
+#define E1000_DMCRTRH_LRPRCW 0x80000000
+
+/* DMA Coal Rx Traffic Current Count */
+#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF
+
+/* Flow ctrl Rx Threshold High val */
+#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0
+#define E1000_FCRTC_RTH_COAL_SHIFT 4
+/* Lx power decision based on DMA coal */
+#define E1000_PCIEMISC_LX_DECISION 0x00000080
+
+#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */
+#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */
+#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */
+
+/* Proxy Filter Control */
+#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */
+#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */
+#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */
+#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */
+#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */
+#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
+#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
+#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */
+#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */
+/* Proxy Status */
+#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
+
+/* Firmware Status */
+#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */
+/* VF Control */
+#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */
+
+#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */
+/* Lan ID bit field offset in status register */
+#define E1000_STATUS_LAN_ID_OFFSET 2
+#define E1000_VFTA_ENTRIES 128
+#ifndef E1000_UNUSEDARG
+#define E1000_UNUSEDARG
+#endif /* E1000_UNUSEDARG */
+#ifndef ERROR_REPORT
+#define ERROR_REPORT(fmt) do { } while (0)
+#endif /* ERROR_REPORT */
+#endif /* _E1000_DEFINES_H_ */
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82547EI_MOBILE 0x101A
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82571EB_COPPER 0x105E
+#define E1000_DEV_ID_82571EB_FIBER 0x105F
+#define E1000_DEV_ID_82571EB_SERDES 0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
+#define E1000_DEV_ID_82572EI_COPPER 0x107D
+#define E1000_DEV_ID_82572EI_FIBER 0x107E
+#define E1000_DEV_ID_82572EI_SERDES 0x107F
+#define E1000_DEV_ID_82572EI 0x10B9
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+#define E1000_DEV_ID_82573L 0x109A
+#define E1000_DEV_ID_82574L 0x10D3
+#define E1000_DEV_ID_82574LA 0x10F6
+#define E1000_DEV_ID_82583V 0x150C
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+#define E1000_DEV_ID_ICH8_82567V_3 0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
+#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
+#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
+#define E1000_DEV_ID_ICH9_BM 0x10E5
+#define E1000_DEV_ID_ICH9_IGP_C 0x294C
+#define E1000_DEV_ID_ICH9_IFE 0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
+#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
+#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
+#define E1000_DEV_ID_PCH2_LV_LM 0x1502
+#define E1000_DEV_ID_PCH2_LV_V 0x1503
+#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A
+#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B
+#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A
+#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559
+#define E1000_DEV_ID_82576 0x10C9
+#define E1000_DEV_ID_82576_FIBER 0x10E6
+#define E1000_DEV_ID_82576_SERDES 0x10E7
+#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
+#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
+#define E1000_DEV_ID_82576_NS 0x150A
+#define E1000_DEV_ID_82576_NS_SERDES 0x1518
+#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_82576_VF_HV 0x152D
+#define E1000_DEV_ID_I350_VF 0x1520
+#define E1000_DEV_ID_I350_VF_HV 0x152F
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+#define E1000_DEV_ID_82580_COPPER 0x150E
+#define E1000_DEV_ID_82580_FIBER 0x150F
+#define E1000_DEV_ID_82580_SERDES 0x1510
+#define E1000_DEV_ID_82580_SGMII 0x1511
+#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
+#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
+#define E1000_DEV_ID_I350_COPPER 0x1521
+#define E1000_DEV_ID_I350_FIBER 0x1522
+#define E1000_DEV_ID_I350_SERDES 0x1523
+#define E1000_DEV_ID_I350_SGMII 0x1524
+#define E1000_DEV_ID_I350_DA4 0x1546
+#define E1000_DEV_ID_I210_COPPER 0x1533
+#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534
+#define E1000_DEV_ID_I210_COPPER_IT 0x1535
+#define E1000_DEV_ID_I210_FIBER 0x1536
+#define E1000_DEV_ID_I210_SERDES 0x1537
+#define E1000_DEV_ID_I210_SGMII 0x1538
+#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B
+#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C
+#define E1000_DEV_ID_I211_COPPER 0x1539
+#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40
+#define E1000_DEV_ID_I354_SGMII 0x1F41
+#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45
+#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438
+#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
+#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
+#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
+
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+#define E1000_FUNC_2 2
+#define E1000_FUNC_3 3
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_82542,
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_82571,
+ e1000_82572,
+ e1000_82573,
+ e1000_82574,
+ e1000_82583,
+ e1000_80003es2lan,
+ e1000_ich8lan,
+ e1000_ich9lan,
+ e1000_ich10lan,
+ e1000_pchlan,
+ e1000_pch2lan,
+ e1000_pch_lpt,
+ e1000_82575,
+ e1000_82576,
+ e1000_82580,
+ e1000_i350,
+ e1000_i354,
+ e1000_i210,
+ e1000_i211,
+ e1000_vfadapt,
+ e1000_vfadapt_i350,
+ e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
+};
+
+enum e1000_media_type {
+ e1000_media_type_unknown = 0,
+ e1000_media_type_copper = 1,
+ e1000_media_type_fiber = 2,
+ e1000_media_type_internal_serdes = 3,
+ e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+ e1000_nvm_unknown = 0,
+ e1000_nvm_none,
+ e1000_nvm_eeprom_spi,
+ e1000_nvm_eeprom_microwire,
+ e1000_nvm_flash_hw,
+ e1000_nvm_invm,
+ e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+ e1000_nvm_override_none = 0,
+ e1000_nvm_override_spi_small,
+ e1000_nvm_override_spi_large,
+ e1000_nvm_override_microwire_small,
+ e1000_nvm_override_microwire_large
+};
+
+enum e1000_phy_type {
+ e1000_phy_unknown = 0,
+ e1000_phy_none,
+ e1000_phy_m88,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+ e1000_phy_bm,
+ e1000_phy_82578,
+ e1000_phy_82577,
+ e1000_phy_82579,
+ e1000_phy_i217,
+ e1000_phy_82580,
+ e1000_phy_vf,
+ e1000_phy_i210,
+};
+
+enum e1000_bus_type {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
+ e1000_bus_type_reserved
+};
+
+enum e1000_bus_speed {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_2500,
+ e1000_bus_speed_5000,
+ e1000_bus_speed_reserved
+};
+
+enum e1000_bus_width {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_pcie_x1,
+ e1000_bus_width_pcie_x2,
+ e1000_bus_width_pcie_x4 = 4,
+ e1000_bus_width_pcie_x8 = 8,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full,
+ e1000_fc_default = 0xFF
+};
+
+enum e1000_ffe_config {
+ e1000_ffe_config_enabled = 0,
+ e1000_ffe_config_active,
+ e1000_ffe_config_blocked
+};
+
+enum e1000_dsp_config {
+ e1000_dsp_config_disabled = 0,
+ e1000_dsp_config_enabled,
+ e1000_dsp_config_activated,
+ e1000_dsp_config_undefined = 0xFF
+};
+
+enum e1000_ms_type {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+ e1000_serdes_link_down = 0,
+ e1000_serdes_link_autoneg_progress,
+ e1000_serdes_link_autoneg_complete,
+ e1000_serdes_link_forced_up
+};
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ __le16 length; /* Length of data DMAed into data buffer */
+ __le16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ __le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ __le64 buffer_addr;
+ __le64 reserved;
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length;
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+
+/* Number of packet split data buffers (not including the header buffer) */
+#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
+
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ __le64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length0; /* length of buffer 0 */
+ __le16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ __le16 header_status;
+ /* length of buffers 1-3 */
+ __le16 length[PS_PAGE_BUFFERS];
+ } upper;
+ __le64 reserved;
+ } wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ __le32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ __le16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ __le32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ __le16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ __le32 cmd_and_length;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ __le16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 typ_len_ext;
+ u8 cmd;
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 tor;
+ u64 tot;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
+ u64 cbtmpc;
+ u64 htdpmc;
+ u64 cbrdpc;
+ u64 cbrmpc;
+ u64 rpthc;
+ u64 hgptc;
+ u64 htcbdpc;
+ u64 hgorc;
+ u64 hgotc;
+ u64 lenerrs;
+ u64 scvpc;
+ u64 hrmpc;
+ u64 doosync;
+ u64 o2bgptc;
+ u64 o2bspc;
+ u64 b2ospc;
+ u64 b2ogprc;
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+struct e1000_phy_stats {
+ u32 idle_errors;
+ u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+ u8 command_id;
+ u8 command_length;
+ u8 command_options;
+ u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH 252
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header;
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header;
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
+#include "e1000_mbx.h"
+
+/* Function pointers for the MAC. */
+struct e1000_mac_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*id_led_init)(struct e1000_hw *);
+ s32 (*blink_led)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ s32 (*cleanup_led)(struct e1000_hw *);
+ void (*clear_hw_cntrs)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ void (*set_lan_id)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ s32 (*led_on)(struct e1000_hw *);
+ s32 (*led_off)(struct e1000_hw *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ void (*shutdown_serdes)(struct e1000_hw *);
+ void (*power_up_serdes)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ s32 (*setup_physical_interface)(struct e1000_hw *);
+ s32 (*setup_led)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*config_collision_dist)(struct e1000_hw *);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+ s32 (*validate_mdi_setting)(struct e1000_hw *);
+ s32 (*acquire_swfw_sync)(struct e1000_hw *, u16);
+ void (*release_swfw_sync)(struct e1000_hw *, u16);
+};
+
+/* When to use various PHY register access functions:
+ *
+ * Func Caller
+ * Function Does Does When to use
+ * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ * X_reg L,P,A n/a for simple PHY reg accesses
+ * X_reg_locked P,A L for multiple accesses of different regs
+ * on different pages
+ * X_reg_page A L,P for multiple accesses of different regs
+ * on the same page
+ *
+ * Where X=[read|write], L=locking, P=sets page, A=register access
+ *
+ */
+struct e1000_phy_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*cfg_on_link_up)(struct e1000_hw *);
+ s32 (*check_polarity)(struct e1000_hw *);
+ s32 (*check_reset_block)(struct e1000_hw *);
+ s32 (*commit)(struct e1000_hw *);
+ s32 (*force_speed_duplex)(struct e1000_hw *);
+ s32 (*get_cfg_done)(struct e1000_hw *hw);
+ s32 (*get_cable_length)(struct e1000_hw *);
+ s32 (*get_info)(struct e1000_hw *);
+ s32 (*set_page)(struct e1000_hw *, u16);
+ s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
+ s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+ s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
+ void (*release)(struct e1000_hw *);
+ s32 (*reset)(struct e1000_hw *);
+ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
+ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
+ s32 (*write_reg)(struct e1000_hw *, u32, u16);
+ s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
+ s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
+ void (*power_up)(struct e1000_hw *);
+ void (*power_down)(struct e1000_hw *);
+ s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *);
+ s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
+};
+
+/* Function pointers for the NVM. */
+struct e1000_nvm_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
+ void (*release)(struct e1000_hw *);
+ void (*reload)(struct e1000_hw *);
+ s32 (*update)(struct e1000_hw *);
+ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+ s32 (*validate)(struct e1000_hw *);
+ s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[ETH_ADDR_LEN];
+ u8 perm_addr[ETH_ADDR_LEN];
+
+ enum e1000_mac_type type;
+
+ u32 collision_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ u32 mc_filter_type;
+ u32 tx_packet_delta;
+ u32 txcw;
+
+ u16 current_ifs_val;
+ u16 ifs_max_val;
+ u16 ifs_min_val;
+ u16 ifs_ratio;
+ u16 ifs_step_size;
+ u16 mta_reg_count;
+ u16 uta_reg_count;
+
+ /* Maximum size of the MTA register table in all supported adapters */
+ #define MAX_MTA_REG 128
+ u32 mta_shadow[MAX_MTA_REG];
+ u16 rar_entry_count;
+
+ u8 forced_speed_duplex;
+
+ bool adaptive_ifs;
+ bool has_fwsm;
+ bool arc_subsystem_valid;
+ bool asf_firmware_present;
+ bool autoneg;
+ bool autoneg_failed;
+ bool get_link_status;
+ bool in_ifs_mode;
+ bool report_tx_early;
+ enum e1000_serdes_link_state serdes_link_state;
+ bool serdes_has_link;
+ bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+ struct e1000_phy_operations ops;
+ enum e1000_phy_type type;
+
+ enum e1000_1000t_rx_status local_rx;
+ enum e1000_1000t_rx_status remote_rx;
+ enum e1000_ms_type ms_type;
+ enum e1000_ms_type original_ms_type;
+ enum e1000_rev_polarity cable_polarity;
+ enum e1000_smart_speed smart_speed;
+
+ u32 addr;
+ u32 id;
+ u32 reset_delay_us; /* in usec */
+ u32 revision;
+
+ enum e1000_media_type media_type;
+
+ u16 autoneg_advertised;
+ u16 autoneg_mask;
+ u16 cable_length;
+ u16 max_cable_length;
+ u16 min_cable_length;
+
+ u8 mdix;
+
+ bool disable_polarity_correction;
+ bool is_mdix;
+ bool polarity_correction;
+ bool speed_downgraded;
+ bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+ struct e1000_nvm_operations ops;
+ enum e1000_nvm_type type;
+ enum e1000_nvm_override override;
+
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+
+ u16 word_size;
+ u16 delay_usec;
+ u16 address_bits;
+ u16 opcode_bits;
+ u16 page_size;
+};
+
+struct e1000_bus_info {
+ enum e1000_bus_type type;
+ enum e1000_bus_speed speed;
+ enum e1000_bus_width width;
+
+ u16 func;
+ u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ u16 refresh_time; /* Flow control refresh timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ enum e1000_fc_mode current_mode; /* FC mode in effect */
+ enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_82541 {
+ enum e1000_dsp_config dsp_config;
+ enum e1000_ffe_config ffe_config;
+ u16 spd_default;
+ bool phy_init_script;
+};
+
+struct e1000_dev_spec_82542 {
+ bool dma_fairness;
+};
+
+struct e1000_dev_spec_82543 {
+ u32 tbi_compatibility;
+ bool dma_fairness;
+ bool init_phy_disabled;
+};
+
+struct e1000_dev_spec_82571 {
+ bool laa_is_present;
+ u32 smb_counter;
+ E1000_MUTEX swflag_mutex;
+};
+
+struct e1000_dev_spec_80003es2lan {
+ bool mdic_wa_enable;
+};
+
+struct e1000_shadow_ram {
+ u16 value;
+ bool modified;
+};
+
+#define E1000_SHADOW_RAM_WORDS 2048
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+/* I218 PHY Ultra Low Power (ULP) states */
+enum e1000_ulp_state {
+ e1000_ulp_state_unknown,
+ e1000_ulp_state_off,
+ e1000_ulp_state_on,
+};
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+struct e1000_dev_spec_ich8lan {
+ bool kmrn_lock_loss_workaround_enabled;
+ struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+ E1000_MUTEX nvm_mutex;
+ E1000_MUTEX swflag_mutex;
+ bool nvm_k1_enabled;
+ bool eee_disable;
+ u16 eee_lp_ability;
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+ enum e1000_ulp_state ulp_state;
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+ u16 lat_enc;
+ u16 max_ltr_enc;
+ bool smbus_disable;
+};
+
+struct e1000_dev_spec_82575 {
+ bool sgmii_active;
+ bool global_device_reset;
+ bool eee_disable;
+ bool module_plugged;
+ bool clear_semaphore_once;
+ u32 mtu;
+ struct sfp_e1000_flags eth_flags;
+ u8 media_port;
+ bool media_changed;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_fc_info fc;
+ struct e1000_phy_info phy;
+ struct e1000_nvm_info nvm;
+ struct e1000_bus_info bus;
+ struct e1000_mbx_info mbx;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+ union {
+ struct e1000_dev_spec_82541 _82541;
+ struct e1000_dev_spec_82542 _82542;
+ struct e1000_dev_spec_82543 _82543;
+ struct e1000_dev_spec_82571 _82571;
+ struct e1000_dev_spec_80003es2lan _80003es2lan;
+ struct e1000_dev_spec_ich8lan ich8lan;
+ struct e1000_dev_spec_82575 _82575;
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+#include "e1000_82541.h"
+#include "e1000_82543.h"
+#include "e1000_82571.h"
+#include "e1000_80003es2lan.h"
+#include "e1000_ich8lan.h"
+#include "e1000_82575.h"
+#include "e1000_i210.h"
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+
+STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
+STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
+STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
+
+/**
+ * e1000_acquire_nvm_i210 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclusive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_i210");
+
+ ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_i210 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_i210");
+
+ e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_i210");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_i210(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_i210 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_i210");
+
+ while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
+ ; /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_i210");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ /* In rare circumstances, the SW semaphore may already be held
+ * unintentionally. Clear the semaphore once before giving up.
+ */
+ if (hw->dev_spec._82575.clear_semaphore_once) {
+ hw->dev_spec._82575.clear_semaphore_once = false;
+ e1000_put_hw_semaphore_generic(hw);
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ }
+ }
+
+ /* If we do not have the semaphore here, we have to give up. */
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ return -E1000_ERR_NVM;
+ }
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ return -E1000_ERR_NVM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the Shadow Ram to read
+ * @words: number of words to read
+ * @data: word read from the Shadow Ram
+ *
+ * Reads a 16 bit word from the Shadow Ram using the EERD register.
+ * Uses necessary synchronization semaphores.
+ **/
+s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 status = E1000_SUCCESS;
+ u16 i, count;
+
+ DEBUGFUNC("e1000_read_nvm_srrd_i210");
+
+ /* We cannot hold synchronization semaphores for too long,
+ * because of forceful takeover procedure. However it is more efficient
+ * to read in bursts than synchronizing access for each word. */
+ for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+ count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+ E1000_EERD_EEWR_MAX_COUNT : (words - i);
+ if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+ status = e1000_read_nvm_eerd(hw, offset, count,
+ data + i);
+ hw->nvm.ops.release(hw);
+ } else {
+ status = E1000_ERR_SWFW_SYNC;
+ }
+
+ if (status != E1000_SUCCESS)
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
+ * @hw: pointer to the HW structure
+ * @offset: offset within the Shadow RAM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the Shadow RAM
+ *
+ * Writes data to Shadow RAM at offset using EEWR register.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * data will not be committed to FLASH and also Shadow RAM will most likely
+ * contain an invalid checksum.
+ *
+ * If error code is returned, data and Shadow RAM may be inconsistent - buffer
+ * partially written.
+ **/
+s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 status = E1000_SUCCESS;
+ u16 i, count;
+
+ DEBUGFUNC("e1000_write_nvm_srwr_i210");
+
+ /* We cannot hold synchronization semaphores for too long,
+ * because of forceful takeover procedure. However it is more efficient
+ * to write in bursts than synchronizing access for each word. */
+ for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+ count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+ E1000_EERD_EEWR_MAX_COUNT : (words - i);
+ if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+ status = e1000_write_nvm_srwr(hw, offset, count,
+ data + i);
+ hw->nvm.ops.release(hw);
+ } else {
+ status = E1000_ERR_SWFW_SYNC;
+ }
+
+ if (status != E1000_SUCCESS)
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
+ * @hw: pointer to the HW structure
+ * @offset: offset within the Shadow Ram to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the Shadow Ram
+ *
+ * Writes data to Shadow Ram at offset using EEWR register.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * Shadow Ram will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, k, eewr = 0;
+ u32 attempts = 100000;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_nvm_srwr");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+ (data[i] << E1000_NVM_RW_REG_DATA) |
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_SRWR, eewr);
+
+ for (k = 0; k < attempts; k++) {
+ if (E1000_NVM_RW_REG_DONE &
+ E1000_READ_REG(hw, E1000_SRWR)) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(5);
+ }
+
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("Shadow RAM write EEWR timed out\n");
+ break;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/** e1000_read_invm_word_i210 - Reads OTP
+ * @hw: pointer to the HW structure
+ * @address: the word address (aka eeprom offset) to read
+ * @data: pointer to the data read
+ *
+ * Reads 16-bit words from the OTP. Return error when the word is not
+ * stored in OTP.
+ **/
+STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
+{
+ s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+ u32 invm_dword;
+ u16 i;
+ u8 record_type, word_address;
+
+ DEBUGFUNC("e1000_read_invm_word_i210");
+
+ for (i = 0; i < E1000_INVM_SIZE; i++) {
+ invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
+ /* Get record type */
+ record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
+ if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
+ break;
+ if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
+ i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
+ if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
+ i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
+ if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
+ word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
+ if (word_address == address) {
+ *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
+ DEBUGOUT2("Read INVM Word 0x%02x = %x",
+ address, *data);
+ status = E1000_SUCCESS;
+ break;
+ }
+ }
+ }
+ if (status != E1000_SUCCESS)
+ DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
+ return status;
+}
+
+/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
+ * @hw: pointer to the HW structure
+ * @address: the word address (aka eeprom offset) to read
+ * @data: pointer to the data read
+ *
+ * Wrapper function to return data formerly found in the NVM.
+ **/
+STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
+ u16 E1000_UNUSEDARG words, u16 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+ UNREFERENCED_1PARAMETER(words);
+
+ DEBUGFUNC("e1000_read_invm_i210");
+
+ /* Only the MAC addr is required to be present in the iNVM */
+ switch (offset) {
+ case NVM_MAC_ADDR:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
+ ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
+ &data[1]);
+ ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
+ &data[2]);
+ if (ret_val != E1000_SUCCESS)
+ DEBUGOUT("MAC Addr not found in iNVM\n");
+ break;
+ case NVM_INIT_CTRL_2:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+ if (ret_val != E1000_SUCCESS) {
+ *data = NVM_INIT_CTRL_2_DEFAULT_I211;
+ ret_val = E1000_SUCCESS;
+ }
+ break;
+ case NVM_INIT_CTRL_4:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+ if (ret_val != E1000_SUCCESS) {
+ *data = NVM_INIT_CTRL_4_DEFAULT_I211;
+ ret_val = E1000_SUCCESS;
+ }
+ break;
+ case NVM_LED_1_CFG:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+ if (ret_val != E1000_SUCCESS) {
+ *data = NVM_LED_1_CFG_DEFAULT_I211;
+ ret_val = E1000_SUCCESS;
+ }
+ break;
+ case NVM_LED_0_2_CFG:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+ if (ret_val != E1000_SUCCESS) {
+ *data = NVM_LED_0_2_CFG_DEFAULT_I211;
+ ret_val = E1000_SUCCESS;
+ }
+ break;
+ case NVM_ID_LED_SETTINGS:
+ ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+ if (ret_val != E1000_SUCCESS) {
+ *data = ID_LED_RESERVED_FFFF;
+ ret_val = E1000_SUCCESS;
+ }
+ break;
+ case NVM_SUB_DEV_ID:
+ *data = hw->subsystem_device_id;
+ break;
+ case NVM_SUB_VEN_ID:
+ *data = hw->subsystem_vendor_id;
+ break;
+ case NVM_DEV_ID:
+ *data = hw->device_id;
+ break;
+ case NVM_VEN_ID:
+ *data = hw->vendor_id;
+ break;
+ default:
+ DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
+ *data = NVM_RESERVED_WORD;
+ break;
+ }
+ return ret_val;
+}
+
+/**
+ * e1000_read_invm_version - Reads iNVM version and image type
+ * @hw: pointer to the HW structure
+ * @invm_ver: version structure for the version read
+ *
+ * Reads iNVM version and image type.
+ **/
+s32 e1000_read_invm_version(struct e1000_hw *hw,
+ struct e1000_fw_version *invm_ver)
+{
+ u32 *record = NULL;
+ u32 *next_record = NULL;
+ u32 i = 0;
+ u32 invm_dword = 0;
+ u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
+ E1000_INVM_RECORD_SIZE_IN_BYTES);
+ u32 buffer[E1000_INVM_SIZE];
+ s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+ u16 version = 0;
+
+ DEBUGFUNC("e1000_read_invm_version");
+
+ /* Read iNVM memory */
+ for (i = 0; i < E1000_INVM_SIZE; i++) {
+ invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
+ buffer[i] = invm_dword;
+ }
+
+ /* Read version number */
+ for (i = 1; i < invm_blocks; i++) {
+ record = &buffer[invm_blocks - i];
+ next_record = &buffer[invm_blocks - i + 1];
+
+ /* Check if we have first version location used */
+ if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
+ version = 0;
+ status = E1000_SUCCESS;
+ break;
+ }
+ /* Check if we have second version location used */
+ else if ((i == 1) &&
+ ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
+ version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+ status = E1000_SUCCESS;
+ break;
+ }
+ /*
+ * Check if we have odd version location
+ * used and it is the last one used
+ */
+ else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
+ ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
+ (i != 1))) {
+ version = (*next_record & E1000_INVM_VER_FIELD_TWO)
+ >> 13;
+ status = E1000_SUCCESS;
+ break;
+ }
+ /*
+ * Check if we have even version location
+ * used and it is the last one used
+ */
+ else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
+ ((*record & 0x3) == 0)) {
+ version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+ status = E1000_SUCCESS;
+ break;
+ }
+ }
+
+ if (status == E1000_SUCCESS) {
+ invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
+ >> E1000_INVM_MAJOR_SHIFT;
+ invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
+ }
+ /* Read Image Type */
+ for (i = 1; i < invm_blocks; i++) {
+ record = &buffer[invm_blocks - i];
+ next_record = &buffer[invm_blocks - i + 1];
+
+ /* Check if we have image type in first location used */
+ if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
+ invm_ver->invm_img_type = 0;
+ status = E1000_SUCCESS;
+ break;
+ }
+ /* Check if we have image type in first location used */
+ else if ((((*record & 0x3) == 0) &&
+ ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
+ ((((*record & 0x3) != 0) && (i != 1)))) {
+ invm_ver->invm_img_type =
+ (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
+ status = E1000_SUCCESS;
+ break;
+ }
+ }
+ return status;
+}
+
+/**
+ * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_i210");
+
+ if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+
+ /*
+ * Replace the read function with semaphore grabbing with
+ * the one that skips this for a while.
+ * We have semaphore taken already here.
+ */
+ read_op_ptr = hw->nvm.ops.read;
+ hw->nvm.ops.read = e1000_read_nvm_eerd;
+
+ status = e1000_validate_nvm_checksum_generic(hw);
+
+ /* Revert original read operation. */
+ hw->nvm.ops.read = read_op_ptr;
+
+ hw->nvm.ops.release(hw);
+ } else {
+ status = E1000_ERR_SWFW_SYNC;
+ }
+
+ return status;
+}
+
+
+/**
+ * e1000_update_nvm_checksum_i210 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM. Next commit EEPROM data onto the Flash.
+ **/
+s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_i210");
+
+ /*
+ * Read the first word from the EEPROM. If this times out or fails, do
+ * not continue or we could be in for a very long wait while every
+ * EEPROM read fails
+ */
+ ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("EEPROM read failed\n");
+ goto out;
+ }
+
+ if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+ /*
+ * Do not use hw->nvm.ops.write, hw->nvm.ops.read
+ * because we do not want to take the synchronization
+ * semaphores twice here.
+ */
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ hw->nvm.ops.release(hw);
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
+ &checksum);
+ if (ret_val != E1000_SUCCESS) {
+ hw->nvm.ops.release(hw);
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+ goto out;
+ }
+
+ hw->nvm.ops.release(hw);
+
+ ret_val = e1000_update_flash_i210(hw);
+ } else {
+ ret_val = E1000_ERR_SWFW_SYNC;
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_flash_presence_i210 - Check if flash device is detected.
+ * @hw: pointer to the HW structure
+ *
+ **/
+bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
+{
+ u32 eec = 0;
+ bool ret_val = false;
+
+ DEBUGFUNC("e1000_get_flash_presence_i210");
+
+ eec = E1000_READ_REG(hw, E1000_EECD);
+
+ if (eec & E1000_EECD_FLASH_DETECTED_I210)
+ ret_val = true;
+
+ return ret_val;
+}
+
+/**
+ * e1000_update_flash_i210 - Commit EEPROM to the flash
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_update_flash_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u32 flup;
+
+ DEBUGFUNC("e1000_update_flash_i210");
+
+ ret_val = e1000_pool_flash_update_done_i210(hw);
+ if (ret_val == -E1000_ERR_NVM) {
+ DEBUGOUT("Flash update time out\n");
+ goto out;
+ }
+
+ flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
+ E1000_WRITE_REG(hw, E1000_EECD, flup);
+
+ ret_val = e1000_pool_flash_update_done_i210(hw);
+ if (ret_val == E1000_SUCCESS)
+ DEBUGOUT("Flash update complete\n");
+ else
+ DEBUGOUT("Flash update time out\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_NVM;
+ u32 i, reg;
+
+ DEBUGFUNC("e1000_pool_flash_update_done_i210");
+
+ for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
+ reg = E1000_READ_REG(hw, E1000_EECD);
+ if (reg & E1000_EECD_FLUDONE_I210) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize the i210/i211 NVM parameters and function pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ struct e1000_nvm_info *nvm = &hw->nvm;
+
+ DEBUGFUNC("e1000_init_nvm_params_i210");
+
+ ret_val = e1000_init_nvm_params_82575(hw);
+ nvm->ops.acquire = e1000_acquire_nvm_i210;
+ nvm->ops.release = e1000_release_nvm_i210;
+ nvm->ops.valid_led_default = e1000_valid_led_default_i210;
+ if (e1000_get_flash_presence_i210(hw)) {
+ hw->nvm.type = e1000_nvm_flash_hw;
+ nvm->ops.read = e1000_read_nvm_srrd_i210;
+ nvm->ops.write = e1000_write_nvm_srwr_i210;
+ nvm->ops.validate = e1000_validate_nvm_checksum_i210;
+ nvm->ops.update = e1000_update_nvm_checksum_i210;
+ } else {
+ hw->nvm.type = e1000_nvm_invm;
+ nvm->ops.read = e1000_read_invm_i210;
+ nvm->ops.write = e1000_null_write_nvm;
+ nvm->ops.validate = e1000_null_ops_generic;
+ nvm->ops.update = e1000_null_ops_generic;
+ }
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_i210 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_i210(struct e1000_hw *hw)
+{
+ e1000_init_function_pointers_82575(hw);
+ hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
+
+ return;
+}
+
+/**
+ * e1000_valid_led_default_i210 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_i210");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+ switch (hw->phy.media_type) {
+ case e1000_media_type_internal_serdes:
+ *data = ID_LED_DEFAULT_I210_SERDES;
+ break;
+ case e1000_media_type_copper:
+ default:
+ *data = ID_LED_DEFAULT_I210;
+ break;
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * __e1000_access_xmdio_reg - Read/write XMDIO register
+ * @hw: pointer to the HW structure
+ * @address: XMDIO address to program
+ * @dev_addr: device address to program
+ * @data: pointer to value to read/write from/to the XMDIO address
+ * @read: boolean flag to indicate read or write
+ **/
+STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
+ u8 dev_addr, u16 *data, bool read)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("__e1000_access_xmdio_reg");
+
+ ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
+ dev_addr);
+ if (ret_val)
+ return ret_val;
+
+ if (read)
+ ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
+ else
+ ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
+ if (ret_val)
+ return ret_val;
+
+ /* Recalibrate the device back to 0 */
+ ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
+ if (ret_val)
+ return ret_val;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_xmdio_reg - Read XMDIO register
+ * @hw: pointer to the HW structure
+ * @addr: XMDIO address to program
+ * @dev_addr: device address to program
+ * @data: value to be read from the EMI address
+ **/
+s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
+{
+ DEBUGFUNC("e1000_read_xmdio_reg");
+
+ return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
+}
+
+/**
+ * e1000_write_xmdio_reg - Write XMDIO register
+ * @hw: pointer to the HW structure
+ * @addr: XMDIO address to program
+ * @dev_addr: device address to program
+ * @data: value to be written to the XMDIO address
+ **/
+s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
+{
+ DEBUGFUNC("e1000_read_xmdio_reg");
+
+ return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
+}
+
+/**
+ * e1000_pll_workaround_i210
+ * @hw: pointer to the HW structure
+ *
+ * Works around an errata in the PLL circuit where it occasionally
+ * provides the wrong clock frequency after power up.
+ **/
+STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u32 wuc, mdicnfg, ctrl_ext, reg_val;
+ u16 nvm_word, phy_word, pci_word, tmp_nvm;
+ int i;
+
+ /* Get and set needed register values */
+ wuc = E1000_READ_REG(hw, E1000_WUC);
+ mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+ reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
+ E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
+
+ /* Get data from NVM, or set default */
+ ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
+ &nvm_word);
+ if (ret_val != E1000_SUCCESS)
+ nvm_word = E1000_INVM_DEFAULT_AL;
+ tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
+ for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
+ /* check current state */
+ hw->phy.ops.read_reg(hw, (E1000_PHY_PLL_FREQ_PAGE |
+ E1000_PHY_PLL_FREQ_REG), &phy_word);
+ if ((phy_word & E1000_PHY_PLL_UNCONF)
+ != E1000_PHY_PLL_UNCONF) {
+ ret_val = E1000_SUCCESS;
+ break;
+ } else {
+ ret_val = -E1000_ERR_PHY;
+ }
+ hw->phy.ops.reset(hw);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+ reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
+ E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
+
+ e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+ pci_word |= E1000_PCI_PMCSR_D3;
+ e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+ msec_delay(1);
+ pci_word &= ~E1000_PCI_PMCSR_D3;
+ e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+ reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
+ E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
+
+ /* restore WUC register */
+ E1000_WRITE_REG(hw, E1000_WUC, wuc);
+ }
+ /* restore MDICNFG setting */
+ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_i210 - Init hw for I210/I211
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize hw for i210 hw family.
+ **/
+s32 e1000_init_hw_i210(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_hw_i210");
+ if ((hw->mac.type >= e1000_i210) &&
+ !(e1000_get_flash_presence_i210(hw))) {
+ ret_val = e1000_pll_workaround_i210(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
+ }
+ ret_val = e1000_init_hw_82575(hw);
+ return ret_val;
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_I210_H_
+#define _E1000_I210_H_
+
+bool e1000_get_flash_presence_i210(struct e1000_hw *hw);
+s32 e1000_update_flash_i210(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_invm_version(struct e1000_hw *hw,
+ struct e1000_fw_version *invm_ver);
+s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
+ u16 *data);
+s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
+ u16 data);
+s32 e1000_init_hw_i210(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE 0xDB00
+#define E1000_EEPROM_FLASH_SIZE_WORD 0x11
+
+#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \
+ (u8)((invm_dword) & 0x7)
+#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \
+ (u8)(((invm_dword) & 0x0000FE00) >> 9)
+#define INVM_DWORD_TO_WORD_DATA(invm_dword) \
+ (u16)(((invm_dword) & 0xFFFF0000) >> 16)
+
+enum E1000_INVM_STRUCTURE_TYPE {
+ E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00,
+ E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01,
+ E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02,
+ E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03,
+ E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04,
+ E1000_INVM_INVALIDATED_STRUCTURE = 0x0F,
+};
+
+#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8
+#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1
+#define E1000_INVM_ULT_BYTES_SIZE 8
+#define E1000_INVM_RECORD_SIZE_IN_BYTES 4
+#define E1000_INVM_VER_FIELD_ONE 0x1FF8
+#define E1000_INVM_VER_FIELD_TWO 0x7FE000
+#define E1000_INVM_IMGTYPE_FIELD 0x1F800000
+
+#define E1000_INVM_MAJOR_MASK 0x3F0
+#define E1000_INVM_MINOR_MASK 0xF
+#define E1000_INVM_MAJOR_SHIFT 4
+
+#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_OFF2))
+#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_ON2))
+
+/* NVM offset defaults for I211 devices */
+#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243
+#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1
+#define NVM_LED_1_CFG_DEFAULT_I211 0x0184
+#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C
+
+/* PLL Defines */
+#define E1000_PCI_PMCSR 0x44
+#define E1000_PCI_PMCSR_D3 0x03
+#define E1000_MAX_PLL_TRIES 5
+#define E1000_PHY_PLL_UNCONF 0xFF
+#define E1000_PHY_PLL_FREQ_PAGE 0xFC0000
+#define E1000_PHY_PLL_FREQ_REG 0x000E
+#define E1000_INVM_DEFAULT_AL 0x202F
+#define E1000_INVM_AUTOLOAD 0x0A
+#define E1000_INVM_PLL_WO_VAL 0x0010
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ * 82579LM Gigabit Network Connection
+ * 82579V Gigabit Network Connection
+ * Ethernet Connection I217-LM
+ * Ethernet Connection I217-V
+ * Ethernet Connection I218-V
+ * Ethernet Connection I218-LM
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
+STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+ u8 *mc_addr_list,
+ u32 mc_addr_count);
+#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+ u16 *data);
+STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
+STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw);
+STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 *data);
+STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 *data);
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 byte);
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
+STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+ struct ich8_hsfsts {
+ u16 flcdone:1; /* bit 0 Flash Cycle Done */
+ u16 flcerr:1; /* bit 1 Flash Cycle Error */
+ u16 dael:1; /* bit 2 Direct Access error Log */
+ u16 berasesz:2; /* bit 4:3 Sector Erase Size */
+ u16 flcinprog:1; /* bit 5 flash cycle in Progress */
+ u16 reserved1:2; /* bit 13:6 Reserved */
+ u16 reserved2:6; /* bit 13:6 Reserved */
+ u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
+ u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
+ } hsf_status;
+ u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+ struct ich8_hsflctl {
+ u16 flcgo:1; /* 0 Flash Cycle Go */
+ u16 flcycle:2; /* 2:1 Flash Cycle */
+ u16 reserved:5; /* 7:3 Reserved */
+ u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
+ u16 flockdn:6; /* 15:10 Reserved */
+ } hsf_ctrl;
+ u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+ struct ich8_flracc {
+ u32 grra:8; /* 0:7 GbE region Read Access */
+ u32 grwa:8; /* 8:15 GbE region Write Access */
+ u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
+ u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
+ } hsf_flregacc;
+ u16 regval;
+};
+
+/**
+ * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
+ * @hw: pointer to the HW structure
+ *
+ * Test access to the PHY registers by reading the PHY ID registers. If
+ * the PHY ID is already known (e.g. resume path) compare it with known ID,
+ * otherwise assume the read PHY ID is correct if it is valid.
+ *
+ * Assumes the sw/fw/hw semaphore is already acquired.
+ **/
+STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
+{
+ u16 phy_reg = 0;
+ u32 phy_id = 0;
+ s32 ret_val = 0;
+ u16 retry_count;
+ u32 mac_reg = 0;
+
+ for (retry_count = 0; retry_count < 2; retry_count++) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
+ if (ret_val || (phy_reg == 0xFFFF))
+ continue;
+ phy_id = (u32)(phy_reg << 16);
+
+ ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
+ if (ret_val || (phy_reg == 0xFFFF)) {
+ phy_id = 0;
+ continue;
+ }
+ phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
+ break;
+ }
+
+ if (hw->phy.id) {
+ if (hw->phy.id == phy_id)
+ goto out;
+ } else if (phy_id) {
+ hw->phy.id = phy_id;
+ hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
+ goto out;
+ }
+
+ /* In case the PHY needs to be in mdio slow mode,
+ * set slow mode and try to get the PHY id again.
+ */
+ if (hw->mac.type < e1000_pch_lpt) {
+ hw->phy.ops.release(hw);
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (!ret_val)
+ ret_val = e1000_get_phy_id(hw);
+ hw->phy.ops.acquire(hw);
+ }
+
+ if (ret_val)
+ return false;
+out:
+ if (hw->mac.type == e1000_pch_lpt) {
+ /* Unforce SMBus mode in PHY */
+ hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
+ phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
+ hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
+
+ /* Unforce SMBus mode in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+ }
+
+ return true;
+}
+
+/**
+ * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
+ * @hw: pointer to the HW structure
+ *
+ * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
+ * used to reset the PHY to a quiescent state when necessary.
+ **/
+STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
+{
+ u32 mac_reg;
+
+ DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
+
+ /* Set Phy Config Counter to 50msec */
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+ mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+ mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
+
+ /* Toggle LANPHYPC Value bit */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL);
+ mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
+ mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
+ E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+ mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+ E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+ E1000_WRITE_FLUSH(hw);
+
+ if (hw->mac.type < e1000_pch_lpt) {
+ msec_delay(50);
+ } else {
+ u16 count = 20;
+
+ do {
+ msec_delay(5);
+ } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
+ E1000_CTRL_EXT_LPCD) && count--);
+
+ msec_delay(30);
+ }
+}
+
+/**
+ * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
+ * @hw: pointer to the HW structure
+ *
+ * Workarounds/flow necessary for PHY initialization during driver load
+ * and resume paths.
+ **/
+STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
+{
+ u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
+
+ /* Gate automatic PHY configuration by hardware on managed and
+ * non-managed 82579 and newer adapters.
+ */
+ e1000_gate_hw_phy_config_ich8lan(hw, true);
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+ /* It is not possible to be certain of the current state of ULP
+ * so forcibly disable it.
+ */
+ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val) {
+ DEBUGOUT("Failed to initialize PHY flow\n");
+ goto out;
+ }
+
+ /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
+ * inaccessible and resetting the PHY is not blocked, toggle the
+ * LANPHYPC Value bit to force the interconnect to PCIe mode.
+ */
+ switch (hw->mac.type) {
+ case e1000_pch_lpt:
+ if (e1000_phy_is_accessible_pchlan(hw))
+ break;
+
+ /* Before toggling LANPHYPC, see if PHY is accessible by
+ * forcing MAC to SMBus mode first.
+ */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+ /* Wait 50 milliseconds for MAC to finish any retries
+ * that it might be trying to perform from previous
+ * attempts to acknowledge any phy read requests.
+ */
+ msec_delay(50);
+
+ /* fall-through */
+ case e1000_pch2lan:
+ if (e1000_phy_is_accessible_pchlan(hw))
+ break;
+
+ /* fall-through */
+ case e1000_pchlan:
+ if ((hw->mac.type == e1000_pchlan) &&
+ (fwsm & E1000_ICH_FWSM_FW_VALID))
+ break;
+
+ if (hw->phy.ops.check_reset_block(hw)) {
+ DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ /* Toggle LANPHYPC Value bit */
+ e1000_toggle_lanphypc_pch_lpt(hw);
+ if (hw->mac.type >= e1000_pch_lpt) {
+ if (e1000_phy_is_accessible_pchlan(hw))
+ break;
+
+ /* Toggling LANPHYPC brings the PHY out of SMBus mode
+ * so ensure that the MAC is also out of SMBus mode
+ */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+ if (e1000_phy_is_accessible_pchlan(hw))
+ break;
+
+ ret_val = -E1000_ERR_PHY;
+ }
+ break;
+ default:
+ break;
+ }
+
+ hw->phy.ops.release(hw);
+ if (!ret_val) {
+
+ /* Check to see if able to reset PHY. Print error if not */
+ if (hw->phy.ops.check_reset_block(hw)) {
+ ERROR_REPORT("Reset blocked by ME\n");
+ goto out;
+ }
+
+ /* Reset the PHY before any access to it. Doing so, ensures
+ * that the PHY is in a known good state before we read/write
+ * PHY registers. The generic reset is sufficient here,
+ * because we haven't determined the PHY type yet.
+ */
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /* On a successful reset, possibly need to wait for the PHY
+ * to quiesce to an accessible state before returning control
+ * to the calling function. If the PHY does not quiesce, then
+ * return E1000E_BLK_PHY_RESET, as this is the condition that
+ * the PHY is in.
+ */
+ ret_val = hw->phy.ops.check_reset_block(hw);
+ if (ret_val)
+ ERROR_REPORT("ME blocked access to PHY after reset\n");
+ }
+
+out:
+ /* Ungate automatic PHY configuration on non-managed 82579 */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
+ msec_delay(10);
+ e1000_gate_hw_phy_config_ich8lan(hw, false);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_params_pchlan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.set_page = e1000_set_page_igp;
+ phy->ops.read_reg = e1000_read_phy_reg_hv;
+ phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
+ phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.write_reg = e1000_write_phy_reg_hv;
+ phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
+ phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ phy->id = e1000_phy_unknown;
+
+ ret_val = e1000_init_phy_workarounds_pchlan(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (phy->id == e1000_phy_unknown)
+ switch (hw->mac.type) {
+ default:
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ return ret_val;
+ if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
+ break;
+ /* fall-through */
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ /* In case the PHY needs to be in mdio slow mode,
+ * set slow mode and try to get the PHY id again.
+ */
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ }
+ phy->type = e1000_get_phy_type_from_id(phy->id);
+
+ switch (phy->type) {
+ case e1000_phy_82577:
+ case e1000_phy_82579:
+ case e1000_phy_i217:
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex =
+ e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ break;
+ case e1000_phy_82578:
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 i = 0;
+
+ DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+
+ /* We may need to do this twice - once for IGP and if that fails,
+ * we'll set BM func pointers and try again
+ */
+ ret_val = e1000_determine_phy_address(hw);
+ if (ret_val) {
+ phy->ops.write_reg = e1000_write_phy_reg_bm;
+ phy->ops.read_reg = e1000_read_phy_reg_bm;
+ ret_val = e1000_determine_phy_address(hw);
+ if (ret_val) {
+ DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
+ return ret_val;
+ }
+ }
+
+ phy->id = 0;
+ while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+ (i++ < 100)) {
+ msec_delay(1);
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Verify phy id */
+ switch (phy->id) {
+ case IGP03E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
+ phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy->type = e1000_phy_ife;
+ phy->autoneg_mask = E1000_ALL_NOT_GIG;
+ phy->ops.get_info = e1000_get_phy_info_ife;
+ phy->ops.check_polarity = e1000_check_polarity_ife;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ phy->type = e1000_phy_bm;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->ops.read_reg = e1000_read_phy_reg_bm;
+ phy->ops.write_reg = e1000_write_phy_reg_bm;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific NVM parameters and function
+ * pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 gfpreg, sector_base_addr, sector_end_addr;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+ /* Can't read flash registers if the register set isn't mapped. */
+ nvm->type = e1000_nvm_flash_sw;
+ if (!hw->flash_address) {
+ DEBUGOUT("ERROR: Flash registers not mapped\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+ /* sector_X_addr is a "sector"-aligned address (4096 bytes)
+ * Add 1 to sector_end_addr since this sector is included in
+ * the overall size.
+ */
+ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+ sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+ /* flash_base_addr is byte-aligned */
+ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+ /* find total size of the NVM, then cut in half since the total
+ * size represents two separate NVM banks.
+ */
+ nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
+ << FLASH_SECTOR_ADDR_SHIFT);
+ nvm->flash_bank_size /= 2;
+ /* Adjust to word count */
+ nvm->flash_bank_size /= sizeof(u16);
+
+ nvm->word_size = E1000_SHADOW_RAM_WORDS;
+
+ /* Clear shadow ram */
+ for (i = 0; i < nvm->word_size; i++) {
+ dev_spec->shadow_ram[i].modified = false;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+ E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
+ E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
+ nvm->ops.release = e1000_release_nvm_ich8lan;
+ nvm->ops.read = e1000_read_nvm_ich8lan;
+ nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
+ nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
+ nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
+ nvm->ops.write = e1000_write_nvm_ich8lan;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific MAC parameters and function
+ * pointers.
+ **/
+STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+ u16 pci_cfg;
+#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
+
+ DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+ /* Set media type function pointer */
+ hw->phy.media_type = e1000_media_type_copper;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 32;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+ if (mac->type == e1000_ich8lan)
+ mac->rar_entry_count--;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+ /* FWSM register */
+ mac->has_fwsm = true;
+ /* ARC subsystem not supported */
+ mac->arc_subsystem_valid = false;
+ /* Adaptive IFS supported */
+ mac->adaptive_ifs = true;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_ich8lan;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_ich8lan;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_ich8lan;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+ /* LED and other operations */
+ switch (mac->type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_ich8lan;
+ mac->ops.led_off = e1000_led_off_ich8lan;
+ break;
+ case e1000_pch2lan:
+ mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
+ mac->ops.rar_set = e1000_rar_set_pch2lan;
+ /* fall-through */
+ case e1000_pch_lpt:
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+ /* multicast address update for pch2 */
+ mac->ops.update_mc_addr_list =
+ e1000_update_mc_addr_list_pch2lan;
+#endif
+ case e1000_pchlan:
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+ /* save PCH revision_id */
+ e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
+ hw->revision_id = (u8)(pci_cfg &= 0x000F);
+#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_pchlan;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_pchlan;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_pchlan;
+ mac->ops.led_off = e1000_led_off_pchlan;
+ break;
+ default:
+ break;
+ }
+
+ if (mac->type == e1000_pch_lpt) {
+ mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
+ mac->ops.rar_set = e1000_rar_set_pch_lpt;
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
+ }
+
+ /* Enable PCS Lock-loss workaround for ICH8 */
+ if (mac->type == e1000_ich8lan)
+ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * __e1000_access_emi_reg_locked - Read/write EMI register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: pointer to value to read/write from/to the EMI address
+ * @read: boolean flag to indicate read or write
+ *
+ * This helper function assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("__e1000_access_emi_reg_locked");
+
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
+ if (ret_val)
+ return ret_val;
+
+ if (read)
+ ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
+ data);
+ else
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
+ *data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_emi_reg_locked - Read Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be read from the EMI address
+ *
+ * Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+ DEBUGFUNC("e1000_read_emi_reg_locked");
+
+ return __e1000_access_emi_reg_locked(hw, addr, data, true);
+}
+
+/**
+ * e1000_write_emi_reg_locked - Write Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be written to the EMI address
+ *
+ * Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
+{
+ DEBUGFUNC("e1000_read_emi_reg_locked");
+
+ return __e1000_access_emi_reg_locked(hw, addr, &data, false);
+}
+
+/**
+ * e1000_set_eee_pchlan - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE based on setting in dev_spec structure, the duplex of
+ * the link and the EEE capabilities of the link partner. The LPI Control
+ * register bits will remain set only if/when link is up.
+ *
+ * EEE LPI must not be asserted earlier than one second after link is up.
+ * On 82579, EEE LPI should not be enabled until such time otherwise there
+ * can be link issues with some switches. Other devices can have EEE LPI
+ * enabled immediately upon link up since they have a timer in hardware which
+ * prevents LPI from being asserted too early.
+ **/
+s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ s32 ret_val;
+ u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
+
+ DEBUGFUNC("e1000_set_eee_pchlan");
+
+ switch (hw->phy.type) {
+ case e1000_phy_82579:
+ lpa = I82579_EEE_LP_ABILITY;
+ pcs_status = I82579_EEE_PCS_STATUS;
+ adv_addr = I82579_EEE_ADVERTISEMENT;
+ break;
+ case e1000_phy_i217:
+ lpa = I217_EEE_LP_ABILITY;
+ pcs_status = I217_EEE_PCS_STATUS;
+ adv_addr = I217_EEE_ADVERTISEMENT;
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
+ if (ret_val)
+ goto release;
+
+ /* Clear bits that enable EEE in various speeds */
+ lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
+
+ /* Enable EEE if not disabled by user */
+ if (!dev_spec->eee_disable) {
+ /* Save off link partner's EEE ability */
+ ret_val = e1000_read_emi_reg_locked(hw, lpa,
+ &dev_spec->eee_lp_ability);
+ if (ret_val)
+ goto release;
+
+ /* Read EEE advertisement */
+ ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
+ if (ret_val)
+ goto release;
+
+ /* Enable EEE only for speeds in which the link partner is
+ * EEE capable and for which we advertise EEE.
+ */
+ if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
+ lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
+
+ if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
+ hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
+ if (data & NWAY_LPAR_100TX_FD_CAPS)
+ lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
+ else
+ /* EEE is not supported in 100Half, so ignore
+ * partner's EEE in 100 ability if full-duplex
+ * is not advertised.
+ */
+ dev_spec->eee_lp_ability &=
+ ~I82579_EEE_100_SUPPORTED;
+ }
+ }
+
+ /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
+ ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
+ if (ret_val)
+ goto release;
+
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
+release:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
+ * @hw: pointer to the HW structure
+ * @link: link up bool flag
+ *
+ * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
+ * preventing further DMA write requests. Workaround the issue by disabling
+ * the de-assertion of the clock request when in 1Gpbs mode.
+ * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
+ * speeds in order to avoid Tx hangs.
+ **/
+STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
+{
+ u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg;
+
+ if (link && (status & E1000_STATUS_SPEED_1000)) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val =
+ e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ ®);
+ if (ret_val)
+ goto release;
+
+ ret_val =
+ e1000_write_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ reg &
+ ~E1000_KMRNCTRLSTA_K1_ENABLE);
+ if (ret_val)
+ goto release;
+
+ usec_delay(10);
+
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+ fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
+
+ ret_val =
+ e1000_write_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ reg);
+release:
+ hw->phy.ops.release(hw);
+ } else {
+ /* clear FEXTNVM6 bit 8 on link down or 10/100 */
+ fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
+
+ if (!link || ((status & E1000_STATUS_SPEED_100) &&
+ (status & E1000_STATUS_FD)))
+ goto update_fextnvm6;
+
+ ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®);
+ if (ret_val)
+ return ret_val;
+
+ /* Clear link status transmit timeout */
+ reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
+
+ if (status & E1000_STATUS_SPEED_100) {
+ /* Set inband Tx timeout to 5x10us for 100Half */
+ reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
+
+ /* Do not extend the K1 entry latency for 100Half */
+ fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
+ } else {
+ /* Set inband Tx timeout to 50x10us for 10Full/Half */
+ reg |= 50 <<
+ I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
+
+ /* Extend the K1 entry latency for 10 Mbps */
+ fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
+ }
+
+ ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
+ if (ret_val)
+ return ret_val;
+
+update_fextnvm6:
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
+ }
+
+ return ret_val;
+}
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+/**
+ * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
+ * @hw: pointer to the HW structure
+ * @to_sx: boolean indicating a system power state transition to Sx
+ *
+ * When link is down, configure ULP mode to significantly reduce the power
+ * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
+ * ME firmware to start the ULP configuration. If not on an ME enabled
+ * system, configure the ULP mode by software.
+ */
+s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
+{
+ u32 mac_reg;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_reg;
+
+ if ((hw->mac.type < e1000_pch_lpt) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
+ (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
+ return 0;
+
+ if (!to_sx) {
+ int i = 0;
+
+ /* Poll up to 5 seconds for Cable Disconnected indication */
+ while (!(E1000_READ_REG(hw, E1000_FEXT) &
+ E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
+ /* Bail if link is re-acquired */
+ if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
+ return -E1000_ERR_PHY;
+
+ if (i++ == 100)
+ break;
+
+ msec_delay(50);
+ }
+ DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
+ (E1000_READ_REG(hw, E1000_FEXT) &
+ E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
+ i * 50);
+ }
+
+ if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
+ /* Request ME configure ULP mode in the PHY */
+ mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+ mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
+ E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ /* During S0 Idle keep the phy in PCI-E mode */
+ if (hw->dev_spec.ich8lan.smbus_disable)
+ goto skip_smbus;
+
+ /* Force SMBus mode in PHY */
+ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
+ e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
+
+ /* Force SMBus mode in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+skip_smbus:
+ if (!to_sx) {
+ /* Change the 'Link Status Change' interrupt to trigger
+ * on 'Cable Status Change'
+ */
+ ret_val = e1000_read_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_OP_MODES,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
+ e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
+ phy_reg);
+ }
+
+ /* Set Inband ULP Exit, Reset to SMBus mode and
+ * Disable SMBus Release on PERST# in PHY
+ */
+ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
+ I218_ULP_CONFIG1_DISABLE_SMB_PERST);
+ if (to_sx) {
+ if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
+ phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
+
+ phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
+ } else {
+ phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
+ }
+ e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+ /* Set Disable SMBus Release on PERST# in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
+ mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
+
+ /* Commit ULP changes in PHY by starting auto ULP configuration */
+ phy_reg |= I218_ULP_CONFIG1_START;
+ e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+ if (!to_sx) {
+ /* Disable Tx so that the MAC doesn't send any (buffered)
+ * packets to the PHY.
+ */
+ mac_reg = E1000_READ_REG(hw, E1000_TCTL);
+ mac_reg &= ~E1000_TCTL_EN;
+ E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
+ }
+release:
+ hw->phy.ops.release(hw);
+out:
+ if (ret_val)
+ DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
+ else
+ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
+
+ return ret_val;
+}
+
+/**
+ * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
+ * @hw: pointer to the HW structure
+ * @force: boolean indicating whether or not to force disabling ULP
+ *
+ * Un-configure ULP mode when link is up, the system is transitioned from
+ * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
+ * system, poll for an indication from ME that ULP has been un-configured.
+ * If not on an ME enabled system, un-configure the ULP mode by software.
+ *
+ * During nominal operation, this function is called when link is acquired
+ * to disable ULP mode (force=false); otherwise, for example when unloading
+ * the driver or during Sx->S0 transitions, this is called with force=true
+ * to forcibly disable ULP.
+
+ * When the cable is plugged in while the device is in D0, a Cable Status
+ * Change interrupt is generated which causes this function to be called
+ * to partially disable ULP mode and restart autonegotiation. This function
+ * is then called again due to the resulting Link Status Change interrupt
+ * to finish cleaning up after the ULP flow.
+ */
+s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 mac_reg;
+ u16 phy_reg;
+ int i = 0;
+
+ if ((hw->mac.type < e1000_pch_lpt) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
+ (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
+ return 0;
+
+ if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
+ if (force) {
+ /* Request ME un-configure ULP mode in the PHY */
+ mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+ mac_reg &= ~E1000_H2ME_ULP;
+ mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
+ E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+ }
+
+ /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
+ while (E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_ULP_CFG_DONE) {
+ if (i++ == 10) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ msec_delay(10);
+ }
+ DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
+
+ if (force) {
+ mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+ mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
+ E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+ } else {
+ /* Clear H2ME.ULP after ME ULP configuration */
+ mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+ mac_reg &= ~E1000_H2ME_ULP;
+ E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+
+ /* Restore link speed advertisements and restart
+ * Auto-negotiation
+ */
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+ }
+
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ /* Revert the change to the 'Link Status Change'
+ * interrupt to trigger on 'Cable Status Change'
+ */
+ ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
+ e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
+
+ if (force)
+ /* Toggle LANPHYPC Value bit */
+ e1000_toggle_lanphypc_pch_lpt(hw);
+
+ /* Unforce SMBus mode in PHY */
+ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
+ if (ret_val) {
+ /* The MAC might be in PCIe mode, so temporarily force to
+ * SMBus mode in order to access the PHY.
+ */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+ msec_delay(50);
+
+ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ }
+ phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
+ e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
+
+ /* Unforce SMBus mode in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+ /* When ULP mode was previously entered, K1 was disabled by the
+ * hardware. Re-Enable K1 in the PHY when exiting ULP.
+ */
+ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= HV_PM_CTRL_K1_ENABLE;
+ e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
+
+ /* Clear ULP enabled configuration */
+ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
+ if (ret_val)
+ goto release;
+ /* CSC interrupt received due to ULP Indication */
+ if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
+ phy_reg &= ~(I218_ULP_CONFIG1_IND |
+ I218_ULP_CONFIG1_STICKY_ULP |
+ I218_ULP_CONFIG1_RESET_TO_SMBUS |
+ I218_ULP_CONFIG1_WOL_HOST |
+ I218_ULP_CONFIG1_INBAND_EXIT |
+ I218_ULP_CONFIG1_DISABLE_SMB_PERST);
+ e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+ /* Commit ULP changes by starting auto ULP configuration */
+ phy_reg |= I218_ULP_CONFIG1_START;
+ e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+ /* Clear Disable SMBus Release on PERST# in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
+ mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
+
+ if (!force) {
+ hw->phy.ops.release(hw);
+
+ if (hw->mac.autoneg)
+ e1000_phy_setup_autoneg(hw);
+
+ e1000_sw_lcd_config_ich8lan(hw);
+
+ e1000_oem_bits_config_ich8lan(hw, true);
+
+ /* Set ULP state to unknown and return non-zero to
+ * indicate no link (yet) and re-enter on the next LSC
+ * to finish disabling ULP flow.
+ */
+ hw->dev_spec.ich8lan.ulp_state =
+ e1000_ulp_state_unknown;
+
+ return 1;
+ }
+ }
+
+ /* Re-enable Tx */
+ mac_reg = E1000_READ_REG(hw, E1000_TCTL);
+ mac_reg |= E1000_TCTL_EN;
+ E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
+
+release:
+ hw->phy.ops.release(hw);
+ if (force) {
+ hw->phy.ops.reset(hw);
+ msec_delay(50);
+ }
+out:
+ if (ret_val)
+ DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
+ else
+ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
+
+ return ret_val;
+}
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+/**
+ * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link = false;
+ u16 phy_reg;
+
+ DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
+
+ /* We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status)
+ return E1000_SUCCESS;
+
+ if ((hw->mac.type < e1000_pch_lpt) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Check the MAC's STATUS register to determine link state
+ * since the PHY could be inaccessible while in ULP mode.
+ */
+ link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
+ if (link)
+ ret_val = e1000_disable_ulp_lpt_lp(hw, false);
+ else
+ ret_val = e1000_enable_ulp_lpt_lp(hw, false);
+
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->mac.type == e1000_pchlan) {
+ ret_val = e1000_k1_gig_workaround_hv(hw, link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* When connected at 10Mbps half-duplex, some parts are excessively
+ * aggressive resulting in many collisions. To avoid this, increase
+ * the IPG and reduce Rx latency in the PHY.
+ */
+ if (((hw->mac.type == e1000_pch2lan) ||
+ (hw->mac.type == e1000_pch_lpt)) && link) {
+ u32 reg;
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
+ u16 emi_addr;
+
+ reg = E1000_READ_REG(hw, E1000_TIPG);
+ reg &= ~E1000_TIPG_IPGT_MASK;
+ reg |= 0xFF;
+ E1000_WRITE_REG(hw, E1000_TIPG, reg);
+
+ /* Reduce Rx latency in analog PHY */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->mac.type == e1000_pch2lan)
+ emi_addr = I82579_RX_CONFIG;
+ else
+ emi_addr = I217_RX_CONFIG;
+ ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
+
+ hw->phy.ops.release(hw);
+
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* Work-around I218 hang issue */
+ if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+ ret_val = e1000_k1_workaround_lpt_lp(hw, link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Clear link partner's EEE ability */
+ hw->dev_spec.ich8lan.eee_lp_ability = 0;
+
+ if (!link)
+ return E1000_SUCCESS; /* No link detected */
+
+ mac->get_link_status = false;
+
+ switch (hw->mac.type) {
+ case e1000_pch2lan:
+ ret_val = e1000_k1_workaround_lv(hw);
+ if (ret_val)
+ return ret_val;
+ /* fall-thru */
+ case e1000_pchlan:
+ if (hw->phy.type == e1000_phy_82578) {
+ ret_val = e1000_link_stall_workaround_hv(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Workaround for PCHx parts in half-duplex:
+ * Set the number of preambles removed from the packet
+ * when it is passed from the PHY to the MAC to prevent
+ * the MAC from misinterpreting the packet type.
+ */
+ hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
+ phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
+
+ if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
+ E1000_STATUS_FD)
+ phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
+
+ hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /* Enable/Disable EEE after link up */
+ if (hw->phy.type > e1000_phy_82579) {
+ ret_val = e1000_set_eee_pchlan(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg)
+ return -E1000_ERR_CONFIG;
+
+ /* Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ mac->ops.config_collision_dist(hw);
+
+ /* Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific function pointers for PHY, MAC, and NVM.
+ **/
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
+ break;
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
+ break;
+ default:
+ break;
+ }
+}
+
+/**
+ * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the mutex for performing NVM operations.
+ **/
+STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_acquire_nvm_ich8lan");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_nvm_ich8lan - Release NVM mutex
+ * @hw: pointer to the HW structure
+ *
+ * Releases the mutex used while performing NVM operations.
+ **/
+STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_ich8lan");
+
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+ return;
+}
+
+/**
+ * e1000_acquire_swflag_ich8lan - Acquire software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the software control flag for performing PHY and select
+ * MAC CSR accesses.
+ **/
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+ break;
+
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SW has already locked the resource.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ timeout = SW_FLAG_TIMEOUT;
+
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+ break;
+
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
+ E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ if (ret_val)
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_release_swflag_ich8lan - Release software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Releases the software control flag for performing PHY and select
+ * MAC CSR accesses.
+ **/
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ } else {
+ DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
+ }
+
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ return;
+}
+
+/**
+ * e1000_check_mng_mode_ich8lan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has any manageability enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_check_mng_mode_pchlan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has iAMT enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_pchlan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+ (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_rar_set_pch2lan - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr. For 82579, RAR[0] is the base address register that is to
+ * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
+ * Use SHRA[0-3] in place of those reserved for ME.
+ **/
+STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_pch2lan");
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ if (index == 0) {
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+ return;
+ }
+
+ /* RAR[1-6] are owned by manageability. Skip those and program the
+ * next address into the SHRA register array.
+ */
+ if (index < (u32) (hw->mac.rar_entry_count)) {
+ s32 ret_val;
+
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_release_swflag_ich8lan(hw);
+
+ /* verify the register updates */
+ if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
+ (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
+ return;
+
+ DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
+ (index - 1), E1000_READ_REG(hw, E1000_FWSM));
+ }
+
+out:
+ DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+/**
+ * e1000_rar_set_pch_lpt - Set receive address registers
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address register array at index to the address passed
+ * in by addr. For LPT, RAR[0] is the base address register that is to
+ * contain the MAC address. SHRA[0-10] are the shared receive address
+ * registers that are shared between the Host and manageability engine (ME).
+ **/
+STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+ u32 wlock_mac;
+
+ DEBUGFUNC("e1000_rar_set_pch_lpt");
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ if (index == 0) {
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+ return;
+ }
+
+ /* The manageability engine (ME) can lock certain SHRAR registers that
+ * it is using - those registers are unavailable for use.
+ */
+ if (index < hw->mac.rar_entry_count) {
+ wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_WLOCK_MAC_MASK;
+ wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
+
+ /* Check if all SHRAR registers are locked */
+ if (wlock_mac == 1)
+ goto out;
+
+ if ((wlock_mac == 0) || (index <= wlock_mac)) {
+ s32 ret_val;
+
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
+ rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
+ rar_high);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_release_swflag_ich8lan(hw);
+
+ /* verify the register updates */
+ if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
+ (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
+ return;
+ }
+ }
+
+out:
+ DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+/**
+ * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+ u8 *mc_addr_list,
+ u32 mc_addr_count)
+{
+ u16 phy_reg = 0;
+ int i;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
+
+ e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < hw->mac.mta_reg_count; i++) {
+ hw->phy.ops.write_reg_page(hw, BM_MTA(i),
+ (u16)(hw->mac.mta_shadow[i] &
+ 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
+ (u16)((hw->mac.mta_shadow[i] >> 16) &
+ 0xFFFF));
+ }
+
+ e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
+}
+
+#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
+/**
+ * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Checks if firmware is blocking the reset of the PHY.
+ * This is a function pointer entry point only called by
+ * reset routines.
+ **/
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+ bool blocked = false;
+ int i = 0;
+
+ DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+ do {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
+ blocked = true;
+ msec_delay(10);
+ continue;
+ }
+ blocked = false;
+ } while (blocked && (i++ < 10));
+ return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
+ * @hw: pointer to the HW structure
+ *
+ * Assumes semaphore already acquired.
+ *
+ **/
+STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
+{
+ u16 phy_data;
+ u32 strap = E1000_READ_REG(hw, E1000_STRAP);
+ u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
+ E1000_STRAP_SMT_FREQ_SHIFT;
+ s32 ret_val;
+
+ strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+
+ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~HV_SMB_ADDR_MASK;
+ phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
+ phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+
+ if (hw->phy.type == e1000_phy_i217) {
+ /* Restore SMBus frequency */
+ if (freq--) {
+ phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
+ phy_data |= (freq & (1 << 0)) <<
+ HV_SMB_ADDR_FREQ_LOW_SHIFT;
+ phy_data |= (freq & (1 << 1)) <<
+ (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
+ } else {
+ DEBUGOUT("Unsupported SMB frequency in PHY\n");
+ }
+ }
+
+ return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
+}
+
+/**
+ * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ * @hw: pointer to the HW structure
+ *
+ * SW should configure the LCD from the NVM extended configuration region
+ * as a workaround for certain parts.
+ **/
+STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+ s32 ret_val = E1000_SUCCESS;
+ u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+ DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
+
+ /* Initialize the PHY from the NVM on ICH platforms. This
+ * is needed due to an issue where the NVM configuration is
+ * not properly autoloaded after power transitions.
+ * Therefore, after each PHY reset, we will load the
+ * configuration data out of the NVM manually.
+ */
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ if (phy->type != e1000_phy_igp_3)
+ return ret_val;
+
+ if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
+ (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+ break;
+ }
+ /* Fall-thru */
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+ break;
+ default:
+ return ret_val;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ data = E1000_READ_REG(hw, E1000_FEXTNVM);
+ if (!(data & sw_cfg_mask))
+ goto release;
+
+ /* Make sure HW does not configure LCD from PHY
+ * extended configuration before SW configuration
+ */
+ data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if ((hw->mac.type < e1000_pch2lan) &&
+ (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
+ goto release;
+
+ cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+ cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+ cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+ if (!cnf_size)
+ goto release;
+
+ cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+ cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+ if (((hw->mac.type == e1000_pchlan) &&
+ !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
+ (hw->mac.type > e1000_pchlan)) {
+ /* HW configures the SMBus address and LEDs when the
+ * OEM and LCD Write Enable bits are set in the NVM.
+ * When both NVM bits are cleared, SW will configure
+ * them instead.
+ */
+ ret_val = e1000_write_smbus_addr(hw);
+ if (ret_val)
+ goto release;
+
+ data = E1000_READ_REG(hw, E1000_LEDCTL);
+ ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+ (u16)data);
+ if (ret_val)
+ goto release;
+ }
+
+ /* Configure LCD from extended configuration region. */
+
+ /* cnf_base_addr is in DWORD */
+ word_addr = (u16)(cnf_base_addr << 1);
+
+ for (i = 0; i < cnf_size; i++) {
+ ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
+ ®_data);
+ if (ret_val)
+ goto release;
+
+ ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
+ 1, ®_addr);
+ if (ret_val)
+ goto release;
+
+ /* Save off the PHY page for future writes. */
+ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+ phy_page = reg_data;
+ continue;
+ }
+
+ reg_addr &= PHY_REG_MASK;
+ reg_addr |= phy_page;
+
+ ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+ reg_data);
+ if (ret_val)
+ goto release;
+ }
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_k1_gig_workaround_hv - K1 Si workaround
+ * @hw: pointer to the HW structure
+ * @link: link up bool flag
+ *
+ * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ * from a lower speed. This workaround disables K1 whenever link is at 1Gig
+ * If link is down, the function will restore the default K1 setting located
+ * in the NVM.
+ **/
+STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 status_reg = 0;
+ bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+ DEBUGFUNC("e1000_k1_gig_workaround_hv");
+
+ if (hw->mac.type != e1000_pchlan)
+ return E1000_SUCCESS;
+
+ /* Wrap the whole flow with the sw flag */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+ if (link) {
+ if (hw->phy.type == e1000_phy_82578) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+ &status_reg);
+ if (ret_val)
+ goto release;
+
+ status_reg &= (BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK);
+
+ if (status_reg == (BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ k1_enable = false;
+ }
+
+ if (hw->phy.type == e1000_phy_82577) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+ &status_reg);
+ if (ret_val)
+ goto release;
+
+ status_reg &= (HV_M_STATUS_LINK_UP |
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_MASK);
+
+ if (status_reg == (HV_M_STATUS_LINK_UP |
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_1000))
+ k1_enable = false;
+ }
+
+ /* Link stall fix for link up */
+ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+ 0x0100);
+ if (ret_val)
+ goto release;
+
+ } else {
+ /* Link stall fix for link down */
+ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+ 0x4100);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_configure_k1_ich8lan - Configure K1 power state
+ * @hw: pointer to the HW structure
+ * @enable: K1 state to configure
+ *
+ * Configure the K1 power state based on the provided parameter.
+ * Assumes semaphore already acquired.
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+ s32 ret_val;
+ u32 ctrl_reg = 0;
+ u32 ctrl_ext = 0;
+ u32 reg = 0;
+ u16 kmrn_reg = 0;
+
+ DEBUGFUNC("e1000_configure_k1_ich8lan");
+
+ ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ &kmrn_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (k1_enable)
+ kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+ else
+ kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+ ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ kmrn_reg);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(20);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+
+ reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ reg |= E1000_CTRL_FRCSPD;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(20);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(20);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ * @hw: pointer to the HW structure
+ * @d0_state: boolean if entering d0 or d3 device state
+ *
+ * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
+ * in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+ s32 ret_val = 0;
+ u32 mac_reg;
+ u16 oem_reg;
+
+ DEBUGFUNC("e1000_oem_bits_config_ich8lan");
+
+ if (hw->mac.type < e1000_pchlan)
+ return ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->mac.type == e1000_pchlan) {
+ mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+ goto release;
+ }
+
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
+ if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+ goto release;
+
+ mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+ if (ret_val)
+ goto release;
+
+ oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+ if (d0_state) {
+ if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+ oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+ if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+ oem_reg |= HV_OEM_BITS_LPLU;
+ } else {
+ if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
+ oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+ if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
+ E1000_PHY_CTRL_NOND0A_LPLU))
+ oem_reg |= HV_OEM_BITS_LPLU;
+ }
+
+ /* Set Restart auto-neg to activate the bits */
+ if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
+ !hw->phy.ops.check_reset_block(hw))
+ oem_reg |= HV_OEM_BITS_RESTART_AN;
+
+ ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+release:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+
+/**
+ * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
+
+ ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= HV_KMRN_MDIO_SLOW;
+
+ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ * done after every PHY reset.
+ **/
+STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
+
+ if (hw->mac.type != e1000_pchlan)
+ return E1000_SUCCESS;
+
+ /* Set MDIO slow mode before any other MDIO access */
+ if (hw->phy.type == e1000_phy_82577) {
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (((hw->phy.type == e1000_phy_82577) &&
+ ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+ ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+ /* Disable generation of early preamble */
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
+ if (ret_val)
+ return ret_val;
+
+ /* Preamble tuning for SSC */
+ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
+ 0xA204);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->phy.type == e1000_phy_82578) {
+ /* Return registers to default by doing a soft reset then
+ * writing 0x3140 to the control register.
+ */
+ if (hw->phy.revision < 2) {
+ e1000_phy_sw_reset_generic(hw);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
+ 0x3140);
+ }
+ }
+
+ /* Select page 0 */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy.addr = 1;
+ ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+ hw->phy.ops.release(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure the K1 Si workaround during phy reset assuming there is
+ * link so that it disables K1 if link is in 1Gbps.
+ */
+ ret_val = e1000_k1_gig_workaround_hv(hw, true);
+ if (ret_val)
+ return ret_val;
+
+ /* Workaround for link disconnects on a busy hub in half duplex */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
+ if (ret_val)
+ goto release;
+ ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
+ phy_data & 0x00FF);
+ if (ret_val)
+ goto release;
+
+ /* set MSE higher to enable link to stay up when noise is high */
+ ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
+release:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
+ * @hw: pointer to the HW structure
+ **/
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
+{
+ u32 mac_reg;
+ u16 i, phy_reg = 0;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val)
+ goto release;
+
+ /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
+ for (i = 0; i < (hw->mac.rar_entry_count); i++) {
+ mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
+ (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
+ (u16)((mac_reg >> 16) & 0xFFFF));
+
+ mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
+ (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
+ (u16)((mac_reg & E1000_RAH_AV)
+ >> 16));
+ }
+
+ e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
+}
+
+#ifndef CRC32_OS_SUPPORT
+STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
+{
+ u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
+ u32 i, j, mask, crc;
+
+ DEBUGFUNC("e1000_calc_rx_da_crc");
+
+ crc = 0xffffffff;
+ for (i = 0; i < 6; i++) {
+ crc = crc ^ mac[i];
+ for (j = 8; j > 0; j--) {
+ mask = (crc & 1) * (-1);
+ crc = (crc >> 1) ^ (poly & mask);
+ }
+ }
+ return ~crc;
+}
+
+#endif /* CRC32_OS_SUPPORT */
+/**
+ * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
+ * with 82579 PHY
+ * @hw: pointer to the HW structure
+ * @enable: flag to enable/disable workaround when enabling/disabling jumbos
+ **/
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_reg, data;
+ u32 mac_reg;
+ u16 i;
+
+ DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
+
+ if (hw->mac.type < e1000_pch2lan)
+ return E1000_SUCCESS;
+
+ /* disable Rx path while enabling/disabling workaround */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
+ phy_reg | (1 << 14));
+ if (ret_val)
+ return ret_val;
+
+ if (enable) {
+ /* Write Rx addresses (rar_entry_count for RAL/H, and
+ * SHRAL/H) and initial CRC values to the MAC
+ */
+ for (i = 0; i < hw->mac.rar_entry_count; i++) {
+ u8 mac_addr[ETH_ADDR_LEN] = {0};
+ u32 addr_high, addr_low;
+
+ addr_high = E1000_READ_REG(hw, E1000_RAH(i));
+ if (!(addr_high & E1000_RAH_AV))
+ continue;
+ addr_low = E1000_READ_REG(hw, E1000_RAL(i));
+ mac_addr[0] = (addr_low & 0xFF);
+ mac_addr[1] = ((addr_low >> 8) & 0xFF);
+ mac_addr[2] = ((addr_low >> 16) & 0xFF);
+ mac_addr[3] = ((addr_low >> 24) & 0xFF);
+ mac_addr[4] = (addr_high & 0xFF);
+ mac_addr[5] = ((addr_high >> 8) & 0xFF);
+
+#ifndef CRC32_OS_SUPPORT
+ E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
+ e1000_calc_rx_da_crc(mac_addr));
+#else /* CRC32_OS_SUPPORT */
+ E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
+ E1000_CRC32(ETH_ADDR_LEN, mac_addr));
+#endif /* CRC32_OS_SUPPORT */
+ }
+
+ /* Write Rx addresses to the PHY */
+ e1000_copy_rx_addrs_to_phy_ich8lan(hw);
+
+ /* Enable jumbo frame workaround in the MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+ mac_reg &= ~(1 << 14);
+ mac_reg |= (7 << 15);
+ E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+ mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+ mac_reg |= E1000_RCTL_SECRC;
+ E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ &data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ data | (1 << 0));
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ &data);
+ if (ret_val)
+ return ret_val;
+ data &= ~(0xF << 8);
+ data |= (0xB << 8);
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* Enable jumbo frame workaround in the PHY */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+ data &= ~(0x7F << 5);
+ data |= (0x37 << 5);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+ data &= ~(1 << 13);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+ data &= ~(0x3FF << 2);
+ data |= (0x1A << 2);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
+ (1 << 10));
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Write MAC register values back to h/w defaults */
+ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+ mac_reg &= ~(0xF << 14);
+ E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+ mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+ mac_reg &= ~E1000_RCTL_SECRC;
+ E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ &data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ data & ~(1 << 0));
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ &data);
+ if (ret_val)
+ return ret_val;
+ data &= ~(0xF << 8);
+ data |= (0xB << 8);
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* Write PHY register values back to h/w defaults */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+ data &= ~(0x7F << 5);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+ data |= (1 << 13);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+ data &= ~(0x3FF << 2);
+ data |= (0x8 << 2);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
+ if (ret_val)
+ return ret_val;
+ hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
+ ~(1 << 10));
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* re-enable Rx path after enabling/disabling workaround */
+ return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
+ ~(1 << 14));
+}
+
+/**
+ * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ * done after every PHY reset.
+ **/
+STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
+
+ if (hw->mac.type != e1000_pch2lan)
+ return E1000_SUCCESS;
+
+ /* Set MDIO slow mode before any other MDIO access */
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ /* set MSE higher to enable link to stay up when noise is high */
+ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
+ if (ret_val)
+ goto release;
+ /* drop link after 5 times MSE threshold was reached */
+ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
+release:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_k1_gig_workaround_lv - K1 Si workaround
+ * @hw: pointer to the HW structure
+ *
+ * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
+ * Disable K1 for 1000 and 100 speeds
+ **/
+STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 status_reg = 0;
+
+ DEBUGFUNC("e1000_k1_workaround_lv");
+
+ if (hw->mac.type != e1000_pch2lan)
+ return E1000_SUCCESS;
+
+ /* Set K1 beacon duration based on 10Mbs speed */
+ ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
+ == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
+ if (status_reg &
+ (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
+ u16 pm_phy_reg;
+
+ /* LV 1G/100 Packet drop issue wa */
+ ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
+ &pm_phy_reg);
+ if (ret_val)
+ return ret_val;
+ pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
+ pm_phy_reg);
+ if (ret_val)
+ return ret_val;
+ } else {
+ u32 mac_reg;
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
+ mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
+ mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
+ * @hw: pointer to the HW structure
+ * @gate: boolean set to true to gate, false to ungate
+ *
+ * Gate/ungate the automatic PHY configuration via hardware; perform
+ * the configuration via software instead.
+ **/
+STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
+
+ if (hw->mac.type < e1000_pch2lan)
+ return;
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (gate)
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+ else
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/**
+ * e1000_lan_init_done_ich8lan - Check for PHY config completion
+ * @hw: pointer to the HW structure
+ *
+ * Check the appropriate indication the MAC has finished configuring the
+ * PHY after a software reset.
+ **/
+STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+ u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+ DEBUGFUNC("e1000_lan_init_done_ich8lan");
+
+ /* Wait for basic configuration completes before proceeding */
+ do {
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= E1000_STATUS_LAN_INIT_DONE;
+ usec_delay(100);
+ } while ((!data) && --loop);
+
+ /* If basic configuration is incomplete before the above loop
+ * count reaches 0, loading the configuration from NVM will
+ * leave the PHY in a bad state possibly resulting in no link.
+ */
+ if (loop == 0)
+ DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+
+ /* Clear the Init Done bit for the next init event */
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= ~E1000_STATUS_LAN_INIT_DONE;
+ E1000_WRITE_REG(hw, E1000_STATUS, data);
+}
+
+/**
+ * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg;
+
+ DEBUGFUNC("e1000_post_phy_reset_ich8lan");
+
+ if (hw->phy.ops.check_reset_block(hw))
+ return E1000_SUCCESS;
+
+ /* Allow time for h/w to get to quiescent state after reset */
+ msec_delay(10);
+
+ /* Perform any necessary post-reset workarounds */
+ switch (hw->mac.type) {
+ case e1000_pchlan:
+ ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ case e1000_pch2lan:
+ ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ break;
+ }
+
+ /* Clear the host wakeup bit after lcd reset */
+ if (hw->mac.type >= e1000_pchlan) {
+ hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®);
+ reg &= ~BM_WUC_HOST_WU_BIT;
+ hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
+ }
+
+ /* Configure the LCD with the extended configuration region in NVM */
+ ret_val = e1000_sw_lcd_config_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Configure the LCD with the OEM bits in NVM */
+ ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+
+ if (hw->mac.type == e1000_pch2lan) {
+ /* Ungate automatic PHY configuration on non-managed 82579 */
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ msec_delay(10);
+ e1000_gate_hw_phy_config_ich8lan(hw, false);
+ }
+
+ /* Set EEE LPI Update Timer to 200usec */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_emi_reg_locked(hw,
+ I82579_LPI_UPDATE_TIMER,
+ 0x1387);
+ hw->phy.ops.release(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ **/
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+ /* Gate automatic PHY configuration by hardware on non-managed 82579 */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+ e1000_gate_hw_phy_config_ich8lan(hw, true);
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_post_phy_reset_ich8lan(hw);
+}
+
+/**
+ * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU state according to the active flag. For PCH, if OEM write
+ * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ * the phy speed. This function will manually set the LPLU bit and restart
+ * auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ * since it configures the same bit.
+ **/
+STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+ s32 ret_val;
+ u16 oem_reg;
+
+ DEBUGFUNC("e1000_set_lplu_state_pchlan");
+
+ ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (active)
+ oem_reg |= HV_OEM_BITS_LPLU;
+ else
+ oem_reg &= ~HV_OEM_BITS_LPLU;
+
+ if (!hw->phy.ops.check_reset_block(hw))
+ oem_reg |= HV_OEM_BITS_RESTART_AN;
+
+ return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
+}
+
+/**
+ * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+ if (phy->type == e1000_phy_ife)
+ return E1000_SUCCESS;
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (active) {
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ * @hw: pointer to the HW structure
+ * @active: true to enable LPLU, false to disable
+ *
+ * Sets the LPLU D3 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (!active) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ return E1000_SUCCESS;
+
+ /* Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ * @hw: pointer to the HW structure
+ * @bank: pointer to the variable that returns the active bank
+ *
+ * Reads signature byte from the NVM using the flash access registers.
+ * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+ u32 eecd;
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+ u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+ u8 sig_byte = 0;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
+
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+ E1000_EECD_SEC1VAL_VALID_MASK) {
+ if (eecd & E1000_EECD_SEC1VAL)
+ *bank = 1;
+ else
+ *bank = 0;
+
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
+ /* fall-thru */
+ default:
+ /* set bank to 0 in case flash read fails */
+ *bank = 0;
+
+ /* Check bank 0 */
+ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+ &sig_byte);
+ if (ret_val)
+ return ret_val;
+ if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+ E1000_ICH_NVM_SIG_VALUE) {
+ *bank = 0;
+ return E1000_SUCCESS;
+ }
+
+ /* Check bank 1 */
+ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+ bank1_offset,
+ &sig_byte);
+ if (ret_val)
+ return ret_val;
+ if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+ E1000_ICH_NVM_SIG_VALUE) {
+ *bank = 1;
+ return E1000_SUCCESS;
+ }
+
+ DEBUGOUT("ERROR: No valid NVM bank present\n");
+ return -E1000_ERR_NVM;
+ }
+}
+
+/**
+ * e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to read.
+ * @words: Size of data to read in words
+ * @data: Pointer to the word(s) to read at offset.
+ *
+ * Reads a word(s) from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 act_offset;
+ s32 ret_val = E1000_SUCCESS;
+ u32 bank = 0;
+ u16 i, word;
+
+ DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ nvm->ops.acquire(hw);
+
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+ bank = 0;
+ }
+
+ act_offset = (bank) ? nvm->flash_bank_size : 0;
+ act_offset += offset;
+
+ ret_val = E1000_SUCCESS;
+ for (i = 0; i < words; i++) {
+ if (dev_spec->shadow_ram[offset+i].modified) {
+ data[i] = dev_spec->shadow_ram[offset+i].value;
+ } else {
+ ret_val = e1000_read_flash_word_ich8lan(hw,
+ act_offset + i,
+ &word);
+ if (ret_val)
+ break;
+ data[i] = word;
+ }
+ }
+
+ nvm->ops.release(hw);
+
+out:
+ if (ret_val)
+ DEBUGOUT1("NVM read error: %d\n", ret_val);
+
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_init_ich8lan - Initialize flash
+ * @hw: pointer to the HW structure
+ *
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ **/
+STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+ union ich8_hws_flash_status hsfsts;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /* Check if the flash descriptor is valid */
+ if (!hsfsts.hsf_status.fldesvalid) {
+ DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
+ return -E1000_ERR_NVM;
+ }
+
+ /* Clear FCERR and DAEL in hw status by writing 1 */
+ hsfsts.hsf_status.flcerr = 1;
+ hsfsts.hsf_status.dael = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+ /* Either we should have a hardware SPI cycle in progress
+ * bit to check against, in order to start a new cycle or
+ * FDONE bit should be changed in the hardware so that it
+ * is 1 after hardware reset, which can then be used as an
+ * indication whether a cycle is in progress or has been
+ * completed.
+ */
+
+ if (!hsfsts.hsf_status.flcinprog) {
+ /* There is no cycle running at present,
+ * so we can start a cycle.
+ * Begin by setting Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+ ret_val = E1000_SUCCESS;
+ } else {
+ s32 i;
+
+ /* Otherwise poll for sometime so the current
+ * cycle has a chance to end before giving up.
+ */
+ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (!hsfsts.hsf_status.flcinprog) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(1);
+ }
+ if (ret_val == E1000_SUCCESS) {
+ /* Successful in waiting for previous cycle to timeout,
+ * now set the Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
+ hsfsts.regval);
+ } else {
+ DEBUGOUT("Flash controller busy, cannot get access\n");
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ * @hw: pointer to the HW structure
+ * @timeout: maximum time to wait for completion
+ *
+ * This function starts a flash cycle and waits for its completion.
+ **/
+STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+ union ich8_hws_flash_ctrl hsflctl;
+ union ich8_hws_flash_status hsfsts;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcgo = 1;
+
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ /* wait till FDONE bit is set to 1 */
+ do {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcdone)
+ break;
+ usec_delay(1);
+ } while (i++ < timeout);
+
+ if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
+ return E1000_SUCCESS;
+
+ return -E1000_ERR_NVM;
+}
+
+/**
+ * e1000_read_flash_word_ich8lan - Read word from flash
+ * @hw: pointer to the HW structure
+ * @offset: offset to data location
+ * @data: pointer to the location for storing the data
+ *
+ * Reads the flash word at offset into data. Offset is converted
+ * to bytes before read.
+ **/
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+ if (!data)
+ return -E1000_ERR_NVM;
+
+ /* Must convert offset into bytes. */
+ offset <<= 1;
+
+ return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+}
+
+/**
+ * e1000_read_flash_byte_ich8lan - Read byte from flash
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to read.
+ * @data: Pointer to a byte to store the value read.
+ *
+ * Reads a single byte from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 *data)
+{
+ s32 ret_val;
+ u16 word = 0;
+
+ ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+
+ if (ret_val)
+ return ret_val;
+
+ *data = (u8)word;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte or word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: Pointer to the word to store the value read.
+ *
+ * Reads a byte or word from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 *data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ return -E1000_ERR_NVM;
+ flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr);
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ ret_val =
+ e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+ /* Check if FCERR is set to 1, if set to 1, clear it
+ * and try the whole sequence a few more times, else
+ * read in (shift in) the Flash Data0, the order is
+ * least significant byte first msb to lsb
+ */
+ if (ret_val == E1000_SUCCESS) {
+ flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+ if (size == 1)
+ *data = (u8)(flash_data & 0x000000FF);
+ else if (size == 2)
+ *data = (u16)(flash_data & 0x0000FFFF);
+ break;
+ } else {
+ /* If we've gotten here, then things are probably
+ * completely hosed, but if the error condition is
+ * detected, it won't hurt to give it another try...
+ * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (!hsfsts.hsf_status.flcdone) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.\n");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to write.
+ * @words: Size of data to write in words
+ * @data: Pointer to the word(s) to write at offset.
+ *
+ * Writes a byte or word to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ nvm->ops.acquire(hw);
+
+ for (i = 0; i < words; i++) {
+ dev_spec->shadow_ram[offset+i].modified = true;
+ dev_spec->shadow_ram[offset+i].value = data[i];
+ }
+
+ nvm->ops.release(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ * @hw: pointer to the HW structure
+ *
+ * The NVM checksum is updated by calling the generic update_nvm_checksum,
+ * which writes the checksum to the shadow ram. The changes in the shadow
+ * ram are then committed to the EEPROM by processing each bank at a time
+ * checking for the modified bit and writing only the pending changes.
+ * After a successful commit, the shadow ram is cleared and is ready for
+ * future writes.
+ **/
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ goto out;
+
+ if (nvm->type != e1000_nvm_flash_sw)
+ goto out;
+
+ nvm->ops.acquire(hw);
+
+ /* We're writing to the opposite bank so if we're on bank 1,
+ * write to bank 0 etc. We also need to erase the segment that
+ * is going to be written
+ */
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+ bank = 0;
+ }
+
+ if (bank == 0) {
+ new_bank_offset = nvm->flash_bank_size;
+ old_bank_offset = 0;
+ ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+ if (ret_val)
+ goto release;
+ } else {
+ old_bank_offset = nvm->flash_bank_size;
+ new_bank_offset = 0;
+ ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+ if (ret_val)
+ goto release;
+ }
+
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /* Determine whether to write the value stored
+ * in the other NVM bank or a modified value stored
+ * in the shadow RAM
+ */
+ if (dev_spec->shadow_ram[i].modified) {
+ data = dev_spec->shadow_ram[i].value;
+ } else {
+ ret_val = e1000_read_flash_word_ich8lan(hw, i +
+ old_bank_offset,
+ &data);
+ if (ret_val)
+ break;
+ }
+
+ /* If the word is 0x13, then make sure the signature bits
+ * (15:14) are 11b until the commit has completed.
+ * This will allow us to write 10b which indicates the
+ * signature is valid. We want to do this after the write
+ * has completed so that we don't mark the segment valid
+ * while the write is still in progress
+ */
+ if (i == E1000_ICH_NVM_SIG_WORD)
+ data |= E1000_ICH_NVM_SIG_MASK;
+
+ /* Convert offset to bytes. */
+ act_offset = (i + new_bank_offset) << 1;
+
+ usec_delay(100);
+ /* Write the bytes to the new bank. */
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset,
+ (u8)data);
+ if (ret_val)
+ break;
+
+ usec_delay(100);
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset + 1,
+ (u8)(data >> 8));
+ if (ret_val)
+ break;
+ }
+
+ /* Don't bother writing the segment valid bits if sector
+ * programming failed.
+ */
+ if (ret_val) {
+ DEBUGOUT("Flash commit failed.\n");
+ goto release;
+ }
+
+ /* Finally validate the new segment by setting bit 15:14
+ * to 10b in word 0x13 , this can be done without an
+ * erase as well since these bits are 11 to start with
+ * and we need to change bit 14 to 0b
+ */
+ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+ ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+ if (ret_val)
+ goto release;
+
+ data &= 0xBFFF;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset * 2 + 1,
+ (u8)(data >> 8));
+ if (ret_val)
+ goto release;
+
+ /* And invalidate the previously valid segment by setting
+ * its signature word (0x13) high_byte to 0b. This can be
+ * done without an erase because flash erase sets all bits
+ * to 1's. We can write 1's to 0's without an erase
+ */
+ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+ if (ret_val)
+ goto release;
+
+ /* Great! Everything worked, we can now clear the cached entries. */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ dev_spec->shadow_ram[i].modified = false;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+release:
+ nvm->ops.release(hw);
+
+ /* Reload the EEPROM, or else modifications will not appear
+ * until after the next adapter reset.
+ */
+ if (!ret_val) {
+ nvm->ops.reload(hw);
+ msec_delay(10);
+ }
+
+out:
+ if (ret_val)
+ DEBUGOUT1("NVM update error: %d\n", ret_val);
+
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ * If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ * calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 data;
+ u16 word;
+ u16 valid_csum_mask;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+ /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
+ * the checksum needs to be fixed. This bit is an indication that
+ * the NVM was prepared by OEM software and did not calculate
+ * the checksum...a likely scenario.
+ */
+ switch (hw->mac.type) {
+ case e1000_pch_lpt:
+ word = NVM_COMPAT;
+ valid_csum_mask = NVM_COMPAT_VALID_CSUM;
+ break;
+ default:
+ word = NVM_FUTURE_INIT_WORD1;
+ valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
+ break;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, word, 1, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (!(data & valid_csum_mask)) {
+ data |= valid_csum_mask;
+ ret_val = hw->nvm.ops.write(hw, word, 1, &data);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->nvm.ops.update(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte/word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: The byte(s) to write to the NVM.
+ *
+ * Writes one/two bytes to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_write_ich8_data");
+
+ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ return -E1000_ERR_NVM;
+
+ flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr);
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ if (size == 1)
+ flash_data = (u32)data & 0x00FF;
+ else
+ flash_data = (u32)data;
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+ /* check if FCERR is set to 1 , if set to 1, clear it
+ * and try the whole sequence a few more times else done
+ */
+ ret_val =
+ e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+ if (ret_val == E1000_SUCCESS)
+ break;
+
+ /* If we're here, then things are most likely
+ * completely hosed, but if the error condition
+ * is detected, it won't hurt to give it another
+ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr)
+ /* Repeat for some time before giving up. */
+ continue;
+ if (!hsfsts.hsf_status.flcdone) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.\n");
+ break;
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The index of the byte to read.
+ * @data: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 data)
+{
+ u16 word = (u16)data;
+
+ DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+ return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to write.
+ * @byte: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ * Goes through a retry algorithm before giving up.
+ **/
+STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 byte)
+{
+ s32 ret_val;
+ u16 program_retries;
+
+ DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (!ret_val)
+ return ret_val;
+
+ for (program_retries = 0; program_retries < 100; program_retries++) {
+ DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+ usec_delay(100);
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ }
+ if (program_retries == 100)
+ return -E1000_ERR_NVM;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ * @hw: pointer to the HW structure
+ * @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ * bank N is 4096 * N + flash_reg_addr.
+ **/
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ /* bank size is in 16bit words - adjust to bytes */
+ u32 flash_bank_size = nvm->flash_bank_size * 2;
+ s32 ret_val;
+ s32 count = 0;
+ s32 j, iteration, sector_size;
+
+ DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /* Determine HW Sector size: Read BERASE bits of hw flash status
+ * register
+ * 00: The Hw sector is 256 bytes, hence we need to erase 16
+ * consecutive sectors. The start index for the nth Hw sector
+ * can be calculated as = bank * 4096 + n * 256
+ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+ * The start index for the nth Hw sector can be calculated
+ * as = bank * 4096
+ * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+ * (ich9 only, otherwise error condition)
+ * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+ */
+ switch (hsfsts.hsf_status.berasesz) {
+ case 0:
+ /* Hw sector size 256 */
+ sector_size = ICH_FLASH_SEG_SIZE_256;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+ break;
+ case 1:
+ sector_size = ICH_FLASH_SEG_SIZE_4K;
+ iteration = 1;
+ break;
+ case 2:
+ sector_size = ICH_FLASH_SEG_SIZE_8K;
+ iteration = 1;
+ break;
+ case 3:
+ sector_size = ICH_FLASH_SEG_SIZE_64K;
+ iteration = 1;
+ break;
+ default:
+ return -E1000_ERR_NVM;
+ }
+
+ /* Start with the base address, then add the sector offset. */
+ flash_linear_addr = hw->nvm.flash_base_addr;
+ flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+ for (j = 0; j < iteration; j++) {
+ do {
+ u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
+
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Write a value 11 (block Erase) in Flash
+ * Cycle field in hw flash control
+ */
+ hsflctl.regval =
+ E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+
+ /* Write the last 24 bits of an index within the
+ * block into Flash Linear address field in Flash
+ * Address.
+ */
+ flash_linear_addr += (j * sector_size);
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
+ flash_linear_addr);
+
+ ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
+ if (ret_val == E1000_SUCCESS)
+ break;
+
+ /* Check if FCERR is set to 1. If 1,
+ * clear it and try the whole sequence
+ * a few more times else Done
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr)
+ /* repeat for some time before giving up */
+ continue;
+ else if (!hsfsts.hsf_status.flcdone)
+ return ret_val;
+ } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_valid_led_default_ich8lan - Set the default LED settings
+ * @hw: pointer to the HW structure
+ * @data: Pointer to the LED settings
+ *
+ * Reads the LED default settings from the NVM to data. If the NVM LED
+ * settings is all 0's or F's, set the LED default to a valid LED default
+ * setting.
+ **/
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT_ICH8LAN;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_id_led_init_pchlan - store LED configurations
+ * @hw: pointer to the HW structure
+ *
+ * PCH does not control LEDs via the LEDCTL register, rather it uses
+ * the PHY LED configuration register.
+ *
+ * PCH also does not have an "always on" or "always off" mode which
+ * complicates the ID feature. Instead of using the "on" mode to indicate
+ * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
+ * use "link_up" mode. The LEDs will still ID on request if there is no
+ * link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+ u16 data, i, temp, shift;
+
+ DEBUGFUNC("e1000_id_led_init_pchlan");
+
+ /* Get default ID LED modes */
+ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ if (ret_val)
+ return ret_val;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+ shift = (i * 5);
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode1 |= (ledctl_on << shift);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode1 |= (ledctl_off << shift);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode2 |= (ledctl_on << shift);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode2 |= (ledctl_off << shift);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ * @hw: pointer to the HW structure
+ *
+ * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ * register, so the the bus width is hard coded.
+ **/
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+ ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+ /* ICH devices are "PCI Express"-ish. They have
+ * a configuration space, but do not contain
+ * PCI Express Capability registers, so bus width
+ * must be hardcoded.
+ */
+ if (bus->width == e1000_bus_width_unknown)
+ bus->width = e1000_bus_width_pcie_x1;
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_ich8lan - Reset the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Does a full reset of the hardware which includes a reset of the PHY and
+ * MAC.
+ **/
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u16 kum_cfg;
+ u32 ctrl, reg;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC
+ * with the global reset.
+ */
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
+ if (hw->mac.type == e1000_ich8lan) {
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
+ E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+ /* Set Packet Buffer Size to 16k. */
+ E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+ }
+
+ if (hw->mac.type == e1000_pchlan) {
+ /* Save the NVM K1 bit setting*/
+ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
+ if (ret_val)
+ return ret_val;
+
+ if (kum_cfg & E1000_NVM_K1_ENABLE)
+ dev_spec->nvm_k1_enabled = true;
+ else
+ dev_spec->nvm_k1_enabled = false;
+ }
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ if (!hw->phy.ops.check_reset_block(hw)) {
+ /* Full-chip reset requires MAC and PHY reset at the same
+ * time to make sure the interface between MAC and the
+ * external PHY is reset.
+ */
+ ctrl |= E1000_CTRL_PHY_RST;
+
+ /* Gate automatic PHY configuration by hardware on
+ * non-managed 82579
+ */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+ e1000_gate_hw_phy_config_ich8lan(hw, true);
+ }
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+ DEBUGOUT("Issuing a global reset to ich8lan\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+ /* cannot issue a flush here because it hangs the hardware */
+ msec_delay(20);
+
+ /* Set Phy Config Counter to 50msec */
+ if (hw->mac.type == e1000_pch2lan) {
+ reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+ reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+ reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
+ }
+
+ if (!ret_val)
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ if (ctrl & E1000_CTRL_PHY_RST) {
+ ret_val = hw->phy.ops.get_cfg_done(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_post_phy_reset_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* For PCH, this write will make sure that any noise
+ * will be detected as a CRC error and be dropped rather than show up
+ * as a bad packet to the DMA engine.
+ */
+ if (hw->mac.type == e1000_pchlan)
+ E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ reg = E1000_READ_REG(hw, E1000_KABGTXD);
+ reg |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw_ich8lan - Initialize the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Prepares the hardware for transmit and receive by doing the following:
+ * - initialize hardware bits
+ * - initialize LED identification
+ * - setup receive address registers
+ * - setup flow control
+ * - setup transmit descriptors
+ * - clear statistics
+ **/
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl_ext, txdctl, snoop;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_ich8lan");
+
+ e1000_initialize_hw_bits_ich8lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* The 82578 Rx buffer will stall if wakeup is enabled in host and
+ * the ME. Disable wakeup by clearing the host wakeup bit.
+ * Reset the phy after disabling host wakeup to reset the Rx buffer.
+ */
+ if (hw->phy.type == e1000_phy_82578) {
+ hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
+ i &= ~BM_WUC_HOST_WU_BIT;
+ hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
+ ret_val = e1000_phy_hw_reset_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy for both queues */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB);
+ txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB);
+ txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
+
+ /* ICH8 has opposite polarity of no_snoop bits.
+ * By default, we should use snoop behavior.
+ */
+ if (mac->type == e1000_ich8lan)
+ snoop = PCIE_ICH8_SNOOP_ALL;
+ else
+ snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+ e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_ich8lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ * @hw: pointer to the HW structure
+ *
+ * Sets/Clears required hardware bits necessary for correctly setting up the
+ * hardware for transmit and receive.
+ **/
+STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+ /* Extended Device Control */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= (1 << 22);
+ /* Enable PHY low-power state when MAC is at D3 w/o WoL */
+ if (hw->mac.type >= e1000_pchlan)
+ reg |= E1000_CTRL_EXT_PHYPDEN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ if (hw->mac.type == e1000_ich8lan)
+ reg |= (1 << 28) | (1 << 29);
+ reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ reg |= (1 << 24) | (1 << 26) | (1 << 30);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+ /* Device Status */
+ if (hw->mac.type == e1000_ich8lan) {
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ reg &= ~(1 << 31);
+ E1000_WRITE_REG(hw, E1000_STATUS, reg);
+ }
+
+ /* work-around descriptor data corruption issue during nfs v2 udp
+ * traffic, just disable the nfs filtering capability
+ */
+ reg = E1000_READ_REG(hw, E1000_RFCTL);
+ reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+
+ /* Disable IPv6 extension header parsing because some malformed
+ * IPv6 headers can hang the Rx.
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+ E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+
+ /* Enable ECC on Lynxpoint */
+ if (hw->mac.type == e1000_pch_lpt) {
+ reg = E1000_READ_REG(hw, E1000_PBECCSTS);
+ reg |= E1000_PBECCSTS_ECC_ENABLE;
+ E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_MEHE;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+ }
+
+ return;
+}
+
+/**
+ * e1000_setup_link_ich8lan - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_link_ich8lan");
+
+ if (hw->phy.ops.check_reset_block(hw))
+ return E1000_SUCCESS;
+
+ /* ICH parts do not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ if (hw->fc.requested_mode == e1000_fc_default)
+ hw->fc.requested_mode = e1000_fc_full;
+
+ /* Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Continue to configure the copper link. */
+ ret_val = hw->mac.ops.setup_physical_interface(hw);
+ if (ret_val)
+ return ret_val;
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+ if ((hw->phy.type == e1000_phy_82578) ||
+ (hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_i217) ||
+ (hw->phy.type == e1000_phy_82577)) {
+ E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
+
+ ret_val = hw->phy.ops.write_reg(hw,
+ PHY_REG(BM_PORT_CTRL_PAGE, 27),
+ hw->fc.pause_time);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return e1000_set_fc_watermarks_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Configures the kumeran interface to the PHY to wait the appropriate time
+ * when polling the PHY, then call the generic setup_copper_link to finish
+ * configuring the copper link.
+ **/
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Set the mac to wait the maximum time between each iteration
+ * and increase the max iterations when polling the phy;
+ * this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
+ 0xFFFF);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ ®_data);
+ if (ret_val)
+ return ret_val;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+
+ switch (hw->phy.type) {
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ case e1000_phy_bm:
+ case e1000_phy_82578:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ case e1000_phy_82577:
+ case e1000_phy_82579:
+ ret_val = e1000_copper_link_setup_82577(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ case e1000_phy_ife:
+ ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+ ®_data);
+ if (ret_val)
+ return ret_val;
+
+ reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+ switch (hw->phy.mdix) {
+ case 1:
+ reg_data &= ~IFE_PMC_FORCE_MDIX;
+ break;
+ case 2:
+ reg_data |= IFE_PMC_FORCE_MDIX;
+ break;
+ case 0:
+ default:
+ reg_data |= IFE_PMC_AUTO_MDIX;
+ break;
+ }
+ ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+ reg_data);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ break;
+ }
+
+ return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY specific link setup function and then calls the
+ * generic setup_copper_link to finish configuring the link for
+ * Lynxpoint PCH devices
+ **/
+STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_copper_link_setup_82577(hw);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to store current link speed
+ * @duplex: pointer to store the current link duplex
+ *
+ * Calls the generic get_speed_and_duplex to retrieve the current link
+ * information and then calls the Kumeran lock loss workaround for links at
+ * gigabit speeds.
+ **/
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac.type == e1000_ich8lan) &&
+ (hw->phy.type == e1000_phy_igp_3) &&
+ (*speed == SPEED_1000)) {
+ ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ * @hw: pointer to the HW structure
+ *
+ * Work-around for 82566 Kumeran PCS lock loss:
+ * On link status change (i.e. PCI reset, speed change) and link is up and
+ * speed is gigabit-
+ * 0) if workaround is optionally disabled do nothing
+ * 1) wait 1ms for Kumeran link to come up
+ * 2) check Kumeran Diagnostic register PCS lock loss bit
+ * 3) if not set the link is locked (all is good), otherwise...
+ * 4) reset the PHY
+ * 5) repeat up to 10 times
+ * Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 phy_ctrl;
+ s32 ret_val;
+ u16 i, data;
+ bool link;
+
+ DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+ if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+ return E1000_SUCCESS;
+
+ /* Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouled up link
+ * stability
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (!link)
+ return E1000_SUCCESS;
+
+ for (i = 0; i < 10; i++) {
+ /* read once to clear */
+ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ return ret_val;
+ /* and again to get new status */
+ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ return ret_val;
+
+ /* check for PCS lock */
+ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+ return E1000_SUCCESS;
+
+ /* Issue PHY reset */
+ hw->phy.ops.reset(hw);
+ msec_delay_irq(5);
+ }
+ /* Disable GigE link negotiation */
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /* Call gig speed drop workaround on Gig disable before accessing
+ * any PHY registers
+ */
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* unable to acquire PCS lock */
+ return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to set the current Kumeran workaround state
+ *
+ * If ICH8, set the current Kumeran workaround state (enabled - true
+ * /disabled - false).
+ **/
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+ DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+ if (hw->mac.type != e1000_ich8lan) {
+ DEBUGOUT("Workaround applies to ICH8 only.\n");
+ return;
+ }
+
+ dev_spec->kmrn_lock_loss_workaround_enabled = state;
+
+ return;
+}
+
+/**
+ * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ * @hw: pointer to the HW structure
+ *
+ * Workaround for 82566 power-down on D3 entry:
+ * 1) disable gigabit link
+ * 2) write VR power-down enable
+ * 3) read it back
+ * Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+ u16 data;
+ u8 retry = 0;
+
+ DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+ if (hw->phy.type != e1000_phy_igp_3)
+ return;
+
+ /* Try the workaround twice (if needed) */
+ do {
+ /* Disable link */
+ reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+ /* Call gig speed drop workaround on Gig disable before
+ * accessing any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* Write VR power-down enable */
+ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+ data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
+ data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+ /* Read it back and test */
+ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+ data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+ break;
+
+ /* Issue PHY reset and repeat at most one more time */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+ retry++;
+ } while (retry);
+}
+
+/**
+ * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ * @hw: pointer to the HW structure
+ *
+ * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ * LPLU, Gig disable, MDIC PHY reset):
+ * 1) Set Kumeran Near-end loopback
+ * 2) Clear Kumeran Near-end loopback
+ * Should only be called for ICH8[m] devices with any 1G Phy.
+ **/
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+ if ((hw->mac.type != e1000_ich8lan) ||
+ (hw->phy.type == e1000_phy_ife))
+ return;
+
+ ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ ®_data);
+ if (ret_val)
+ return;
+ reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+ if (ret_val)
+ return;
+ reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+}
+
+/**
+ * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
+ * @hw: pointer to the HW structure
+ *
+ * During S0 to Sx transition, it is possible the link remains at gig
+ * instead of negotiating to a lower speed. Before going to Sx, set
+ * 'Gig Disable' to force link speed negotiation to a lower speed based on
+ * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
+ * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
+ * needs to be written.
+ * Parts that support (and are linked to a partner which support) EEE in
+ * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
+ * than 10Mbps w/o EEE.
+ **/
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 phy_ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
+
+ if (hw->phy.type == e1000_phy_i217) {
+ u16 phy_reg, device_id = hw->device_id;
+
+ if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+ (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+ u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+ fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ if (!dev_spec->eee_disable) {
+ u16 eee_advert;
+
+ ret_val =
+ e1000_read_emi_reg_locked(hw,
+ I217_EEE_ADVERTISEMENT,
+ &eee_advert);
+ if (ret_val)
+ goto release;
+
+ /* Disable LPLU if both link partners support 100BaseT
+ * EEE and 100Full is advertised on both ends of the
+ * link, and enable Auto Enable LPI since there will
+ * be no driver to enable LPI while in Sx.
+ */
+ if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
+ (dev_spec->eee_lp_ability &
+ I82579_EEE_100_SUPPORTED) &&
+ (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
+ phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
+ E1000_PHY_CTRL_NOND0A_LPLU);
+
+ /* Set Auto Enable LPI after link up */
+ hw->phy.ops.read_reg_locked(hw,
+ I217_LPI_GPIO_CTRL,
+ &phy_reg);
+ phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
+ hw->phy.ops.write_reg_locked(hw,
+ I217_LPI_GPIO_CTRL,
+ phy_reg);
+ }
+ }
+
+ /* For i217 Intel Rapid Start Technology support,
+ * when the system is going into Sx and no manageability engine
+ * is present, the driver must configure proxy to reset only on
+ * power good. LPI (Low Power Idle) state must also reset only
+ * on power good, as well as the MTA (Multicast table array).
+ * The SMBus release must also be disabled on LCD reset.
+ */
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ /* Enable proxy to reset only on power good. */
+ hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
+ &phy_reg);
+ phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
+ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
+ phy_reg);
+
+ /* Set bit enable LPI (EEE) to reset only on
+ * power good.
+ */
+ hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
+ phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
+
+ /* Disable the SMB release on LCD reset. */
+ hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
+ phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
+ hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+ }
+
+ /* Enable MTA to reset for Intel Rapid Start Technology
+ * Support
+ */
+ hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
+ phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
+ }
+out:
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ if (hw->mac.type >= e1000_pchlan) {
+ e1000_oem_bits_config_ich8lan(hw, false);
+
+ /* Reset PHY to activate OEM bits on 82577/8 */
+ if (hw->mac.type == e1000_pchlan)
+ e1000_phy_hw_reset_generic(hw);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ e1000_write_smbus_addr(hw);
+ hw->phy.ops.release(hw);
+ }
+
+ return;
+}
+
+/**
+ * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
+ * @hw: pointer to the HW structure
+ *
+ * During Sx to S0 transitions on non-managed devices or managed devices
+ * on which PHY resets are not blocked, if the PHY registers cannot be
+ * accessed properly by the s/w toggle the LANPHYPC value to power cycle
+ * the PHY.
+ * On i217, setup Intel Rapid Start Technology.
+ **/
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_resume_workarounds_pchlan");
+
+ if (hw->mac.type < e1000_pch2lan)
+ return;
+
+ ret_val = e1000_init_phy_workarounds_pchlan(hw);
+ if (ret_val) {
+ DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
+ return;
+ }
+
+ /* For i217 Intel Rapid Start Technology support when the system
+ * is transitioning from Sx and no manageability engine is present
+ * configure SMBus to restore on reset, disable proxy, and enable
+ * the reset on MTA (Multicast table array).
+ */
+ if (hw->phy.type == e1000_phy_i217) {
+ u16 phy_reg;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val) {
+ DEBUGOUT("Failed to setup iRST\n");
+ return;
+ }
+
+ /* Clear Auto Enable LPI after link up */
+ hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
+ phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
+ hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
+
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ /* Restore clear on SMB if no manageability engine
+ * is present
+ */
+ ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
+ hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+
+ /* Disable Proxy */
+ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
+ }
+ /* Enable reset on MTA */
+ ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+release:
+ if (ret_val)
+ DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
+ hw->phy.ops.release(hw);
+ }
+}
+
+/**
+ * e1000_cleanup_led_ich8lan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ 0);
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_ich8lan - Turn LEDs on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LEDs.
+ **/
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_led_on_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_ich8lan - Turn LEDs off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LEDs.
+ **/
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_led_off_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led_pchlan - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use.
+ **/
+STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_led_pchlan");
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+ (u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ * e1000_cleanup_led_pchlan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_pchlan");
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+ (u16)hw->mac.ledctl_default);
+}
+
+/**
+ * e1000_led_on_pchlan - Turn LEDs on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LEDs.
+ **/
+STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+ u16 data = (u16)hw->mac.ledctl_mode2;
+ u32 i, led;
+
+ DEBUGFUNC("e1000_led_on_pchlan");
+
+ /* If no link, then turn LED on by setting the invert bit
+ * for each LED that's mode is "link_up" in ledctl_mode2.
+ */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ for (i = 0; i < 3; i++) {
+ led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+ if ((led & E1000_PHY_LED0_MODE_MASK) !=
+ E1000_LEDCTL_MODE_LINK_UP)
+ continue;
+ if (led & E1000_PHY_LED0_IVRT)
+ data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+ else
+ data |= (E1000_PHY_LED0_IVRT << (i * 5));
+ }
+ }
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ * e1000_led_off_pchlan - Turn LEDs off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LEDs.
+ **/
+STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+ u16 data = (u16)hw->mac.ledctl_mode1;
+ u32 i, led;
+
+ DEBUGFUNC("e1000_led_off_pchlan");
+
+ /* If no link, then turn LED off by clearing the invert bit
+ * for each LED that's mode is "link_up" in ledctl_mode1.
+ */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ for (i = 0; i < 3; i++) {
+ led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+ if ((led & E1000_PHY_LED0_MODE_MASK) !=
+ E1000_LEDCTL_MODE_LINK_UP)
+ continue;
+ if (led & E1000_PHY_LED0_IVRT)
+ data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+ else
+ data |= (E1000_PHY_LED0_IVRT << (i * 5));
+ }
+ }
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Read appropriate register for the config done bit for completion status
+ * and configure the PHY through s/w for EEPROM-less parts.
+ *
+ * NOTE: some silicon which is EEPROM-less will fail trying to read the
+ * config done bit, so only an error is logged and continues. If we were
+ * to return with error, EEPROM-less silicon would not be able to be reset
+ * or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 bank = 0;
+ u32 status;
+
+ DEBUGFUNC("e1000_get_cfg_done_ich8lan");
+
+ e1000_get_cfg_done_generic(hw);
+
+ /* Wait for indication from h/w that it has completed basic config */
+ if (hw->mac.type >= e1000_ich10lan) {
+ e1000_lan_init_done_ich8lan(hw);
+ } else {
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /* When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ ret_val = E1000_SUCCESS;
+ }
+ }
+
+ /* Clear PHY Reset Asserted bit */
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_PHYRA)
+ E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
+ else
+ DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
+
+ /* If EEPROM is not marked present, init the IGP 3 PHY manually */
+ if (hw->mac.type <= e1000_ich9lan) {
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
+ (hw->phy.type == e1000_phy_igp_3)) {
+ e1000_phy_init_script_igp3(hw);
+ }
+ } else {
+ if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+ /* Maybe we should do a basic PHY config */
+ DEBUGOUT("EEPROM not present\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(hw->mac.ops.check_mng_mode(hw) ||
+ hw->phy.ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears hardware counters specific to the silicon family and calls
+ * clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+ u16 phy_data;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Clear PHY statistics registers */
+ if ((hw->phy.type == e1000_phy_82578) ||
+ (hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_i217) ||
+ (hw->phy.type == e1000_phy_82577)) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ ret_val = hw->phy.ops.set_page(hw,
+ HV_STATS_PAGE << IGP_PAGE_SHIFT);
+ if (ret_val)
+ goto release;
+ hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
+release:
+ hw->phy.ops.release(hw);
+ }
+}
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_ICH8LAN_H_
+#define _E1000_ICH8LAN_H_
+
+#define ICH_FLASH_GFPREG 0x0000
+#define ICH_FLASH_HSFSTS 0x0004
+#define ICH_FLASH_HSFCTL 0x0006
+#define ICH_FLASH_FADDR 0x0008
+#define ICH_FLASH_FDATA0 0x0010
+
+/* Requires up to 10 seconds when MNG might be accessing part. */
+#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
+
+#define ICH_CYCLE_READ 0
+#define ICH_CYCLE_WRITE 2
+#define ICH_CYCLE_ERASE 3
+
+#define FLASH_GFPREG_BASE_MASK 0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT 12
+
+#define ICH_FLASH_SEG_SIZE_256 256
+#define ICH_FLASH_SEG_SIZE_4K 4096
+#define ICH_FLASH_SEG_SIZE_8K 8192
+#define ICH_FLASH_SEG_SIZE_64K 65536
+
+#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID 0x00008000
+#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
+#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
+
+#define E1000_ICH_MNG_IAMT_MODE 0x2
+
+#define E1000_FWSM_WLOCK_MAC_MASK 0x0380
+#define E1000_FWSM_WLOCK_MAC_SHIFT 7
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FWSM_ULP_CFG_DONE 0x00000400 /* Low power cfg done */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+
+/* Shared Receive Address Registers */
+#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8))
+#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8))
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_H2ME 0x05B50 /* Host to ME */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_H2ME_ULP 0x00000800 /* ULP Indication Bit */
+#define E1000_H2ME_ENFORCE_SETTINGS 0x00001000 /* Enforce Settings */
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_OFF1_ON2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD 0x13
+#define E1000_ICH_NVM_SIG_MASK 0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
+#define E1000_ICH_NVM_SIG_VALUE 0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+/* FEXT register bit definition */
+#define E1000_FEXT_PHY_CABLE_DISCONNECTED 0x00000004
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define E1000_FEXTNVM_SW_CONFIG 1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* different on ICH8M */
+
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
+
+#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
+
+#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100
+#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION 0x00000200
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FEXTNVM7_DISABLE_SMB_PERST 0x00000020
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES 7
+#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
+#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+ ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
+
+/* PHY Wakeup Registers and defines */
+#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
+#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+
+#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
+#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
+
+#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
+#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
+#define HV_STATS_PAGE 778
+/* Half-duplex collision counts */
+#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */
+#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
+#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */
+#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
+#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */
+#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
+#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */
+#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
+#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision */
+#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
+#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
+#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
+#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */
+#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
+
+#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
+
+/* SMBus Control Phy Register */
+#define CV_SMB_CTRL PHY_REG(769, 23)
+#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+/* I218 Ultra Low Power Configuration 1 Register */
+#define I218_ULP_CONFIG1 PHY_REG(779, 16)
+#define I218_ULP_CONFIG1_START 0x0001 /* Start auto ULP config */
+#define I218_ULP_CONFIG1_IND 0x0004 /* Pwr up from ULP indication */
+#define I218_ULP_CONFIG1_STICKY_ULP 0x0010 /* Set sticky ULP mode */
+#define I218_ULP_CONFIG1_INBAND_EXIT 0x0020 /* Inband on ULP exit */
+#define I218_ULP_CONFIG1_WOL_HOST 0x0040 /* WoL Host on ULP exit */
+#define I218_ULP_CONFIG1_RESET_TO_SMBUS 0x0100 /* Reset to SMBus mode */
+#define I218_ULP_CONFIG1_DISABLE_SMB_PERST 0x1000 /* Disable on PERST# */
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR PHY_REG(768, 26)
+#define HV_SMB_ADDR_MASK 0x007F
+#define HV_SMB_ADDR_PEC_EN 0x0200
+#define HV_SMB_ADDR_VALID 0x0080
+#define HV_SMB_ADDR_FREQ_MASK 0x1100
+#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
+#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP 0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
+#define E1000_STRAP_SMT_FREQ_SHIFT 12
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW 0x0400
+
+/* KMRN FIFO Control and Status */
+#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
+
+/* PHY Power Management Control */
+#define HV_PM_CTRL PHY_REG(770, 17)
+#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
+#define HV_PM_CTRL_K1_ENABLE 0x4000
+
+#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */
+
+/* Inband Control */
+#define I217_INBAND_CTRL PHY_REG(770, 18)
+#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK 0x3F00
+#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT 8
+
+/* Low Power Idle GPIO Control */
+#define I217_LPI_GPIO_CTRL PHY_REG(772, 18)
+#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI 0x0800
+
+/* PHY Low Power Idle Control */
+#define I82579_LPI_CTRL PHY_REG(772, 20)
+#define I82579_LPI_CTRL_100_ENABLE 0x2000
+#define I82579_LPI_CTRL_1000_ENABLE 0x4000
+#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
+
+/* 82579 DFT Control */
+#define I82579_DFT_CTRL PHY_REG(769, 20)
+#define I82579_DFT_CTRL_GATE_PHY_RESET 0x0040 /* Gate PHY Reset on MAC Reset */
+
+/* Extended Management Interface (EMI) Registers */
+#define I82579_EMI_ADDR 0x10
+#define I82579_EMI_DATA 0x11
+#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
+#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */
+#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */
+#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
+#define I82579_RX_CONFIG 0x3412 /* Receive configuration */
+#define I82579_EEE_PCS_STATUS 0x182E /* IEEE MMD Register 3.1 >> 8 */
+#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */
+#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */
+#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */
+#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE */
+#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE */
+#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */
+#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */
+#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
+#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
+#define I217_RX_CONFIG 0xB20C /* Receive configuration */
+
+#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */
+#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */
+
+/* Intel Rapid Start Technology Support */
+#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
+#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
+#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
+#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
+#define I217_CGFREG PHY_REG(772, 29)
+#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
+#define I217_MEMPWR PHY_REG(772, 26)
+#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
+
+/* Receive Address Initial CRC Calculation */
+#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4))
+
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+#define E1000_PCI_REVISION_ID_REG 0x08
+#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data);
+s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data);
+s32 e1000_set_eee_pchlan(struct e1000_hw *hw);
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx);
+s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+#endif /* _E1000_ICH8LAN_H_ */
+void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link);
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+
+/**
+ * e1000_init_mac_ops_generic - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_mac_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ DEBUGFUNC("e1000_init_mac_ops_generic");
+
+ /* General Setup */
+ mac->ops.init_params = e1000_null_ops_generic;
+ mac->ops.init_hw = e1000_null_ops_generic;
+ mac->ops.reset_hw = e1000_null_ops_generic;
+ mac->ops.setup_physical_interface = e1000_null_ops_generic;
+ mac->ops.get_bus_info = e1000_null_ops_generic;
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
+ mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
+ mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
+ mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
+ /* LED */
+ mac->ops.cleanup_led = e1000_null_ops_generic;
+ mac->ops.setup_led = e1000_null_ops_generic;
+ mac->ops.blink_led = e1000_null_ops_generic;
+ mac->ops.led_on = e1000_null_ops_generic;
+ mac->ops.led_off = e1000_null_ops_generic;
+ /* LINK */
+ mac->ops.setup_link = e1000_null_ops_generic;
+ mac->ops.get_link_up_info = e1000_null_link_info;
+ mac->ops.check_for_link = e1000_null_ops_generic;
+ /* Management */
+ mac->ops.check_mng_mode = e1000_null_mng_mode;
+ /* VLAN, MC, etc. */
+ mac->ops.update_mc_addr_list = e1000_null_update_mc;
+ mac->ops.clear_vfta = e1000_null_mac_generic;
+ mac->ops.write_vfta = e1000_null_write_vfta;
+ mac->ops.rar_set = e1000_rar_set_generic;
+ mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+}
+
+/**
+ * e1000_null_ops_generic - No-op function, returns 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_null_ops_generic");
+ UNREFERENCED_1PARAMETER(hw);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mac_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_null_mac_generic");
+ UNREFERENCED_1PARAMETER(hw);
+ return;
+}
+
+/**
+ * e1000_null_link_info - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
+{
+ DEBUGFUNC("e1000_null_link_info");
+ UNREFERENCED_3PARAMETER(hw, s, d);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mng_mode - No-op function, return false
+ * @hw: pointer to the HW structure
+ **/
+bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_null_mng_mode");
+ UNREFERENCED_1PARAMETER(hw);
+ return false;
+}
+
+/**
+ * e1000_null_update_mc - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
+ u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+ DEBUGFUNC("e1000_null_update_mc");
+ UNREFERENCED_3PARAMETER(hw, h, a);
+ return;
+}
+
+/**
+ * e1000_null_write_vfta - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
+ u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
+{
+ DEBUGFUNC("e1000_null_write_vfta");
+ UNREFERENCED_3PARAMETER(hw, a, b);
+ return;
+}
+
+/**
+ * e1000_null_rar_set - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
+ u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+ DEBUGFUNC("e1000_null_rar_set");
+ UNREFERENCED_3PARAMETER(hw, h, a);
+ return;
+}
+
+/**
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+ /* PCI or PCI-X? */
+ bus->type = (status & E1000_STATUS_PCIX_MODE)
+ ? e1000_bus_type_pcix
+ : e1000_bus_type_pci;
+
+ /* Bus speed */
+ if (bus->type == e1000_bus_type_pci) {
+ bus->speed = (status & E1000_STATUS_PCI66)
+ ? e1000_bus_speed_66
+ : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ bus->speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ bus->speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ bus->speed = e1000_bus_speed_133;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+
+ /* Bus width */
+ bus->width = (status & E1000_STATUS_BUS64)
+ ? e1000_bus_width_64
+ : e1000_bus_width_32;
+
+ /* Which PCI(-X) function? */
+ mac->ops.set_lan_id(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+ u16 pcie_link_status;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+ bus->type = e1000_bus_type_pci_express;
+
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
+ &pcie_link_status);
+ if (ret_val) {
+ bus->width = e1000_bus_width_unknown;
+ bus->speed = e1000_bus_speed_unknown;
+ } else {
+ switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
+ case PCIE_LINK_SPEED_2500:
+ bus->speed = e1000_bus_speed_2500;
+ break;
+ case PCIE_LINK_SPEED_5000:
+ bus->speed = e1000_bus_speed_5000;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_unknown;
+ break;
+ }
+
+ bus->width = (enum e1000_bus_width)((pcie_link_status &
+ PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
+ }
+
+ mac->ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading memory-mapped registers
+ * and swaps the port value if requested.
+ **/
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 reg;
+
+ /* The status register reports the correct function number
+ * for the device regardless of function swap state.
+ */
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading PCI config space.
+ **/
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u16 pci_header_type;
+ u32 status;
+
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ } else {
+ bus->func = 0;
+ }
+}
+
+/**
+ * e1000_set_lan_id_single_port - Set LAN id for a single port device
+ * @hw: pointer to the HW structure
+ *
+ * Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ bus->func = 0;
+}
+
+/**
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+ u32 offset;
+
+ DEBUGFUNC("e1000_clear_vfta_generic");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ DEBUGFUNC("e1000_write_vfta_generic");
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setup the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+ u32 i;
+ u8 mac_addr[ETH_ADDR_LEN] = {0};
+
+ DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+ /* Setup the receive address */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+ /* Zero out the other (rar_entry_count - 1) receive addresses */
+ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+ for (i = 1; i < rar_count; i++)
+ hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is programmed into RAR0, replacing
+ * the permanent address that was installed into RAR0 by the Si on reset.
+ * This function will return SUCCESS unless it encounters an error while
+ * reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ADDR_LEN];
+
+ DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
+ if (ret_val)
+ return ret_val;
+
+ /* not supported on older hardware or 82573 */
+ if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
+ return E1000_SUCCESS;
+
+ /* Alternate MAC address is handled by the option ROM for 82580
+ * and newer. SW support not required.
+ */
+ if (hw->mac.type >= e1000_82580)
+ return E1000_SUCCESS;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+ &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
+ (nvm_alt_mac_addr_offset == 0x0000))
+ /* There is no Alternate MAC Address */
+ return E1000_SUCCESS;
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+ if (hw->bus.func == E1000_FUNC_2)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+ if (hw->bus.func == E1000_FUNC_3)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
+ return E1000_SUCCESS;
+ }
+
+ /* We have a valid alternate MAC address, and we want to treat it the
+ * same as the normal permanent MAC address stored by the HW into the
+ * RAR. Do this by mapping this address into RAR0.
+ */
+ hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_generic");
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ /* Some bridges will combine consecutive 32-bit writes into
+ * a single burst write, which will malfunction on some parts.
+ * The flushes avoid this.
+ */
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ /* The portion of the address that is used for the hash table
+ * is determined by the mc_filter_type setting.
+ * The algorithm is such that there is a total of 8 bits of shifting.
+ * The bit_shift for a mc_filter_type of 0 represents the number of
+ * left-shifts where the MSB of mc_addr[5] would still fall within
+ * the hash_mask. Case 0 does this exactly. Since there are a total
+ * of 8 bits of shifting, then mc_addr[4] will shift right the
+ * remaining number of bits. Thus 8 - bit_shift. The rest of the
+ * cases are a variation of this algorithm...essentially raising the
+ * number of bits to shift mc_addr[5] left, while still keeping the
+ * 8-bit shifting total.
+ *
+ * For example, given the following Destination MAC Address and an
+ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+ * we can see that the bit_shift for case 0 is 4. These are the hash
+ * values resulting from each mc_filter_type...
+ * [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ *
+ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+ */
+ switch (hw->mac.mc_filter_type) {
+ default:
+ case 0:
+ break;
+ case 1:
+ bit_shift += 1;
+ break;
+ case 2:
+ bit_shift += 2;
+ break;
+ case 3:
+ bit_shift += 4;
+ break;
+ }
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ u32 hash_value, hash_bit, hash_reg;
+ int i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /* clear mta_shadow */
+ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+ /* update mta_shadow from mc_addr_list */
+ for (i = 0; (u32) i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+ mc_addr_list += (ETH_ADDR_LEN);
+ }
+
+ /* replace the entire MTA table */
+ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command register with the current PCIx status
+ * register.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+ u16 cmd_mmrbc;
+ u16 pcix_cmd;
+ u16 pcix_stat_hi_word;
+ u16 stat_mmrbc;
+
+ DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+ /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+ if (hw->bus.type != e1000_bus_type_pcix)
+ return;
+
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ }
+}
+
+/**
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+ E1000_READ_REG(hw, E1000_CRCERRS);
+ E1000_READ_REG(hw, E1000_SYMERRS);
+ E1000_READ_REG(hw, E1000_MPC);
+ E1000_READ_REG(hw, E1000_SCC);
+ E1000_READ_REG(hw, E1000_ECOL);
+ E1000_READ_REG(hw, E1000_MCC);
+ E1000_READ_REG(hw, E1000_LATECOL);
+ E1000_READ_REG(hw, E1000_COLC);
+ E1000_READ_REG(hw, E1000_DC);
+ E1000_READ_REG(hw, E1000_SEC);
+ E1000_READ_REG(hw, E1000_RLEC);
+ E1000_READ_REG(hw, E1000_XONRXC);
+ E1000_READ_REG(hw, E1000_XONTXC);
+ E1000_READ_REG(hw, E1000_XOFFRXC);
+ E1000_READ_REG(hw, E1000_XOFFTXC);
+ E1000_READ_REG(hw, E1000_FCRUC);
+ E1000_READ_REG(hw, E1000_GPRC);
+ E1000_READ_REG(hw, E1000_BPRC);
+ E1000_READ_REG(hw, E1000_MPRC);
+ E1000_READ_REG(hw, E1000_GPTC);
+ E1000_READ_REG(hw, E1000_GORCL);
+ E1000_READ_REG(hw, E1000_GORCH);
+ E1000_READ_REG(hw, E1000_GOTCL);
+ E1000_READ_REG(hw, E1000_GOTCH);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_RUC);
+ E1000_READ_REG(hw, E1000_RFC);
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RJC);
+ E1000_READ_REG(hw, E1000_TORL);
+ E1000_READ_REG(hw, E1000_TORH);
+ E1000_READ_REG(hw, E1000_TOTL);
+ E1000_READ_REG(hw, E1000_TOTH);
+ E1000_READ_REG(hw, E1000_TPR);
+ E1000_READ_REG(hw, E1000_TPT);
+ E1000_READ_REG(hw, E1000_MPTC);
+ E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link");
+
+ /* We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status)
+ return E1000_SUCCESS;
+
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ return E1000_SUCCESS; /* No link detected */
+
+ mac->get_link_status = false;
+
+ /* Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg)
+ return -E1000_ERR_CONFIG;
+
+ /* Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ mac->ops.config_collision_dist(hw);
+
+ /* Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /* If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
+ !(rxcw & E1000_RXCW_C)) {
+ if (!mac->autoneg_failed) {
+ mac->autoneg_failed = true;
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /* If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = true;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /* If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
+ if (!mac->autoneg_failed) {
+ mac->autoneg_failed = true;
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /* If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = true;
+ } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+ /* If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = true;
+ DEBUGOUT("SERDES: Link up - forced.\n");
+ }
+ } else {
+ mac->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - force failed.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU) {
+ /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = true;
+ DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
+ } else {
+ mac->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
+ }
+ } else {
+ mac->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - no sync.\n");
+ }
+ } else {
+ mac->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - autoneg failed\n");
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 nvm_offset = 0;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if (hw->mac.type == e1000_i350) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
+ ret_val = hw->nvm.ops.read(hw,
+ NVM_INIT_CONTROL2_REG +
+ nvm_offset,
+ 1, &nvm_data);
+ } else {
+ ret_val = hw->nvm.ops.read(hw,
+ NVM_INIT_CONTROL2_REG,
+ 1, &nvm_data);
+ }
+
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
+ hw->fc.requested_mode = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.requested_mode = e1000_fc_tx_pause;
+ else
+ hw->fc.requested_mode = e1000_fc_full;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_link_generic");
+
+ /* In the case of the phy reset being blocked, we already have a link.
+ * We do not need to set it up again.
+ */
+ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
+ return E1000_SUCCESS;
+
+ /* If requested flow control is set to default, set flow control
+ * based on the EEPROM flow control settings.
+ */
+ if (hw->fc.requested_mode == e1000_fc_default) {
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Call the necessary media_type subroutine to configure the link. */
+ ret_val = hw->mac.ops.setup_physical_interface(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ return e1000_set_fc_watermarks_generic(hw);
+}
+
+/**
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txcw;
+
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+ /* Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /* Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric Rx
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /* Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /* Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, status;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+ /* If we have a signal (the cable is plugged in, or assumed true for
+ * serdes media) then poll for a "Link-Up" indication in the Device
+ * Status Register. Time-out if a link isn't seen in 500 milliseconds
+ * seconds (Auto-negotiation should complete in less than 500
+ * milliseconds even if the other end is doing it in SW).
+ */
+ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == FIBER_LINK_UP_LIMIT) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ mac->autoneg_failed = true;
+ /* AutoNeg failed to achieve a link, so we'll call
+ * mac->check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us to
+ * communicate with non-autonegotiating link partners.
+ */
+ ret_val = mac->ops.check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ mac->autoneg_failed = false;
+ } else {
+ mac->autoneg_failed = false;
+ DEBUGOUT("Valid Link Found\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /* For these adapters, the SW definable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers. If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * transmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+ u32 fcrtl = 0, fcrth = 0;
+
+ DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames is not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc.current_mode & e1000_fc_tx_pause) {
+ /* We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ fcrtl = hw->fc.low_water;
+ if (hw->fc.send_xon)
+ fcrtl |= E1000_FCRTL_XONE;
+
+ fcrth = hw->fc.high_water;
+ }
+ E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+ E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings. TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC. Software must
+ * also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_force_mac_fc_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc.current_mode" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+ DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced. If the link needed to be forced, then
+ * flow control needs to be forced also. If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
+ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (mac->autoneg_failed) {
+ if (hw->phy.media_type == e1000_media_type_fiber ||
+ hw->phy.media_type == e1000_media_type_internal_serdes)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ } else {
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
+ return ret_val;
+ }
+
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ return ret_val;
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise Rx
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.requested_mode == e1000_fc_full) {
+ hw->fc.current_mode = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\n");
+ } else {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ } else {
+ /* Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.current_mode = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc.current_mode = e1000_fc_none;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have SerDes media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+ mac->autoneg) {
+ /* Read the PCS_LSTS and check to see if AutoNeg
+ * has completed.
+ */
+ pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
+ DEBUGOUT("PCS Auto Neg has not completed.\n");
+ return ret_val;
+ }
+
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (PCS_ANADV) and the Auto_Negotiation Base
+ * Page Ability Register (PCS_LPAB) to determine how
+ * flow control was negotiated.
+ */
+ pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+ pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (PCS_ANADV) and two bits in the Auto Negotiation Base
+ * Page Ability Register (PCS_LPAB) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | e1000_fc_full
+ *
+ */
+ if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
+ /* Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise Rx
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.requested_mode == e1000_fc_full) {
+ hw->fc.current_mode = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\n");
+ } else {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+ (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+ !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ } else {
+ /* Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.current_mode = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\n");
+ }
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+ pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
+
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ u32 status;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 *speed, u16 *duplex)
+{
+ DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+ UNREFERENCED_1PARAMETER(hw);
+
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ return -E1000_ERR_NVM;
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ return -E1000_ERR_NVM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+ while (i < AUTO_READ_DONE_TIMEOUT) {
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+ break;
+ msec_delay(1);
+ i++;
+ }
+
+ if (i == AUTO_READ_DONE_TIMEOUT) {
+ DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+ return -E1000_ERR_RESET;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init_generic");
+
+ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ if (ret_val)
+ return ret_val;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl;
+
+ DEBUGFUNC("e1000_setup_led_generic");
+
+ if (hw->mac.ops.setup_led != e1000_setup_led_generic)
+ return -E1000_ERR_CONFIG;
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ hw->mac.ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ } else if (hw->phy.media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_generic");
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the LEDs which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl_blink = 0;
+ u32 i;
+
+ DEBUGFUNC("e1000_blink_led_generic");
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /* Set the blink bit for each LED that's "on" (0x0E)
+ * (or "off" if inverted) in ledctl_mode2. The blink
+ * logic in hardware only works when mode is set to "on"
+ * so it must be changed accordingly when the mode is
+ * "off" and inverted.
+ */
+ ledctl_blink = hw->mac.ledctl_mode2;
+ for (i = 0; i < 32; i += 8) {
+ u32 mode = (hw->mac.ledctl_mode2 >> i) &
+ E1000_LEDCTL_LED0_MODE_MASK;
+ u32 led_default = hw->mac.ledctl_default >> i;
+
+ if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
+ (mode == E1000_LEDCTL_MODE_LED_ON)) ||
+ ((led_default & E1000_LEDCTL_LED0_IVRT) &&
+ (mode == E1000_LEDCTL_MODE_LED_OFF))) {
+ ledctl_blink &=
+ ~(E1000_LEDCTL_LED0_MODE_MASK << i);
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_MODE_LED_ON) << i;
+ }
+ }
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_on_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_off_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+ u32 gcr;
+
+ DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ return;
+
+ if (no_snoop) {
+ gcr = E1000_READ_REG(hw, E1000_GCR);
+ gcr &= ~(PCIE_NO_SNOOP_ALL);
+ gcr |= no_snoop;
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ }
+}
+
+/**
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_SUCCESS if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 timeout = MASTER_DISABLE_TIMEOUT;
+
+ DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ return E1000_SUCCESS;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE) ||
+ E1000_REMOVED(hw->hw_addr))
+ break;
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ return -E1000_ERR_MASTER_REQUESTS_PENDING;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_reset_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ return;
+ }
+
+ mac->current_ifs_val = 0;
+ mac->ifs_min_val = IFS_MIN;
+ mac->ifs_max_val = IFS_MAX;
+ mac->ifs_step_size = IFS_STEP;
+ mac->ifs_ratio = IFS_RATIO;
+
+ mac->in_ifs_mode = false;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+}
+
+/**
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_update_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ return;
+ }
+
+ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+ mac->in_ifs_mode = true;
+ if (mac->current_ifs_val < mac->ifs_max_val) {
+ if (!mac->current_ifs_val)
+ mac->current_ifs_val = mac->ifs_min_val;
+ else
+ mac->current_ifs_val +=
+ mac->ifs_step_size;
+ E1000_WRITE_REG(hw, E1000_AIT,
+ mac->current_ifs_val);
+ }
+ }
+ } else {
+ if (mac->in_ifs_mode &&
+ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+ mac->current_ifs_val = 0;
+ mac->in_ifs_mode = false;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+ }
+ }
+}
+
+/**
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotiation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ **/
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+ if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->phy.mdix = 1;
+ return -E1000_ERR_CONFIG;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Validate the MDI/MDIx setting, allowing for auto-crossover during forced
+ * operation.
+ **/
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
+ UNREFERENCED_1PARAMETER(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register. There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data)
+{
+ u32 i, regvalue = 0;
+
+ DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+ /* Set up the address and data */
+ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+ E1000_WRITE_REG(hw, reg, regvalue);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+ usec_delay(5);
+ regvalue = E1000_READ_REG(hw, reg);
+ if (regvalue & E1000_GEN_CTL_READY)
+ break;
+ }
+ if (!(regvalue & E1000_GEN_CTL_READY)) {
+ DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+void e1000_init_mac_ops_generic(struct e1000_hw *hw);
+#ifndef E1000_REMOVED
+#define E1000_REMOVED(a) (0)
+#endif /* E1000_REMOVED */
+void e1000_null_mac_generic(struct e1000_hw *hw);
+s32 e1000_null_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
+bool e1000_null_mng_mode(struct e1000_hw *hw);
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count);
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+/**
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length. The
+ * checksum calculated is returned.
+ **/
+u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+ u32 i;
+ u8 sum = 0;
+
+ DEBUGFUNC("e1000_calculate_checksum");
+
+ if (!buffer)
+ return 0;
+
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
+
+ return (u8) (0 - sum);
+}
+
+/**
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+ u32 hicr;
+ u8 i;
+
+ DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+ if (!hw->mac.arc_subsystem_valid) {
+ DEBUGOUT("ARC subsystem not valid.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_EN)) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_mng_mode_generic - Generic check management mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns true (>0) if
+ * manageability is enabled, else false (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+ u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ DEBUGFUNC("e1000_check_mng_mode_generic");
+
+
+ return (fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ u32 *buffer = (u32 *)&hw->mng_cookie;
+ u32 offset;
+ s32 ret_val, hdr_csum, csum;
+ u8 i, len;
+
+ DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+ hw->mac.tx_pkt_filtering = true;
+
+ /* No manageability, no filtering */
+ if (!hw->mac.ops.check_mng_mode(hw)) {
+ hw->mac.tx_pkt_filtering = false;
+ return hw->mac.tx_pkt_filtering;
+ }
+
+ /* If we can't read from the host interface for whatever
+ * reason, disable filtering.
+ */
+ ret_val = e1000_mng_enable_host_if_generic(hw);
+ if (ret_val != E1000_SUCCESS) {
+ hw->mac.tx_pkt_filtering = false;
+ return hw->mac.tx_pkt_filtering;
+ }
+
+ /* Read in the header. Length and offset are in dwords. */
+ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+ for (i = 0; i < len; i++)
+ *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ offset + i);
+ hdr_csum = hdr->checksum;
+ hdr->checksum = 0;
+ csum = e1000_calculate_checksum((u8 *)hdr,
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /* If either the checksums or signature don't match, then
+ * the cookie area isn't considered valid, in which case we
+ * take the safe route of assuming Tx filtering is enabled.
+ */
+ if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+ hw->mac.tx_pkt_filtering = true;
+ return hw->mac.tx_pkt_filtering;
+ }
+
+ /* Cookie area is valid, make the final check for filtering. */
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+ hw->mac.tx_pkt_filtering = false;
+
+ return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+ DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+ /* Write the whole command header structure with new checksum. */
+
+ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+ length >>= 2;
+ /* Write the relevant command block into the ram area. */
+ for (i = 0; i < length; i++) {
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *) hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_host_if_write_generic - Write to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum)
+{
+ u8 *tmp;
+ u8 *bufptr = buffer;
+ u32 data = 0;
+ u16 remaining, i, j, prev_bytes;
+
+ DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
+ return -E1000_ERR_PARAM;
+
+ tmp = (u8 *)&data;
+ prev_bytes = offset & 0x3;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant command block into the
+ * ram area.
+ */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+ data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof(u32); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+ data);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = e1000_mng_enable_host_if_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = e1000_mng_host_if_write_generic(hw, buffer, length,
+ sizeof(hdr), &(hdr.checksum));
+ if (ret_val)
+ return ret_val;
+
+ /* Write the manageability command header */
+ ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr);
+ if (ret_val)
+ return ret_val;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_enable_mng_pass_thru - Check if management passthrough is needed
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to leave interface enabled so that frames can
+ * be directed to and from the management interface.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ u32 manc;
+ u32 fwsm, factps;
+
+ DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+ if (!hw->mac.asf_firmware_present)
+ return false;
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN))
+ return false;
+
+ if (hw->mac.has_fwsm) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)))
+ return true;
+ } else if ((hw->mac.type == e1000_82574) ||
+ (hw->mac.type == e1000_82583)) {
+ u16 data;
+
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+ e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
+ (e1000_mng_mode_pt << 13)))
+ return true;
+ } else if ((manc & E1000_MANC_SMBUS_EN) &&
+ !(manc & E1000_MANC_ASF_EN)) {
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * e1000_host_interface_command - Writes buffer to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: contains a command to write
+ * @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS
+ * else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+ u32 hicr, i;
+
+ DEBUGFUNC("e1000_host_interface_command");
+
+ if (!(hw->mac.arc_subsystem_valid)) {
+ DEBUGOUT("Hardware doesn't support host interface command.\n");
+ return E1000_SUCCESS;
+ }
+
+ if (!hw->mac.asf_firmware_present) {
+ DEBUGOUT("Firmware is not present.\n");
+ return E1000_SUCCESS;
+ }
+
+ if (length == 0 || length & 0x3 ||
+ length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
+ DEBUGOUT("Buffer length failure.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_EN)) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant command block
+ * into the ram area.
+ */
+ for (i = 0; i < length; i++)
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *)buffer + i));
+
+ /* Setting this bit tells the ARC that a new command is pending. */
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check command successful completion. */
+ if (i == E1000_HI_COMMAND_TIMEOUT ||
+ (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
+ DEBUGOUT("Command has failed with no status valid.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ for (i = 0; i < length; i++)
+ *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF,
+ i);
+
+ return E1000_SUCCESS;
+}
+/**
+ * e1000_load_firmware - Writes proxy FW code buffer to host interface
+ * and execute.
+ * @hw: pointer to the HW structure
+ * @buffer: contains a firmware to write
+ * @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled
+ * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+ u32 hicr, hibba, fwsm, icr, i;
+
+ DEBUGFUNC("e1000_load_firmware");
+
+ if (hw->mac.type < e1000_i210) {
+ DEBUGOUT("Hardware doesn't support loading FW by the driver\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_EN)) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_CONFIG;
+ }
+ if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) {
+ DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) {
+ DEBUGOUT("Buffer length failure.\n");
+ return -E1000_ERR_INVALID_ARGUMENT;
+ }
+
+ /* Clear notification from ROM-FW by reading ICR register */
+ icr = E1000_READ_REG(hw, E1000_ICR_V2);
+
+ /* Reset ROM-FW */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ hicr |= E1000_HICR_FW_RESET_ENABLE;
+ E1000_WRITE_REG(hw, E1000_HICR, hicr);
+ hicr |= E1000_HICR_FW_RESET;
+ E1000_WRITE_REG(hw, E1000_HICR, hicr);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Wait till MAC notifies about its readiness after ROM-FW reset */
+ for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) {
+ icr = E1000_READ_REG(hw, E1000_ICR_V2);
+ if (icr & E1000_ICR_MNG)
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for timeout */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("FW reset failed.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Wait till MAC is ready to accept new FW code */
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ if ((fwsm & E1000_FWSM_FW_VALID) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT ==
+ E1000_FWSM_HI_EN_ONLY_MODE))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for timeout */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("FW reset failed.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant FW code block
+ * into the ram area in DWORDs via 1kB ram addressing window.
+ */
+ for (i = 0; i < length; i++) {
+ if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) {
+ /* Point to correct 1kB ram window */
+ hibba = E1000_HI_FW_BASE_ADDRESS +
+ ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) *
+ (i / E1000_HI_FW_BLOCK_DWORD_LENGTH));
+
+ E1000_WRITE_REG(hw, E1000_HIBBA, hibba);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ i % E1000_HI_FW_BLOCK_DWORD_LENGTH,
+ *((u32 *)buffer + i));
+ }
+
+ /* Setting this bit tells the ARC that a new FW is ready to execute. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for successful FW start. */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("New FW did not start within timeout period.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ return E1000_SUCCESS;
+}
+
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MANAGE_H_
+#define _E1000_MANAGE_H_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length);
+
+enum e1000_mng_mode {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG 0x20000000
+
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+#define E1000_FWSM_FW_VALID 0x00008000
+#define E1000_FWSM_HI_EN_ONLY_MODE 0x4
+
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */
+#define E1000_HI_FW_BASE_ADDRESS 0x10000
+#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */
+#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */
+#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_mbx.h"
+
+/**
+ * e1000_null_mbx_check_for_flag - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_check_flag");
+ UNREFERENCED_2PARAMETER(hw, mbx_id);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mbx_transact - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw,
+ u32 E1000_UNUSEDARG *msg,
+ u16 E1000_UNUSEDARG size,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_rw_msg");
+ UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mbx - Reads a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfully read message from buffer
+ **/
+s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_mbx");
+
+ /* limit read to size of mailbox */
+ if (size > mbx->size)
+ size = mbx->size;
+
+ if (mbx->ops.read)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_mbx");
+
+ if (size > mbx->size)
+ ret_val = -E1000_ERR_MBX;
+
+ else if (mbx->ops.write)
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg - checks to see if someone sent us mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg");
+
+ if (mbx->ops.check_for_msg)
+ ret_val = mbx->ops.check_for_msg(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack - checks to see if someone sent us ACK
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack");
+
+ if (mbx->ops.check_for_ack)
+ ret_val = mbx->ops.check_for_ack(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst - checks to see if other side has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst");
+
+ if (mbx->ops.check_for_rst)
+ ret_val = mbx->ops.check_for_rst(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_poll_for_msg - Wait for message notification
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification
+ **/
+STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_msg");
+
+ if (!countdown || !mbx->ops.check_for_msg)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_poll_for_ack - Wait for message acknowledgement
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message acknowledgement
+ **/
+STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_ack");
+
+ if (!countdown || !mbx->ops.check_for_ack)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_read_posted_mbx - Wait for message notification and receive message
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification and
+ * copied it into the receive buffer.
+ **/
+s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_posted_mbx");
+
+ if (!mbx->ops.read)
+ goto out;
+
+ ret_val = e1000_poll_for_msg(hw, mbx_id);
+
+ /* if ack received read message, otherwise we timed out */
+ if (!ret_val)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer and
+ * received an ack to that message within delay * timeout period
+ **/
+s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_write_posted_mbx");
+
+ /* exit if either we can't write or there isn't a defined timeout */
+ if (!mbx->ops.write || !mbx->timeout)
+ goto out;
+
+ /* send msg */
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ /* if msg sent wait until we receive an ack */
+ if (!ret_val)
+ ret_val = e1000_poll_for_ack(hw, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_ops_generic - Initialize mbx function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Sets the function pointers to no-op functions
+ **/
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ mbx->ops.init_params = e1000_null_ops_generic;
+ mbx->ops.read = e1000_null_mbx_transact;
+ mbx->ops.write = e1000_null_mbx_transact;
+ mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+}
+
+/**
+ * e1000_read_v2p_mailbox - read v2p mailbox
+ * @hw: pointer to the HW structure
+ *
+ * This function is used to read the v2p mailbox without losing the read to
+ * clear status bits.
+ **/
+STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
+{
+ u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
+
+ v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
+ hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
+
+ return v2p_mailbox;
+}
+
+/**
+ * e1000_check_for_bit_vf - Determine if a status bit was set
+ * @hw: pointer to the HW structure
+ * @mask: bitmask for bits to be tested and cleared
+ *
+ * This function is used to check for the read to clear bits within
+ * the V2P mailbox.
+ **/
+STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
+{
+ u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (v2p_mailbox & mask)
+ ret_val = E1000_SUCCESS;
+
+ hw->dev_spec.vf.v2p_mailbox &= ~mask;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_vf - checks to see if the PF has sent mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ UNREFERENCED_1PARAMETER(mbx_id);
+ DEBUGFUNC("e1000_check_for_msg_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ UNREFERENCED_1PARAMETER(mbx_id);
+ DEBUGFUNC("e1000_check_for_ack_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_vf - checks to see if the PF has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns true if the PF has set the reset done bit or else false
+ **/
+STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ UNREFERENCED_1PARAMETER(mbx_id);
+ DEBUGFUNC("e1000_check_for_rst_vf");
+
+ if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
+ E1000_V2PMAILBOX_RSTI))) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_vf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_vf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
+
+ /* reserve mailbox for vf use */
+ if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_vf - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ s32 ret_val;
+ u16 i;
+
+ UNREFERENCED_1PARAMETER(mbx_id);
+
+ DEBUGFUNC("e1000_write_mbx_vf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_vf(hw, 0);
+ e1000_check_for_ack_vf(hw, 0);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+ /* Drop VFU and interrupt the PF to tell it a message has been sent */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
+
+out_no_write:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfully read message from buffer
+ **/
+STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 E1000_UNUSEDARG mbx_id)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_vf");
+ UNREFERENCED_1PARAMETER(mbx_id);
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message from the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
+
+ /* Acknowledge receipt and release mailbox, then we're done */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_vf - set initial values for vf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for vf mailbox
+ */
+s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ /* start mailbox as timed out and let the reset_hw call set the timeout
+ * value to begin communications */
+ mbx->timeout = 0;
+ mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_vf;
+ mbx->ops.write = e1000_write_mbx_vf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_vf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_vf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_vf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+
+ return E1000_SUCCESS;
+}
+
+STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
+{
+ u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (mbvficr & mask) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_pf - checks to see if the VF has sent mail
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_pf - checks to see if the VF has ACKed
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_pf - checks to see if the VF has reset
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst_pf");
+
+ if (vflre & (1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_pf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+ u32 p2v_mailbox;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_pf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
+
+ /* reserve mailbox for vf use */
+ p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
+ if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_pf - Places a message in the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_pf(hw, vf_number);
+ e1000_check_for_ack_pf(hw, vf_number);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
+
+ /* Interrupt VF to tell it a message has been sent and release buffer*/
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+out_no_write:
+ return ret_val;
+
+}
+
+/**
+ * e1000_read_mbx_pf - Read a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * This function copies a message from the mailbox buffer to the caller's
+ * memory buffer. The presumption is that the caller knows that there was
+ * a message due to a VF request so no polling for message is needed.
+ **/
+STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
+
+ /* Acknowledge the message and release buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_pf - set initial values for pf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for pf mailbox
+ */
+s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ case e1000_i350:
+ case e1000_i354:
+ mbx->timeout = 0;
+ mbx->usec_delay = 0;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_pf;
+ mbx->ops.write = e1000_write_mbx_pf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_pf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_pf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_pf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+ default:
+ return E1000_SUCCESS;
+ }
+}
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MBX_H_
+#define _E1000_MBX_H_
+
+#include "e1000_api.h"
+
+/* Define mailbox register bits */
+#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
+#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
+#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
+#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
+#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
+#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
+#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
+
+#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */
+#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */
+#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */
+
+#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
+#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */
+#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
+#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */
+
+#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
+
+/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
+ * PF. The reverse is true if it is E1000_PF_*.
+ * Message ACK's are the value or'd with 0xF0000000
+ */
+/* Msgs below or'd with this are the ACK */
+#define E1000_VT_MSGTYPE_ACK 0x80000000
+/* Msgs below or'd with this are the NACK */
+#define E1000_VT_MSGTYPE_NACK 0x40000000
+/* Indicates that VF is still clear to send requests */
+#define E1000_VT_MSGTYPE_CTS 0x20000000
+#define E1000_VT_MSGINFO_SHIFT 16
+/* bits 23:16 are used for extra info for certain messages */
+#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_VF_RESET 0x01 /* VF requests reset */
+#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */
+#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */
+#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */
+#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */
+#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/
+#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
+
+#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */
+#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */
+
+s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_check_for_msg(struct e1000_hw *, u16);
+s32 e1000_check_for_ack(struct e1000_hw *, u16);
+s32 e1000_check_for_rst(struct e1000_hw *, u16);
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
+s32 e1000_init_mbx_params_vf(struct e1000_hw *);
+s32 e1000_init_mbx_params_pf(struct e1000_hw *);
+
+#endif /* _E1000_MBX_H_ */
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/**
+ * e1000_init_nvm_ops_generic - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ DEBUGFUNC("e1000_init_nvm_ops_generic");
+
+ /* Initialize function pointers */
+ nvm->ops.init_params = e1000_null_ops_generic;
+ nvm->ops.acquire = e1000_null_ops_generic;
+ nvm->ops.read = e1000_null_read_nvm;
+ nvm->ops.release = e1000_null_nvm_generic;
+ nvm->ops.reload = e1000_reload_nvm_generic;
+ nvm->ops.update = e1000_null_ops_generic;
+ nvm->ops.valid_led_default = e1000_null_led_default;
+ nvm->ops.validate = e1000_null_ops_generic;
+ nvm->ops.write = e1000_null_write_nvm;
+}
+
+/**
+ * e1000_null_nvm_read - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+ u16 E1000_UNUSEDARG *c)
+{
+ DEBUGFUNC("e1000_null_read_nvm");
+ UNREFERENCED_4PARAMETER(hw, a, b, c);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_nvm_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_null_nvm_generic");
+ UNREFERENCED_1PARAMETER(hw);
+ return;
+}
+
+/**
+ * e1000_null_led_default - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG *data)
+{
+ DEBUGFUNC("e1000_null_led_default");
+ UNREFERENCED_2PARAMETER(hw, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_nvm - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+ u16 E1000_UNUSEDARG *c)
+{
+ DEBUGFUNC("e1000_null_write_nvm");
+ UNREFERENCED_4PARAMETER(hw, a, b, c);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ **/
+STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ **/
+STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else
+ if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ **/
+STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/**
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE)
+ return E1000_SUCCESS;
+
+ usec_delay(5);
+ }
+
+ return -E1000_ERR_NVM;
+}
+
+/**
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ return -E1000_ERR_NVM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ **/
+STATIC void e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/**
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/**
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ **/
+STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ u16 timeout = NVM_MAX_RETRY_SPI;
+
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(1);
+
+ /* Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out.
+ */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ return -E1000_ERR_NVM;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /* Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset
+ */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /* Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down.
+ */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /* A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+ E1000_NVM_RW_REG_DATA);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = -E1000_ERR_NVM;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val) {
+ nvm->ops.release(hw);
+ return ret_val;
+ }
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ msec_delay(10);
+ nvm->ops.release(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ return -E1000_ERR_NVM;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ nvm->ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_string_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 offset;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_string_generic");
+
+ if ((hw->mac.type >= e1000_i210) &&
+ !e1000_get_flash_presence_i210(hw)) {
+ DEBUGOUT("Flashless no PBA string\n");
+ return -E1000_ERR_NVM_PBA_SECTION;
+ }
+
+ if (pba_num == NULL) {
+ DEBUGOUT("PBA string buffer was null\n");
+ return -E1000_ERR_INVALID_ARGUMENT;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ /* if nvm_data is not ptr guard the PBA must be in legacy format which
+ * means pba_ptr is actually our second data word for the PBA number
+ * and we can decode it into an ascii string
+ */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ DEBUGOUT("NVM PBA number is not stored as string\n");
+
+ /* make sure callers buffer is big enough to store the PBA */
+ if (pba_num_size < E1000_PBANUM_LENGTH) {
+ DEBUGOUT("PBA string buffer too small\n");
+ return E1000_ERR_NO_SPACE;
+ }
+
+ /* extract hex string from data and pba_ptr */
+ pba_num[0] = (nvm_data >> 12) & 0xF;
+ pba_num[1] = (nvm_data >> 8) & 0xF;
+ pba_num[2] = (nvm_data >> 4) & 0xF;
+ pba_num[3] = nvm_data & 0xF;
+ pba_num[4] = (pba_ptr >> 12) & 0xF;
+ pba_num[5] = (pba_ptr >> 8) & 0xF;
+ pba_num[6] = '-';
+ pba_num[7] = 0;
+ pba_num[8] = (pba_ptr >> 4) & 0xF;
+ pba_num[9] = pba_ptr & 0xF;
+
+ /* put a null character on the end of our string */
+ pba_num[10] = '\0';
+
+ /* switch all the data but the '-' to hex char */
+ for (offset = 0; offset < 10; offset++) {
+ if (pba_num[offset] < 0xA)
+ pba_num[offset] += '0';
+ else if (pba_num[offset] < 0x10)
+ pba_num[offset] += 'A' - 0xA;
+ }
+
+ return E1000_SUCCESS;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ return -E1000_ERR_NVM_PBA_SECTION;
+ }
+ /* check if pba_num buffer is big enough */
+ if (pba_num_size < (((u32)length * 2) - 1)) {
+ DEBUGOUT("PBA string buffer too small\n");
+ return -E1000_ERR_NO_SPACE;
+ }
+
+ /* trim pba length from start of string */
+ pba_ptr++;
+ length--;
+
+ for (offset = 0; offset < length; offset++) {
+ ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+ pba_num[offset * 2] = (u8)(nvm_data >> 8);
+ pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+ }
+ pba_num[offset * 2] = '\0';
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_pba_length_generic - Read device part number length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num_size.
+ **/
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_length_generic");
+
+ if (pba_num_size == NULL) {
+ DEBUGOUT("PBA buffer size was null\n");
+ return -E1000_ERR_INVALID_ARGUMENT;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ /* if data is not ptr guard the PBA must be in legacy format */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ *pba_num_size = E1000_PBANUM_LENGTH;
+ return E1000_SUCCESS;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ return -E1000_ERR_NVM_PBA_SECTION;
+ }
+
+ /* Convert from length in u16 values to u8 chars, add 1 for NULL,
+ * and subtract 2 because length field is included in length.
+ */
+ *pba_num_size = ((u32)length * 2) - 1;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_pba_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_read_pba_num_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ } else if (nvm_data == NVM_PBA_PTR_GUARD) {
+ DEBUGOUT("NVM Not Supported\n");
+ return -E1000_NOT_IMPLEMENTED;
+ }
+ *pba_num = (u32)(nvm_data << 16);
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+ *pba_num |= nvm_data;
+
+ return E1000_SUCCESS;
+}
+
+
+/**
+ * e1000_read_pba_raw
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @max_pba_block_size: PBA block size limit
+ * @pba: pointer to output PBA structure
+ *
+ * Reads PBA from EEPROM image when eeprom_buf is not NULL.
+ * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 max_pba_block_size,
+ struct e1000_pba *pba)
+{
+ s32 ret_val;
+ u16 pba_block_size;
+
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
+ eeprom_buf_size,
+ &pba_block_size);
+ if (ret_val)
+ return ret_val;
+
+ if (pba_block_size > max_pba_block_size)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba->word[1],
+ pba_block_size,
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba_block_size)) {
+ memcpy(pba->pba_block,
+ &eeprom_buf[pba->word[1]],
+ pba_block_size * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_pba_raw
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba: pointer to PBA structure
+ *
+ * Writes PBA to EEPROM image when eeprom_buf is not NULL.
+ * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, struct e1000_pba *pba)
+{
+ s32 ret_val;
+
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
+ eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, pba->word[1],
+ pba->pba_block[0],
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba->pba_block[0])) {
+ memcpy(&eeprom_buf[pba->word[1]],
+ pba->pba_block,
+ pba->pba_block[0] * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_pba_block_size
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba_data_size: pointer to output variable
+ *
+ * Returns the size of the PBA block in words. Function operates on EEPROM
+ * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
+ * EEPROM device.
+ *
+ **/
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 *pba_block_size)
+{
+ s32 ret_val;
+ u16 pba_word[2];
+ u16 length;
+
+ DEBUGFUNC("e1000_get_pba_block_size");
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba_word[0] == NVM_PBA_PTR_GUARD) {
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
+ &length);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > pba_word[1])
+ length = eeprom_buf[pba_word[1] + 0];
+ else
+ return -E1000_ERR_PARAM;
+ }
+
+ if (length == 0xFFFF || length == 0)
+ return -E1000_ERR_NVM_PBA_SECTION;
+ } else {
+ /* PBA number in legacy format, there is no PBA Block. */
+ length = 0;
+ }
+
+ if (pba_block_size != NULL)
+ *pba_block_size = length;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 rar_high;
+ u32 rar_low;
+ u16 i;
+
+ rar_high = E1000_READ_REG(hw, E1000_RAH(0));
+ rar_low = E1000_READ_REG(hw, E1000_RAL(0));
+
+ for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+ for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ return -E1000_ERR_NVM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ return ret_val;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+ return ret_val;
+}
+
+/**
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_get_fw_version - Get firmware version information
+ * @hw: pointer to the HW structure
+ * @fw_vers: pointer to output version structure
+ *
+ * unsupported/not present features return 0 in version structure
+ **/
+void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
+{
+ u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
+ u8 q, hval, rem, result;
+ u16 comb_verh, comb_verl, comb_offset;
+
+ memset(fw_vers, 0, sizeof(struct e1000_fw_version));
+
+ /* basic eeprom version numbers, bits used vary by part and by tool
+ * used to create the nvm images */
+ /* Check which data format we have */
+ switch (hw->mac.type) {
+ case e1000_i211:
+ e1000_read_invm_version(hw, fw_vers);
+ return;
+ case e1000_82575:
+ case e1000_82576:
+ case e1000_82580:
+ hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+ /* Use this format, unless EETRACK ID exists,
+ * then use alternate format
+ */
+ if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
+ hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+ fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+ >> NVM_MAJOR_SHIFT;
+ fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
+ >> NVM_MINOR_SHIFT;
+ fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
+ goto etrack_id;
+ }
+ break;
+ case e1000_i210:
+ if (!(e1000_get_flash_presence_i210(hw))) {
+ e1000_read_invm_version(hw, fw_vers);
+ return;
+ }
+ /* fall through */
+ case e1000_i350:
+ hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+ /* find combo image version */
+ hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
+ if ((comb_offset != 0x0) &&
+ (comb_offset != NVM_VER_INVALID)) {
+
+ hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
+ + 1), 1, &comb_verh);
+ hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
+ 1, &comb_verl);
+
+ /* get Option Rom version if it exists and is valid */
+ if ((comb_verh && comb_verl) &&
+ ((comb_verh != NVM_VER_INVALID) &&
+ (comb_verl != NVM_VER_INVALID))) {
+
+ fw_vers->or_valid = true;
+ fw_vers->or_major =
+ comb_verl >> NVM_COMB_VER_SHFT;
+ fw_vers->or_build =
+ (comb_verl << NVM_COMB_VER_SHFT)
+ | (comb_verh >> NVM_COMB_VER_SHFT);
+ fw_vers->or_patch =
+ comb_verh & NVM_COMB_VER_MASK;
+ }
+ }
+ break;
+ default:
+ hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+ return;
+ }
+ hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+ fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+ >> NVM_MAJOR_SHIFT;
+
+ /* check for old style version format in newer images*/
+ if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
+ eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
+ } else {
+ eeprom_verl = (fw_version & NVM_MINOR_MASK)
+ >> NVM_MINOR_SHIFT;
+ }
+ /* Convert minor value to hex before assigning to output struct
+ * Val to be converted will not be higher than 99, per tool output
+ */
+ q = eeprom_verl / NVM_HEX_CONV;
+ hval = q * NVM_HEX_TENS;
+ rem = eeprom_verl % NVM_HEX_CONV;
+ result = hval + rem;
+ fw_vers->eep_minor = result;
+
+etrack_id:
+ if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
+ hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
+ hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
+ fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
+ | eeprom_verl;
+ }
+ return;
+}
+
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_NVM_H_
+#define _E1000_NVM_H_
+
+struct e1000_pba {
+ u16 word[2];
+ u16 *pba_block;
+};
+
+struct e1000_fw_version {
+ u32 etrack_id;
+ u16 eep_major;
+ u16 eep_minor;
+ u16 eep_build;
+
+ u8 invm_major;
+ u8 invm_minor;
+ u8 invm_img_type;
+
+ bool or_valid;
+ u16 or_major;
+ u16 or_build;
+ u16 or_patch;
+};
+
+
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+void e1000_null_nvm_generic(struct e1000_hw *hw);
+s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data);
+s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size);
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 max_pba_block_size,
+ struct e1000_pba *pba);
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, struct e1000_pba *pba);
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 *pba_block_size);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_get_fw_version(struct e1000_hw *hw,
+ struct e1000_fw_version *fw_vers);
+
+#define E1000_STM_OPCODE 0xDB00
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2014, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+/*
+ * NOTE: the following routines using the e1000
+ * naming style are provided to the shared
+ * code but are OS specific
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return;
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ *value = 0;
+ return;
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+}
+
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/*
+ * Write the PCI Express capabilities
+ */
+int32_t
+e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return E1000_NOT_IMPLEMENTED;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2014, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_byteorder.h>
+
+#include "../e1000_logs.h"
+
+#define DELAY(x) rte_delay_us(x)
+#define usec_delay(x) DELAY(x)
+#define usec_delay_irq(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define DEBUGFUNC(F) DEBUGOUT(F "\n");
+#define DEBUGOUT(S, args...) PMD_DRV_LOG_RAW(DEBUG, S, ##args)
+#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args)
+
+#define UNREFERENCED_PARAMETER(_p)
+#define UNREFERENCED_1PARAMETER(_p)
+#define UNREFERENCED_2PARAMETER(_p, _q)
+#define UNREFERENCED_3PARAMETER(_p, _q, _r)
+#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s)
+
+#define FALSE 0
+#define TRUE 1
+
+#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
+
+/* Mutex used in the shared code */
+#define E1000_MUTEX uintptr_t
+#define E1000_MUTEX_INIT(mutex) (*(mutex) = 0)
+#define E1000_MUTEX_LOCK(mutex) (*(mutex) = 1)
+#define E1000_MUTEX_UNLOCK(mutex) (*(mutex) = 0)
+
+typedef uint64_t u64;
+typedef uint32_t u32;
+typedef uint16_t u16;
+typedef uint8_t u8;
+typedef int64_t s64;
+typedef int32_t s32;
+typedef int16_t s16;
+typedef int8_t s8;
+typedef int bool;
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
+
+#define E1000_PCI_REG_WRITE(reg, value) do { \
+ E1000_PCI_REG((reg)) = (rte_cpu_to_le_32(value)); \
+} while (0)
+
+#define E1000_PCI_REG_ADDR(hw, reg) \
+ ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
+
+#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
+ E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
+
+static inline uint32_t e1000_read_addr(volatile void* addr)
+{
+ return rte_le_to_cpu_32(E1000_PCI_REG(addr));
+}
+
+/* Necessary defines */
+#define E1000_MRQC_ENABLE_MASK 0x00000007
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+#define E1000_ALL_FULL_DUPLEX ( \
+ ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
+
+#define M88E1543_E_PHY_ID 0x01410EA0
+#define NAHUM6LP_HW
+#define ULP_SUPPORT
+
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+ e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+ E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+ E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_ACCESS_PANIC(x, hw, reg, value) \
+ rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \
+ __FILE__, __LINE__, (hw), (reg), (unsigned int)(value))
+
+/*
+ * To be able to do IO write, we need to map IO BAR
+ * (bar 2/4 depending on device).
+ * Right now mapping multiple BARs is not supported by DPDK.
+ * Fortunatelly we need it only for legacy hw support.
+ */
+
+#define E1000_WRITE_REG_IO(hw, reg, value) \
+ E1000_WRITE_REG(hw, reg, value)
+
+/*
+ * Not implemented.
+ */
+
+#define E1000_READ_FLASH_REG(hw, reg) \
+ (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG, hw, reg, 0), 0)
+
+#define E1000_READ_FLASH_REG16(hw, reg) \
+ (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG16, hw, reg, 0), 0)
+
+#define E1000_WRITE_FLASH_REG(hw, reg, value) \
+ E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG, hw, reg, value)
+
+#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
+ E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG16, hw, reg, value)
+
+#define STATIC static
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define false FALSE
+#define true TRUE
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read, bool page_set);
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read);
+
+/* Cable length tables */
+STATIC const u16 e1000_m88_cable_length_table[] = {
+ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_m88_cable_length_table) / \
+ sizeof(e1000_m88_cable_length_table[0]))
+
+STATIC const u16 e1000_igp_2_cable_length_table[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+ 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+ 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+ 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+ 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+ 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+ 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+ 124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_2_cable_length_table) / \
+ sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_ops_generic - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_phy_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ DEBUGFUNC("e1000_init_phy_ops_generic");
+
+ /* Initialize function pointers */
+ phy->ops.init_params = e1000_null_ops_generic;
+ phy->ops.acquire = e1000_null_ops_generic;
+ phy->ops.check_polarity = e1000_null_ops_generic;
+ phy->ops.check_reset_block = e1000_null_ops_generic;
+ phy->ops.commit = e1000_null_ops_generic;
+ phy->ops.force_speed_duplex = e1000_null_ops_generic;
+ phy->ops.get_cfg_done = e1000_null_ops_generic;
+ phy->ops.get_cable_length = e1000_null_ops_generic;
+ phy->ops.get_info = e1000_null_ops_generic;
+ phy->ops.set_page = e1000_null_set_page;
+ phy->ops.read_reg = e1000_null_read_reg;
+ phy->ops.read_reg_locked = e1000_null_read_reg;
+ phy->ops.read_reg_page = e1000_null_read_reg;
+ phy->ops.release = e1000_null_phy_generic;
+ phy->ops.reset = e1000_null_ops_generic;
+ phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
+ phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
+ phy->ops.write_reg = e1000_null_write_reg;
+ phy->ops.write_reg_locked = e1000_null_write_reg;
+ phy->ops.write_reg_page = e1000_null_write_reg;
+ phy->ops.power_up = e1000_null_phy_generic;
+ phy->ops.power_down = e1000_null_phy_generic;
+ phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
+ phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
+ phy->ops.cfg_on_link_up = e1000_null_ops_generic;
+}
+
+/**
+ * e1000_null_set_page - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
+ u16 E1000_UNUSEDARG data)
+{
+ DEBUGFUNC("e1000_null_set_page");
+ UNREFERENCED_2PARAMETER(hw, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_read_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+ u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
+{
+ DEBUGFUNC("e1000_null_read_reg");
+ UNREFERENCED_3PARAMETER(hw, offset, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_phy_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_null_phy_generic");
+ UNREFERENCED_1PARAMETER(hw);
+ return;
+}
+
+/**
+ * e1000_null_lplu_state - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
+ bool E1000_UNUSEDARG active)
+{
+ DEBUGFUNC("e1000_null_lplu_state");
+ UNREFERENCED_2PARAMETER(hw, active);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+ u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
+{
+ DEBUGFUNC("e1000_null_write_reg");
+ UNREFERENCED_3PARAMETER(hw, offset, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_i2c_byte_null - No-op function, return 0
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: data value read
+ *
+ **/
+s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+ u8 E1000_UNUSEDARG byte_offset,
+ u8 E1000_UNUSEDARG dev_addr,
+ u8 E1000_UNUSEDARG *data)
+{
+ DEBUGFUNC("e1000_read_i2c_byte_null");
+ UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_i2c_byte_null - No-op function, return 0
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: data value to write
+ *
+ **/
+s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+ u8 E1000_UNUSEDARG byte_offset,
+ u8 E1000_UNUSEDARG dev_addr,
+ u8 E1000_UNUSEDARG data)
+{
+ DEBUGFUNC("e1000_write_i2c_byte_null");
+ UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ DEBUGFUNC("e1000_check_reset_block");
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+ u16 retry_count = 0;
+
+ DEBUGFUNC("e1000_get_phy_id");
+
+ if (!phy->ops.read_reg)
+ return E1000_SUCCESS;
+
+ while (retry_count < 2) {
+ ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+ if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+ return E1000_SUCCESS;
+
+ retry_count++;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+ if (!hw->phy.ops.write_reg)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ return ret_val;
+
+ return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /* Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay_irq(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
+ }
+ *data = (u16) mdic;
+
+ /* Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ usec_delay_irq(100);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+
+ DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /* Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay_irq(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
+ }
+
+ /* Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ usec_delay_irq(100);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg_i2c - Read PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the i2c interface and stores the
+ * retrieved information in data.
+ **/
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_i2c");
+
+ /* Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to byte-swap the 16-bit value. */
+ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_i2c - Write PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the i2c interface.
+ **/
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+ u16 phy_data_swapped;
+
+ DEBUGFUNC("e1000_write_phy_reg_i2c");
+
+ /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
+ if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
+ DEBUGOUT1("PHY I2C Address %d is out of range.\n",
+ hw->phy.addr);
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Swap the data bytes for the I2C interface */
+ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+ /* Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_sfp_data_byte - Reads SFP module data.
+ * @hw: pointer to the HW structure
+ * @offset: byte location offset to be read
+ * @data: read data buffer pointer
+ *
+ * Reads one byte from SFP module data stored
+ * in SFP resided EEPROM memory or SFP diagnostic area.
+ * Function should be called with
+ * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ * access
+ **/
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
+{
+ u32 i = 0;
+ u32 i2ccmd = 0;
+ u32 data_local = 0;
+
+ DEBUGFUNC("e1000_read_sfp_data_byte");
+
+ if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+ DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Set up Op-code, EEPROM Address,in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * EEPROM to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_READ);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ data_local = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (data_local & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(data_local & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (data_local & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+ *data = (u8) data_local & 0xFF;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_sfp_data_byte - Writes SFP module data.
+ * @hw: pointer to the HW structure
+ * @offset: byte location offset to write to
+ * @data: data to write
+ *
+ * Writes one byte to SFP module data stored
+ * in SFP resided EEPROM memory or SFP diagnostic area.
+ * Function should be called with
+ * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ * access
+ **/
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
+{
+ u32 i = 0;
+ u32 i2ccmd = 0;
+ u32 data_local = 0;
+
+ DEBUGFUNC("e1000_write_sfp_data_byte");
+
+ if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+ DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+ return -E1000_ERR_PHY;
+ }
+ /* The programming interface is 16 bits wide
+ * so we need to read the whole word first
+ * then update appropriate byte lane and write
+ * the updated word back.
+ */
+ /* Set up Op-code, EEPROM Address,in the I2CCMD
+ * register. The MAC will take care of interfacing
+ * with an EEPROM to write the data given.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_READ);
+ /* Set a command to read single word */
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ /* Poll the ready bit to see if lastly
+ * launched I2C operation completed
+ */
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY) {
+ /* Check if this is READ or WRITE phase */
+ if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
+ E1000_I2CCMD_OPCODE_READ) {
+ /* Write the selected byte
+ * lane and update whole word
+ */
+ data_local = i2ccmd & 0xFF00;
+ data_local |= data;
+ i2ccmd = ((offset <<
+ E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE | data_local);
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+ } else {
+ break;
+ }
+ }
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_m88");
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_m88");
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_page_igp - Set page as on IGP-like PHY(s)
+ * @hw: pointer to the HW structure
+ * @page: page to set (shifted left when necessary)
+ *
+ * Sets PHY page required for PHY register access. Assumes semaphore is
+ * already acquired. Note, this function sets phy.addr to 1 so the caller
+ * must set it appropriately (if necessary) after this function returns.
+ **/
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
+{
+ DEBUGFUNC("e1000_set_page_igp");
+
+ DEBUGOUT1("Setting page 0x%x\n", page);
+
+ hw->phy.addr = 1;
+
+ return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
+}
+
+/**
+ * __e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_read_phy_reg_igp");
+
+ if (!locked) {
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores the
+ * retrieved information in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ * e1000_read_phy_reg_igp_locked - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_igp");
+
+ if (!locked) {
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
+ offset,
+ data);
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ * e1000_write_phy_reg_igp_locked - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ * __e1000_read_kmrn_reg - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+
+ DEBUGFUNC("__e1000_read_kmrn_reg");
+
+ if (!locked) {
+ s32 ret_val = E1000_SUCCESS;
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset using the
+ * kumeran interface. The information retrieved is stored in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ * e1000_read_kmrn_reg_locked - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the kumeran interface. The
+ * information retrieved is stored in data.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ * __e1000_write_kmrn_reg - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ **/
+STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+ if (!locked) {
+ s32 ret_val = E1000_SUCCESS;
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(2);
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to the PHY register at the offset
+ * using the kumeran interface. Release the acquired semaphore before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ * e1000_write_kmrn_reg_locked - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Write the data to PHY register at the offset using the kumeran interface.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Master/slave mode
+ **/
+STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ /* Resolve Master/Slave mode */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) : e1000_ms_auto;
+
+ switch (hw->phy.ms_type) {
+ case e1000_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ /* fall-through */
+ default:
+ break;
+ }
+
+ return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
+}
+
+/**
+ * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_82577");
+
+ if (hw->phy.type == e1000_phy_82580) {
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ return ret_val;
+ }
+ }
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+ /* Enable downshift */
+ phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+ ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Set MDI/MDIX mode */
+ ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
+ /* Options:
+ * 0 - Auto (default)
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ */
+ switch (hw->phy.mdix) {
+ case 1:
+ break;
+ case 2:
+ phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
+ break;
+ }
+ ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_set_master_slave_mode(hw);
+}
+
+/**
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88");
+
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* For BM PHY this bit is downshift enable */
+ if (phy->type != e1000_phy_bm)
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift on BM (disabled by default) */
+ if (phy->type == e1000_phy_bm) {
+ /* For 82574/82583, first disable then enable downshift */
+ if (phy->id == BME1000_E_PHY_ID_R2) {
+ phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+ }
+
+ phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+ }
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((phy->type == e1000_phy_m88) &&
+ (phy->revision < E1000_REVISION_4) &&
+ (phy->id != BME1000_E_PHY_ID_R2)) {
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == E1000_REVISION_2) &&
+ (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+ /* Set PHY page 0, register 29 to 0x0003 */
+ ret_val = phy->ops.write_reg(hw, 29, 0x0003);
+ if (ret_val)
+ return ret_val;
+
+ /* Set PHY page 0, register 30 to 0x0000 */
+ ret_val = phy->ops.write_reg(hw, 30, 0x0000);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+
+ if (phy->type == e1000_phy_82578) {
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* 82578 PHY - set the downshift count to 1x. */
+ phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+ phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
+ * Also enables and sets the downshift parameters.
+ **/
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
+
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ /* M88E1112 does not support this mode) */
+ if (phy->id != M88E1112_E_PHY_ID) {
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ }
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift and setting it to X6 */
+ if (phy->id == M88E1543_E_PHY_ID) {
+ phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
+ ret_val =
+ phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+ }
+
+ phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+
+ ret_val = e1000_set_master_slave_mode(hw);
+ if (ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_igp");
+
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ return ret_val;
+ }
+
+ /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+ * timeout issues when LFS is enabled.
+ */
+ msec_delay(100);
+
+ /* The NVM settings will configure LPLU in D3 for
+ * non-IGP1 PHYs.
+ */
+ if (phy->type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ return ret_val;
+ }
+ }
+
+ /* disable lplu d0 during driver init */
+ if (hw->phy.ops.set_d0_lplu_state) {
+ ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ return ret_val;
+ }
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /* when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~CR_1000T_MS_ENABLE;
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_set_master_slave_mode(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
+ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+ DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+ DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause:
+ /* Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause:
+ /* Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full:
+ /* Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL)
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /* Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (!phy->autoneg_advertised)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+
+ hw->mac.get_link_status = true;
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_generic");
+
+ if (hw->mac.autoneg) {
+ /* Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = hw->phy.ops.force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+ &link);
+ if (ret_val)
+ return ret_val;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ hw->mac.ops.config_collision_dist(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+ /* I210 and I211 devices support Auto-Crossover in forced operation. */
+ if (phy->type != e1000_phy_i210) {
+ /* Clear Auto-Crossover to force MDI manually. M88E1000
+ * requires MDI forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Reset the phy to commit changes. */
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ bool reset_dsp = true;
+
+ switch (hw->phy.id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I210_I_PHY_ID:
+ reset_dsp = false;
+ break;
+ default:
+ if (hw->phy.type != e1000_phy_m88)
+ reset_dsp = false;
+ break;
+ }
+
+ if (!reset_dsp) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ } else {
+ /* We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = phy->ops.write_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->phy.type != e1000_phy_m88)
+ return E1000_SUCCESS;
+
+ if (hw->phy.id == I347AT4_E_PHY_ID ||
+ hw->phy.id == M88E1340M_E_PHY_ID ||
+ hw->phy.id == M88E1112_E_PHY_ID)
+ return E1000_SUCCESS;
+ if (hw->phy.id == I210_I_PHY_ID)
+ return E1000_SUCCESS;
+ if ((hw->phy.id == M88E1543_E_PHY_ID) ||
+ (hw->phy.id == M88E1512_E_PHY_ID))
+ return E1000_SUCCESS;
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
+ if (ret_val)
+ return ret_val;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("IFE PMC: %X\n", data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.current_mode = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= MII_CR_SPEED_100;
+ *phy_ctrl &= ~MII_CR_SPEED_1000;
+ DEBUGOUT("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb\n");
+ }
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ return ret_val;
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_downshift_generic");
+
+ switch (phy->type) {
+ case e1000_phy_i210:
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ case e1000_phy_bm:
+ case e1000_phy_82578:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp:
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = false;
+ return E1000_SUCCESS;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = !!(phy_data & mask);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_igp");
+
+ /* Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /* This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_ife");
+
+ /* Polarity is determined based on the reversal feature being enabled.
+ */
+ if (phy->polarity_correction) {
+ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+ mask = IFE_PESC_POLARITY_REVERSED;
+ } else {
+ offset = IFE_PHY_SPECIAL_CONTROL;
+ mask = IFE_PSC_FORCE_POLARITY;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((phy_data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_wait_autoneg - Wait for auto-neg completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ **/
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_wait_autoneg");
+
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_AUTONEG_COMPLETE)
+ break;
+ msec_delay(100);
+ }
+
+ /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return ret_val;
+}
+
+/**
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_phy_has_link_generic");
+
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
+
+ for (i = 0; i < iterations; i++) {
+ /* Some PHYs require the PHY_STATUS register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val) {
+ /* If the first read fails, another entity may have
+ * ownership of the resources, wait and try again to
+ * see if they have relinquished the resources yet.
+ */
+ if (usec_interval >= 1000)
+ msec_delay(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_LINK_STATUS)
+ break;
+ if (usec_interval >= 1000)
+ msec_delay(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+
+ *success = (i < iterations);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+ return -E1000_ERR_PHY;
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+ return E1000_SUCCESS;
+}
+
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, phy_data2, is_cm;
+ u16 index, default_page;
+
+ DEBUGFUNC("e1000_get_cable_length_m88_gen2");
+
+ switch (hw->phy.id) {
+ case I210_I_PHY_ID:
+ /* Get cable length from PHY Cable Diagnostics Control Reg */
+ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+ (I347AT4_PCDL + phy->addr),
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Check if the unit of cable length is meters or cm */
+ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+ I347AT4_PCDC, &phy_data2);
+ if (ret_val)
+ return ret_val;
+
+ is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+ /* Populate the phy structure with cable length in meters */
+ phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->cable_length = phy_data / (is_cm ? 100 : 1);
+ break;
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ /* Remember the original page select and set it to 7 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
+ if (ret_val)
+ return ret_val;
+
+ /* Get cable length from PHY Cable Diagnostics Control Reg */
+ ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Check if the unit of cable length is meters or cm */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
+ if (ret_val)
+ return ret_val;
+
+ is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+ /* Populate the phy structure with cable length in meters */
+ phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->cable_length = phy_data / (is_cm ? 100 : 1);
+
+ /* Reset the page select to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ return ret_val;
+ break;
+
+ case M88E1112_E_PHY_ID:
+ /* Remember the original page select and set it to 5 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+ return -E1000_ERR_PHY;
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length +
+ phy->max_cable_length) / 2;
+
+ /* Reset the page select to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ return ret_val;
+
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+ IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D
+ };
+
+ DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Getting bits 15:9, which represent the combination of
+ * coarse and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK);
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0))
+ return -E1000_ERR_PHY;
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0);
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_m88");
+
+ if (phy->media_type != e1000_media_type_copper) {
+ DEBUGOUT("Phy info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->polarity_correction = !!(phy_data &
+ M88E1000_PSCR_POLARITY_REVERSAL);
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_igp");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ phy->polarity_correction = true;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_ife");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+ phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
+
+ if (phy->polarity_correction) {
+ ret_val = e1000_check_polarity_ife(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Polarity is forced */
+ phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
+
+ /* The following parameters are undefined for 10/100 operation. */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ phy_ctrl |= MII_CR_RESET;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(1);
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+ if (phy->ops.check_reset_block) {
+ ret_val = phy->ops.check_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+ }
+
+ ret_val = phy->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(phy->reset_delay_us);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ phy->ops.release(hw);
+
+ return phy->ops.get_cfg_done(hw);
+}
+
+/**
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_get_cfg_done_generic");
+ UNREFERENCED_1PARAMETER(hw);
+
+ msec_delay_irq(10);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ DEBUGOUT("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Gig mode */
+ hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
+ /* Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
+ /* Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ case BME1000_E_PHY_ID_R2:
+ phy_type = e1000_phy_bm;
+ break;
+ case I82578_E_PHY_ID:
+ phy_type = e1000_phy_82578;
+ break;
+ case I82577_E_PHY_ID:
+ phy_type = e1000_phy_82577;
+ break;
+ case I82579_E_PHY_ID:
+ phy_type = e1000_phy_82579;
+ break;
+ case I217_E_PHY_ID:
+ phy_type = e1000_phy_i217;
+ break;
+ case I82580_I_PHY_ID:
+ phy_type = e1000_phy_82580;
+ break;
+ case I210_I_PHY_ID:
+ phy_type = e1000_phy_i210;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return phy_type;
+}
+
+/**
+ * e1000_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ **/
+s32 e1000_determine_phy_address(struct e1000_hw *hw)
+{
+ u32 phy_addr = 0;
+ u32 i;
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ hw->phy.id = phy_type;
+
+ for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+ hw->phy.addr = phy_addr;
+ i = 0;
+
+ do {
+ e1000_get_phy_id(hw);
+ phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+ /* If phy_type is valid, break - we found our
+ * PHY address
+ */
+ if (phy_type != e1000_phy_unknown)
+ return E1000_SUCCESS;
+
+ msec_delay(1);
+ i++;
+ } while (i < 10);
+ }
+
+ return -E1000_ERR_PHY_TYPE;
+}
+
+/**
+ * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ * @page: page to access
+ *
+ * Returns the phy address for the page requested.
+ **/
+STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+ u32 phy_addr = 2;
+
+ if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000_write_phy_reg_bm - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_write_phy_reg_bm");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, false);
+ goto release;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_bm - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_read_phy_reg_bm");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, false);
+ goto release;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_bm2 - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_read_phy_reg_bm2");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, false);
+ goto release;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_bm2 - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, false);
+ goto release;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
+ *
+ * Assumes semaphore already acquired and phy_reg points to a valid memory
+ * address to store contents of the BM_WUC_ENABLE_REG register.
+ **/
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+ u16 temp;
+
+ DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
+
+ if (!phy_reg)
+ return -E1000_ERR_PARAM;
+
+ /* All page select, port ctrl and wakeup registers use phy address 1 */
+ hw->phy.addr = 1;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ DEBUGOUT("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT2("Could not read PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Enable both PHY wakeup mode and Wakeup register page writes.
+ * Prevent a power state change by disabling ME and Host PHY wakeup.
+ */
+ temp = *phy_reg;
+ temp |= BM_WUC_ENABLE_BIT;
+ temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
+
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
+ if (ret_val) {
+ DEBUGOUT2("Could not write PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Select Host Wakeup Registers page - caller now able to write
+ * registers on the Wakeup registers page
+ */
+ return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+}
+
+/**
+ * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
+ *
+ * Restore BM_WUC_ENABLE_REG to its original value.
+ *
+ * Assumes semaphore already acquired and *phy_reg is the contents of the
+ * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
+ * caller.
+ **/
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
+
+ if (!phy_reg)
+ return -E1000_ERR_PARAM;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ DEBUGOUT("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ /* Restore 769.17 to its original value */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
+ if (ret_val)
+ DEBUGOUT2("Could not restore PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+
+ return ret_val;
+}
+
+/**
+ * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to read or write
+ * @read: determines if operation is read or write
+ * @page_set: BM_WUC_PAGE already set and access enabled
+ *
+ * Read the PHY register at offset and store the retrieved information in
+ * data, or write data to PHY register at offset. Note the procedure to
+ * access the PHY wakeup registers is different than reading the other PHY
+ * registers. It works as such:
+ * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
+ * 2) Set page to 800 for host (801 if we were manageability)
+ * 3) Write the address using the address opcode (0x11)
+ * 4) Read or write the data using the data opcode (0x12)
+ * 5) Restore 769.17.2 to its original value
+ *
+ * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
+ * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
+ *
+ * Assumes semaphore is already acquired. When page_set==true, assumes
+ * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
+ * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
+ **/
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read, bool page_set)
+{
+ s32 ret_val;
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 phy_reg = 0;
+
+ DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
+
+ /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
+ if ((hw->mac.type == e1000_pchlan) &&
+ (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+ DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
+ page);
+
+ if (!page_set) {
+ /* Enable access to PHY wakeup registers */
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Could not enable PHY wakeup reg access\n");
+ return ret_val;
+ }
+ }
+
+ DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
+
+ /* Write the Wakeup register page offset value using opcode 0x11 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+ if (ret_val) {
+ DEBUGOUT1("Could not write address opcode to page %d\n", page);
+ return ret_val;
+ }
+
+ if (read) {
+ /* Read the Wakeup register page value using opcode 0x12 */
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ data);
+ } else {
+ /* Write the Wakeup register page value using opcode 0x12 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ *data);
+ }
+
+ if (ret_val) {
+ DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
+ return ret_val;
+ }
+
+ if (!page_set)
+ ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+ u16 power_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg &= ~MII_CR_POWER_DOWN;
+ if (hw->phy.type == e1000_phy_i210) {
+ hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+ power_reg &= ~GS40G_CS_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+ }
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+ u16 power_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ /* i210 Phy requires an additional bit for power up/down */
+ if (hw->phy.type == e1000_phy_i210) {
+ hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+ power_reg |= GS40G_CS_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+ }
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+ msec_delay(1);
+}
+
+/**
+ * __e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphore before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked, bool page_set)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ DEBUGFUNC("__e1000_read_phy_reg_hv");
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, page_set);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ data, true);
+ goto out;
+ }
+
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
+
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+ data);
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores
+ * the retrieved information in data. Release the acquired semaphore
+ * before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ * e1000_read_phy_reg_hv_locked - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ * e1000_read_phy_reg_page_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired and page already set.
+ **/
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ * __e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked, bool page_set)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ DEBUGFUNC("__e1000_write_phy_reg_hv");
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, page_set);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ &data, false);
+ goto out;
+ }
+
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ /* Workaround MDIO accesses being disabled after entering IEEE
+ * Power Down (when bit 11 of the PHY Control register is set)
+ */
+ if ((hw->phy.type == e1000_phy_82578) &&
+ (hw->phy.revision >= 1) &&
+ (hw->phy.addr == 2) &&
+ !(MAX_PHY_REG_ADDRESS & reg) &&
+ (data & (1 << 11))) {
+ u16 data2 = 0x7EFF;
+ ret_val = e1000_access_phy_debug_regs_hv(hw,
+ (1 << 6) | 0x3,
+ &data2, false);
+ if (ret_val)
+ goto out;
+ }
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
+
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+ data);
+
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register at the offset.
+ * Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ * e1000_write_phy_reg_hv_locked - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ * e1000_write_phy_reg_page_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired and page already set.
+ **/
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ * @page: page to be accessed
+ **/
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+ u32 phy_addr = 2;
+
+ if (page >= HV_INTC_FC_PAGE_START)
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to be read or written
+ * @read: determines if operation is read or write
+ *
+ * Reads the PHY register at offset and stores the retreived information
+ * in data. Assumes semaphore already acquired. Note that the procedure
+ * to access these regs uses the address port and data port to read/write.
+ * These accesses done with PHY address 2 and without using pages.
+ **/
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+ u32 addr_reg;
+ u32 data_reg;
+
+ DEBUGFUNC("e1000_access_phy_debug_regs_hv");
+
+ /* This takes care of the difference with desktop vs mobile phy */
+ addr_reg = ((hw->phy.type == e1000_phy_82578) ?
+ I82578_ADDR_REG : I82577_ADDR_REG);
+ data_reg = addr_reg + 1;
+
+ /* All operations in this function are phy address 2 */
+ hw->phy.addr = 2;
+
+ /* masking with 0x3F to remove the page from offset */
+ ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+ if (ret_val) {
+ DEBUGOUT("Could not write the Address Offset port register\n");
+ return ret_val;
+ }
+
+ /* Read or write the data value next */
+ if (read)
+ ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
+ else
+ ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
+
+ if (ret_val)
+ DEBUGOUT("Could not access the Data port register\n");
+
+ return ret_val;
+}
+
+/**
+ * e1000_link_stall_workaround_hv - Si workaround
+ * @hw: pointer to the HW structure
+ *
+ * This function works around a Si bug where the link partner can get
+ * a link up indication before the PHY does. If small packets are sent
+ * by the link partner they can be placed in the packet buffer without
+ * being properly accounted for by the PHY and will stall preventing
+ * further packets from being received. The workaround is to clear the
+ * packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_link_stall_workaround_hv");
+
+ if (hw->phy.type != e1000_phy_82578)
+ return E1000_SUCCESS;
+
+ /* Do not apply workaround if in PHY loopback bit 14 set */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+ if (data & PHY_CONTROL_LB)
+ return E1000_SUCCESS;
+
+ /* check if link is up and at 1Gbps */
+ ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK);
+
+ if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ return E1000_SUCCESS;
+
+ msec_delay(200);
+
+ /* flush the packets in the fifo buffer */
+ ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+ (HV_MUX_DATA_CTRL_GEN_TO_MAC |
+ HV_MUX_DATA_CTRL_FORCE_SPEED));
+ if (ret_val)
+ return ret_val;
+
+ return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+ HV_MUX_DATA_CTRL_GEN_TO_MAC);
+}
+
+/**
+ * e1000_check_polarity_82577 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_82577");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ phy->polarity_correction = true;
+
+ ret_val = e1000_check_polarity_82577(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
+
+ if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+ I82577_PHY_STATUS2_SPEED_1000MBPS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, length;
+
+ DEBUGFUNC("e1000_get_cable_length_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT);
+
+ if (length == E1000_CABLE_LENGTH_UNDEFINED)
+ return -E1000_ERR_PHY;
+
+ phy->cable_length = length;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_gs40g - Write GS40G PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = offset >> GS40G_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_write_phy_reg_gs40g");
+
+ offset = offset & GS40G_OFFSET_MASK;
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+ if (ret_val)
+ goto release;
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_gs40g - Read GS40G PHY register
+ * @hw: pointer to the HW structure
+ * @offset: lower half is register offset to read to
+ * upper half is page to use.
+ * @data: data to read at register offset
+ *
+ * Acquires semaphore, if necessary, then reads the data in the PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = offset >> GS40G_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_read_phy_reg_gs40g");
+
+ offset = offset & GS40G_OFFSET_MASK;
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+ if (ret_val)
+ goto release;
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_mphy - Read mPHY control register
+ * @hw: pointer to the HW structure
+ * @address: address to be read
+ * @data: pointer to the read data
+ *
+ * Reads the mPHY control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
+{
+ u32 mphy_ctrl = 0;
+ bool locked = false;
+ bool ready;
+
+ DEBUGFUNC("e1000_read_phy_reg_mphy");
+
+ /* Check if mPHY is ready to read/write operations */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+
+ /* Check if mPHY access is disabled and enable it if so */
+ mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+ if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+ locked = true;
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+ }
+
+ /* Set the address that we want to read */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+
+ /* We mask address, because we want to use only current lane */
+ mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
+ ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
+ (address & E1000_MPHY_ADDRESS_MASK);
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+ /* Read data from the address */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ *data = E1000_READ_REG(hw, E1000_MPHY_DATA);
+
+ /* Disable access to mPHY if it was originally disabled */
+ if (locked)
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+ E1000_MPHY_DIS_ACCESS);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_mphy - Write mPHY control register
+ * @hw: pointer to the HW structure
+ * @address: address to write to
+ * @data: data to write to register at offset
+ * @line_override: used when we want to use different line than default one
+ *
+ * Writes data to mPHY control register.
+ **/
+s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
+ bool line_override)
+{
+ u32 mphy_ctrl = 0;
+ bool locked = false;
+ bool ready;
+
+ DEBUGFUNC("e1000_write_phy_reg_mphy");
+
+ /* Check if mPHY is ready to read/write operations */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+
+ /* Check if mPHY access is disabled and enable it if so */
+ mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+ if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+ locked = true;
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+ }
+
+ /* Set the address that we want to read */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+
+ /* We mask address, because we want to use only current lane */
+ if (line_override)
+ mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+ else
+ mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+ mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
+ (address & E1000_MPHY_ADDRESS_MASK);
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+ /* Read data from the address */
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
+
+ /* Disable access to mPHY if it was originally disabled */
+ if (locked)
+ ready = e1000_is_mphy_ready(hw);
+ if (!ready)
+ return -E1000_ERR_PHY;
+ E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+ E1000_MPHY_DIS_ACCESS);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_is_mphy_ready - Check if mPHY control register is not busy
+ * @hw: pointer to the HW structure
+ *
+ * Returns mPHY control register status.
+ **/
+bool e1000_is_mphy_ready(struct e1000_hw *hw)
+{
+ u16 retry_count = 0;
+ u32 mphy_ctrl = 0;
+ bool ready = false;
+
+ while (retry_count < 2) {
+ mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+ if (mphy_ctrl & E1000_MPHY_BUSY) {
+ usec_delay(20);
+ retry_count++;
+ continue;
+ }
+ ready = true;
+ break;
+ }
+
+ if (!ready)
+ DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
+
+ return ready;
+}
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_PHY_H_
+#define _E1000_PHY_H_
+
+void e1000_init_phy_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+void e1000_null_phy_generic(struct e1000_hw *hw);
+s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_null_set_page(struct e1000_hw *hw, u16 data);
+s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data);
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_polarity_ife(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32 e1000_determine_phy_address(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
+s32 e1000_check_polarity_82577(struct e1000_hw *hw);
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data);
+s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
+ bool line_override);
+bool e1000_is_mphy_ready(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR 8
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+/* GS40G - I210 PHY defines */
+#define GS40G_PAGE_SELECT 0x16
+#define GS40G_PAGE_SHIFT 16
+#define GS40G_OFFSET_MASK 0xFFFF
+#define GS40G_PAGE_2 0x20000
+#define GS40G_MAC_REG2 0x15
+#define GS40G_MAC_LB 0x4140
+#define GS40G_MAC_SPEED_1G 0X0006
+#define GS40G_COPPER_SPEC 0x0010
+#define GS40G_CS_POWER_DOWN 0x0002
+
+/* BM/HV Specific Registers */
+#define BM_PORT_CTRL_PAGE 769
+#define BM_WUC_PAGE 800
+#define BM_WUC_ADDRESS_OPCODE 0x11
+#define BM_WUC_DATA_OPCODE 0x12
+#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE
+#define BM_WUC_ENABLE_REG 17
+#define BM_WUC_ENABLE_BIT (1 << 2)
+#define BM_WUC_HOST_WU_BIT (1 << 4)
+#define BM_WUC_ME_WU_BIT (1 << 5)
+
+#define PHY_UPPER_SHIFT 21
+#define BM_PHY_REG(page, reg) \
+ (((reg) & MAX_PHY_REG_ADDRESS) |\
+ (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
+ (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
+#define BM_PHY_REG_PAGE(offset) \
+ ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
+#define BM_PHY_REG_NUM(offset) \
+ ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
+ (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
+ ~MAX_PHY_REG_ADDRESS)))
+
+#define HV_INTC_FC_PAGE_START 768
+#define I82578_ADDR_REG 29
+#define I82577_ADDR_REG 16
+#define I82577_CFG_REG 22
+#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */
+#define I82577_CTRL_REG 23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2 18
+#define I82577_PHY_LBK_CTRL 19
+#define I82577_PHY_STATUS_2 26
+#define I82577_PHY_DIAG_STATUS 31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
+#define I82577_PHY_STATUS2_MDIX 0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200
+#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400
+#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* 82580 PHY Power Management */
+#define E1000_82580_PHY_POWER_MGMT 0xE14
+#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */
+#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */
+#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */
+#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */
+
+#define E1000_MPHY_DIS_ACCESS 0x80000000 /* disable_access bit */
+#define E1000_MPHY_ENA_ACCESS 0x40000000 /* enable_access bit */
+#define E1000_MPHY_BUSY 0x00010000 /* busy bit */
+#define E1000_MPHY_ADDRESS_FNC_OVERRIDE 0x20000000 /* fnc_override bit */
+#define E1000_MPHY_ADDRESS_MASK 0x0000FFFF /* address mask */
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1 16
+
+/* BM PHY Copper Specific Status */
+#define BM_CS_STATUS 17
+#define BM_CS_STATUS_LINK_UP 0x0400
+#define BM_CS_STATUS_RESOLVED 0x0800
+#define BM_CS_STATUS_SPEED_MASK 0xC000
+#define BM_CS_STATUS_SPEED_1000 0x8000
+
+/* 82577 Mobile Phy Status Register */
+#define HV_M_STATUS 26
+#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
+#define HV_M_STATUS_SPEED_MASK 0x0300
+#define HV_M_STATUS_SPEED_1000 0x0200
+#define HV_M_STATUS_SPEED_100 0x0100
+#define HV_M_STATUS_LINK_UP 0x0040
+
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0800
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */
+#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
+#define E1000_KMRNCTRLSTA_OP_MODES 0x1F /* Kumeran Modes of Operation */
+#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC 0x0002 /* change LSC to CSC */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED 0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */
+
+/* SFP modules ID memory locations */
+#define E1000_SFF_IDENTIFIER_OFFSET 0x00
+#define E1000_SFF_IDENTIFIER_SFF 0x02
+#define E1000_SFF_IDENTIFIER_SFP 0x03
+
+#define E1000_SFF_ETH_FLAGS_OFFSET 0x06
+/* Flags for SFP modules compatible with ETH up to 1Gb */
+struct sfp_e1000_flags {
+ u8 e1000_base_sx:1;
+ u8 e1000_base_lx:1;
+ u8 e1000_base_cx:1;
+ u8 e1000_base_t:1;
+ u8 e100_base_lx:1;
+ u8 e100_base_fx:1;
+ u8 e10_base_bx10:1;
+ u8 e10_base_px:1;
+};
+
+/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */
+#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600
+#define E1000_SFF_VENDOR_OUI_FTL 0x00906500
+#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00
+#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_REGS_H_
+#define _E1000_REGS_H_
+
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
+#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
+#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
+#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */
+#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
+#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
+#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
+#define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */
+#define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */
+#define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */
+#define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */
+#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */
+#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FEXT 0x0002C /* Future Extended - RW */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */
+#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
+#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */
+#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
+#define E1000_SVCR 0x000F0
+#define E1000_SVT 0x000F4
+#define E1000_LPIC 0x000FC /* Low Power IDLE control */
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_LEDMUX 0x08130 /* LED MUX Control */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */
+#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */
+#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */
+#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */
+#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */
+#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */
+#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */
+#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
+#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */
+#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */
+#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */
+#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */
+#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
+#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
+#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
+#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
+#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
+#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
+#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */
+#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+#define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */
+#define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */
+#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */
+#define E1000_I210_FLMNGCTL 0x12038
+#define E1000_I210_FLMNGDATA 0x1203C
+#define E1000_I210_FLMNGCNT 0x12040
+
+#define E1000_I210_FLSWCTL 0x12048
+#define E1000_I210_FLSWDATA 0x1204C
+#define E1000_I210_FLSWCNT 0x12050
+
+#define E1000_I210_FLA 0x1201C
+
+#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n))
+#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */
+
+/* QAV Tx mode control register */
+#define E1000_I210_TQAVCTRL 0x3570
+
+/* QAV Tx mode control register bitfields masks */
+/* QAV enable */
+#define E1000_TQAVCTRL_MODE (1 << 0)
+/* Fetching arbitration type */
+#define E1000_TQAVCTRL_FETCH_ARB (1 << 4)
+/* Fetching timer enable */
+#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5)
+/* Launch arbitration type */
+#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8)
+/* Launch timer enable */
+#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9)
+/* SP waits for SR enable */
+#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10)
+/* Fetching timer correction */
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \
+ (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET)
+
+/* High credit registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n))
+
+/* Queues fetch arbitration priority control register */
+#define E1000_I210_TQAVARBCTRL 0x3574
+/* Queues priority masks where _n and _p can be 0-3. */
+#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n))
+/* QAV Tx mode control registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n))
+
+/* QAV Tx mode control register bitfields masks */
+#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */
+#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */
+#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */
+
+/* Good transmitted packets counter registers */
+#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n)))
+
+/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
+#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n))
+
+#define E1000_MMDAC 13 /* MMD Access Control */
+#define E1000_MMDAAD 14 /* MMD Access Address/Data */
+
+/* Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
+ (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
+ (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
+ (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+ (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
+ (0x0C010 + ((_n) * 0x40)))
+#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
+ (0x0C014 + ((_n) * 0x40)))
+#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
+#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
+ (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
+ (0x0C028 + ((_n) * 0x40)))
+#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
+ (0x0C030 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
+ (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
+ (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
+ (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
+ (0x0E010 + ((_n) * 0x40)))
+#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
+ (0x0E014 + ((_n) * 0x40)))
+#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
+#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
+ (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
+ (0x0E028 + ((_n) * 0x40)))
+#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
+ (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
+ (0x0E03C + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
+ (0x054E0 + ((_i - 16) * 8)))
+#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
+ (0x054E4 + ((_i - 16) * 8)))
+#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */
+#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */
+#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
+/* Same as TXPBS, renamed for newer Si - RW */
+#define E1000_ITPBS 0x03404
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
+#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
+/* DMA Tx Max Total Allow Size Reqs - RW */
+#define E1000_DTXMXSZRQ 0x03540
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */
+
+#define E1000_VFGPRC 0x00F10
+#define E1000_VFGORC 0x00F18
+#define E1000_VFMPRC 0x00F3C
+#define E1000_VFGPTC 0x00F14
+#define E1000_VFGOTC 0x00F34
+#define E1000_VFGOTLBC 0x00F50
+#define E1000_VFGPTLBC 0x00F44
+#define E1000_VFGORLBC 0x00F48
+#define E1000_VFGPRLBC 0x00F40
+/* Virtualization statistical counters */
+#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
+#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
+#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
+#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
+#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
+#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
+#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
+#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
+#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
+
+/* LinkSec */
+#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */
+#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */
+#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */
+#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */
+#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */
+#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */
+#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */
+#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */
+#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */
+#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */
+#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */
+#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */
+#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */
+#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */
+#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */
+#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */
+#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */
+#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */
+#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */
+#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */
+#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */
+#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */
+#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */
+#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */
+#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */
+#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */
+/* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n)))
+/* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n)))
+#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
+#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
+/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */
+#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
+#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
+#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
+/* IPSec Rx IPv4/v6 Address - RW */
+#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n)))
+/* IPSec Rx 128-bit Key - RW */
+#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n)))
+#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
+#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
+/* IPSec Tx 128-bit Key - RW */
+#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n)))
+#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
+#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */
+#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */
+/* Flexible Host Filter Table */
+#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100))
+/* Ext Flexible Host Filter Table */
+#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100))
+
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+/* Management Decision Filters */
+#define E1000_MDEF(_n) (0x05890 + (4 * (_n)))
+#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+/* Driver-only SW semaphore (not used by BOOT agents) */
+#define E1000_SWSM2 0x05B58
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Interface Control */
+#define E1000_FWSTS 0x08F0C /* FW Status */
+
+/* RSS registers */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/
+#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+/* VT Registers */
+#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
+#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
+#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
+#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
+#define E1000_VFRE 0x00C8C /* VF Receive Enables */
+#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
+#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
+#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
+#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
+#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
+#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
+#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
+#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
+#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */
+#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */
+#define E1000_MDFB 0x03558 /* Malicious Driver free block */
+#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */
+#define E1000_TXSWC 0x05ACC /* Tx Switch Control */
+#define E1000_SCCRL 0x05DB0 /* Storm Control Control */
+#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */
+#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */
+/* These act per VF so an array friendly macro is used */
+#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
+#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
+#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
+#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
+#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
+/* VLAN Virtual Machine Filter - RW */
+#define E1000_VLVF(_n) (0x05D00 + (4 * (_n)))
+#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
+#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */
+#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */
+#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
+#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
+#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
+#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
+#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
+#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
+#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
+#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
+#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
+#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
+#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
+#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
+#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */
+#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */
+#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
+#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
+#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */
+#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */
+#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
+#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */
+
+/* Filtering Registers */
+#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
+#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+
+#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
+#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
+#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
+#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
+#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
+/* Tx Desc plane TC Rate-scheduler config */
+#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler Status */
+#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler MMW */
+#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4))
+/* Tx Packet plane TC Rate-scheduler MMW */
+#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler MMW */
+#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4))
+/* Tx Desc plane VM Rate-Scheduler MMW*/
+#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4))
+/* Tx BCN Rate-Scheduler MMW */
+#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4))
+#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
+#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
+#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
+#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
+#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
+#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
+#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
+#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
+#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
+#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
+#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
+#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
+#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
+#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
+
+/* DMA Coalescing registers */
+#define E1000_DMACR 0x02508 /* Control Register */
+#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
+#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
+#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
+#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */
+#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
+#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
+
+/* PCIe Parity Status Register */
+#define E1000_PCIEERRSTS 0x05BA8
+
+#define E1000_PROXYS 0x5F64 /* Proxying Status */
+#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */
+/* Thermal sensor configuration and status registers */
+#define E1000_THMJT 0x08100 /* Junction Temperature */
+#define E1000_THLOWTC 0x08104 /* Low Threshold Control */
+#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */
+#define E1000_THHIGHTC 0x0810C /* High Threshold Control */
+#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */
+
+/* Energy Efficient Ethernet "EEE" registers */
+#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */
+#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */
+#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/
+#define E1000_EEE_SU 0x0E34 /* EEE Setup */
+#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */
+#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */
+
+/* OS2BMC Registers */
+#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */
+#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */
+#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */
+#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */
+
+
+
+#endif
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+
+#include "e1000_api.h"
+
+
+STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
+STATIC void e1000_release_vf(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
+STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
+STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
+STATIC void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
+STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
+
+/**
+ * e1000_init_phy_params_vf - Inits PHY params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no PHY available to the VF.
+ **/
+STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_phy_params_vf");
+ hw->phy.type = e1000_phy_vf;
+ hw->phy.ops.acquire = e1000_acquire_vf;
+ hw->phy.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_nvm_params_vf - Inits NVM params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no NVM available to the VF.
+ **/
+STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_nvm_params_vf");
+ hw->nvm.type = e1000_nvm_none;
+ hw->nvm.ops.acquire = e1000_acquire_vf;
+ hw->nvm.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_vf - Inits MAC params
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_vf");
+
+ /* Set media type */
+ /*
+ * Virtual functions don't care what they're media type is as they
+ * have no direct access to the PHY, or the media. That is handled
+ * by the physical function driver.
+ */
+ hw->phy.media_type = e1000_media_type_unknown;
+
+ /* No ASF features for the VF driver */
+ mac->asf_firmware_present = false;
+ /* ARC subsystem not supported */
+ mac->arc_subsystem_valid = false;
+ /* Disable adaptive IFS mode so the generic funcs don't do anything */
+ mac->adaptive_ifs = false;
+ /* VF's have no MTA Registers - PF feature only */
+ mac->mta_reg_count = 128;
+ /* VF's have no access to RAR entries */
+ mac->rar_entry_count = 1;
+
+ /* Function pointers */
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_vf;
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_vf;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_vf;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_vf;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
+ /* set mac address */
+ mac->ops.rar_set = e1000_rar_set_vf;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
+
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_vf - Inits function pointers
+ * @hw: pointer to the HW structure
+ **/
+void e1000_init_function_pointers_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_vf");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_vf;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
+ hw->phy.ops.init_params = e1000_init_phy_params_vf;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
+}
+
+/**
+ * e1000_acquire_vf - Acquire rights to access PHY or NVM.
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ UNREFERENCED_1PARAMETER(hw);
+ return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_release_vf - Release PHY or NVM
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ UNREFERENCED_1PARAMETER(hw);
+ return;
+}
+
+/**
+ * e1000_setup_link_vf - Sets up link.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions cannot change link.
+ **/
+STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+ DEBUGFUNC("e1000_setup_link_vf");
+ UNREFERENCED_1PARAMETER(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_bus_info_pcie_vf - Gets the bus info.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions are not really on their own bus.
+ **/
+STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_vf");
+
+ /* Do not set type PCI-E because we don't want disable master to run */
+ bus->type = e1000_bus_type_reserved;
+ bus->speed = e1000_bus_speed_2500;
+
+ return 0;
+}
+
+/**
+ * e1000_get_link_up_info_vf - Gets link info.
+ * @hw: pointer to the HW structure
+ * @speed: pointer to 16 bit value to store link speed.
+ * @duplex: pointer to 16 bit value to store duplex.
+ *
+ * Since we cannot read the PHY and get accurate link info, we must rely upon
+ * the status register's data which is often stale and inaccurate.
+ **/
+STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 status;
+
+ DEBUGFUNC("e1000_get_link_up_info_vf");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_vf - Resets the HW
+ * @hw: pointer to the HW structure
+ *
+ * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
+ * This is all the reset we can perform on a VF.
+ **/
+STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 timeout = E1000_VF_INIT_TIMEOUT;
+ s32 ret_val = -E1000_ERR_MAC_INIT;
+ u32 ctrl, msgbuf[3];
+ u8 *addr = (u8 *)(&msgbuf[1]);
+
+ DEBUGFUNC("e1000_reset_hw_vf");
+
+ DEBUGOUT("Issuing a function level reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ /* we cannot reset while the RSTI / RSTD bits are asserted */
+ while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
+ timeout--;
+ usec_delay(5);
+ }
+
+ if (timeout) {
+ /* mailbox timeout can now become active */
+ mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
+
+ msgbuf[0] = E1000_VF_RESET;
+ mbx->ops.write_posted(hw, msgbuf, 1, 0);
+
+ msec_delay(10);
+
+ /* set our "perm_addr" based on info provided by PF */
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+ if (!ret_val) {
+ if (msgbuf[0] == (E1000_VF_RESET |
+ E1000_VT_MSGTYPE_ACK))
+ memcpy(hw->mac.perm_addr, addr, 6);
+ else
+ ret_val = -E1000_ERR_MAC_INIT;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_vf - Inits the HW
+ * @hw: pointer to the HW structure
+ *
+ * Not much to do here except clear the PF Reset indication if there is one.
+ **/
+STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_hw_vf");
+
+ /* attempt to set and restore our mac address */
+ e1000_rar_set_vf(hw, hw->mac.addr, 0);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_vf - set device MAC address
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index receive address array register
+ **/
+STATIC void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
+ u32 E1000_UNUSEDARG index)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[3];
+ u8 *msg_addr = (u8 *)(&msgbuf[1]);
+ s32 ret_val;
+
+ UNREFERENCED_1PARAMETER(index);
+ memset(msgbuf, 0, 12);
+ msgbuf[0] = E1000_VF_SET_MAC_ADDR;
+ memcpy(msg_addr, addr, 6);
+ ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+
+ msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
+
+ /* if nacked the address was rejected, use "perm_addr" */
+ if (!ret_val &&
+ (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
+ e1000_read_mac_addr_vf(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_vf - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * The bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
+ u32 *msg, u16 size)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 retmsg[E1000_VFMAILBOX_SIZE];
+ s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
+
+ if (!retval)
+ mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
+}
+
+/**
+ * e1000_update_mc_addr_list_vf - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ u32 msgbuf[E1000_VFMAILBOX_SIZE];
+ u16 *hash_list = (u16 *)&msgbuf[1];
+ u32 hash_value;
+ u32 i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_vf");
+
+ /* Each entry in the list uses 1 16 bit word. We have 30
+ * 16 bit words available in our HW msg buffer (minus 1 for the
+ * msg type). That's 30 hash values if we pack 'em right. If
+ * there are more than 30 MC addresses to add then punt the
+ * extras for now and then add code to handle more than 30 later.
+ * It would be unusual for a server to request that many multi-cast
+ * addresses except for in large enterprise network environments.
+ */
+
+ DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
+
+ if (mc_addr_count > 30) {
+ msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
+ mc_addr_count = 30;
+ }
+
+ msgbuf[0] = E1000_VF_SET_MULTICAST;
+ msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
+
+ for (i = 0; i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
+ DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+ hash_list[i] = hash_value & 0x0FFF;
+ mc_addr_list += ETH_ADDR_LEN;
+ }
+
+ e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
+}
+
+/**
+ * e1000_vfta_set_vf - Set/Unset vlan filter table address
+ * @hw: pointer to the HW structure
+ * @vid: determines the vfta register and bit to set/unset
+ * @set: if true then set bit, else clear bit
+ **/
+void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
+{
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_VLAN;
+ msgbuf[1] = vid;
+ /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+ if (set)
+ msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+ e1000_write_msg_read_ack(hw, msgbuf, 2);
+}
+
+/** e1000_rlpml_set_vf - Set the maximum receive packet length
+ * @hw: pointer to the HW structure
+ * @max_size: value to assign to max frame size
+ **/
+void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
+{
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_LPE;
+ msgbuf[1] = max_size;
+
+ e1000_write_msg_read_ack(hw, msgbuf, 2);
+}
+
+/**
+ * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
+ * @hw: pointer to the HW structure
+ * @uni: boolean indicating unicast promisc status
+ * @multi: boolean indicating multicast promisc status
+ **/
+s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf = E1000_VF_SET_PROMISC;
+ s32 ret_val;
+
+ switch (type) {
+ case e1000_promisc_multicast:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ break;
+ case e1000_promisc_enabled:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ case e1000_promisc_unicast:
+ msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
+ case e1000_promisc_disabled:
+ break;
+ default:
+ return -E1000_ERR_MAC_INIT;
+ }
+
+ ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
+ ret_val = -E1000_ERR_MAC_INIT;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_vf - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
+{
+ int i;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_link_vf - Check for link for a virtual interface
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see if the underlying PF is still talking to the VF and
+ * if it is then it reports the link state to the hardware, otherwise
+ * it reports link down and returns an error.
+ **/
+STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u32 in_msg = 0;
+
+ DEBUGFUNC("e1000_check_for_link_vf");
+
+ /*
+ * We only want to run this if there has been a rst asserted.
+ * in this case that could mean a link change, device reset,
+ * or a virtual function reset
+ */
+
+ /* If we were hit with a reset or timeout drop the link */
+ if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
+ mac->get_link_status = true;
+
+ if (!mac->get_link_status)
+ goto out;
+
+ /* if link status is down no point in checking to see if pf is up */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+ goto out;
+
+ /* if the read failed it could just be a mailbox collision, best wait
+ * until we are called again and don't report an error */
+ if (mbx->ops.read(hw, &in_msg, 1, 0))
+ goto out;
+
+ /* if incoming message isn't clear to send we are waiting on response */
+ if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
+ /* message is not CTS and is NACK we have lost CTS status */
+ if (in_msg & E1000_VT_MSGTYPE_NACK)
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* at this point we know the PF is talking to us, check and see if
+ * we are still accepting timeout or if we had a timeout failure.
+ * if we failed then we will need to reinit */
+ if (!mbx->timeout) {
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* if we passed all the tests above then the link is up and we no
+ * longer need to check for link */
+ mac->get_link_status = false;
+
+out:
+ return ret_val;
+}
+
--- /dev/null
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_VF_H_
+#define _E1000_VF_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_I350_VF 0x1520
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Num of retries to clear RSTI */
+
+/* Additional Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+ (0x0C00C + ((_n) * 0x40)))
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+/* Interrupt Defines */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + ((_n) << 2))
+#define E1000_EICS 0x01520 /* Ext. Intr Cause Set -W0 */
+#define E1000_EIMS 0x01524 /* Ext. Intr Mask Set/Read -RW */
+#define E1000_EIMC 0x01528 /* Ext. Intr Mask Clear -WO */
+#define E1000_EIAC 0x0152C /* Ext. Intr Auto Clear -RW */
+#define E1000_EIAM 0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */
+#define E1000_IVAR0 0x01700 /* Intr Vector Alloc (array) -RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes -RW */
+#define E1000_IVAR_VALID 0x80
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ u64 pkt_addr; /* Packet buffer address */
+ u64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ u32 data;
+ struct {
+ /* RSS type, Packet type */
+ u16 pkt_info;
+ /* Split Header, header buffer len */
+ u16 hdr_info;
+ } hs_rss;
+ } lo_dword;
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length; /* Packet length */
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ u64 buffer_addr; /* Address of descriptor's data buf */
+ u32 cmd_type_len;
+ u32 olinfo_status;
+ } read;
+ struct {
+ u64 rsvd; /* Reserved */
+ u32 nxtseq_seed;
+ u32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ u32 vlan_macip_lens;
+ u32 seqnum_seed;
+ u32 type_tucmd_mlhl;
+ u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_vfadapt,
+ e1000_vfadapt_i350,
+ e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+#include "e1000_mbx.h"
+
+struct e1000_mac_operations {
+ /* Function pointers for the MAC. */
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ enum e1000_mac_type type;
+
+ u16 mta_reg_count;
+ u16 rar_entry_count;
+
+ bool get_link_status;
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_mbx_info mbx;
+
+ union {
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+/* These functions must be implemented by drivers */
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
+#endif /* _E1000_VF_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _E1000_ETHDEV_H_
+#define _E1000_ETHDEV_H_
+
+/* need update link, bit flag */
+#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
+#define E1000_FLAG_MAILBOX (uint32_t)(1 << 1)
+
+/*
+ * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
+ * driver.
+ */
+#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */
+#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */
+#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */
+#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */
+#define E1000_RXD_ERR_CKSUM_BIT 29
+#define E1000_RXD_ERR_CKSUM_MSK 3
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */
+#define E1000_CTRL_EXT_EXTEND_VLAN (1<<26) /* EXTENDED VLAN */
+#define IGB_VFTA_SIZE 128
+
+#define IGB_MAX_RX_QUEUE_NUM 8
+#define IGB_MAX_RX_QUEUE_NUM_82576 16
+
+#define E1000_SYN_FILTER_ENABLE 0x00000001 /* syn filter enable field */
+#define E1000_SYN_FILTER_QUEUE 0x0000000E /* syn filter queue field */
+#define E1000_SYN_FILTER_QUEUE_SHIFT 1 /* syn filter queue field */
+#define E1000_RFCTL_SYNQFP 0x00080000 /* SYNQFP in RFCTL register */
+
+#define E1000_ETQF_ETHERTYPE 0x0000FFFF
+#define E1000_ETQF_QUEUE 0x00070000
+#define E1000_ETQF_QUEUE_SHIFT 16
+#define E1000_MAX_ETQF_FILTERS 8
+
+#define E1000_IMIR_DSTPORT 0x0000FFFF
+#define E1000_IMIR_PRIORITY 0xE0000000
+#define E1000_MAX_TTQF_FILTERS 8
+#define E1000_2TUPLE_MAX_PRI 7
+
+#define E1000_MAX_FLEX_FILTERS 8
+#define E1000_MAX_FHFT 4
+#define E1000_MAX_FHFT_EXT 4
+#define E1000_FHFT_SIZE_IN_DWD 64
+#define E1000_MAX_FLEX_FILTER_PRI 7
+#define E1000_MAX_FLEX_FILTER_LEN 128
+#define E1000_MAX_FLEX_FILTER_DWDS \
+ (E1000_MAX_FLEX_FILTER_LEN / sizeof(uint32_t))
+#define E1000_FLEX_FILTERS_MASK_SIZE \
+ (E1000_MAX_FLEX_FILTER_DWDS / 4)
+#define E1000_FHFT_QUEUEING_LEN 0x0000007F
+#define E1000_FHFT_QUEUEING_QUEUE 0x00000700
+#define E1000_FHFT_QUEUEING_PRIO 0x00070000
+#define E1000_FHFT_QUEUEING_OFFSET 0xFC
+#define E1000_FHFT_QUEUEING_QUEUE_SHIFT 8
+#define E1000_FHFT_QUEUEING_PRIO_SHIFT 16
+#define E1000_WUFC_FLEX_HQ 0x00004000
+
+#define E1000_SPQF_SRCPORT 0x0000FFFF
+
+#define E1000_MAX_FTQF_FILTERS 8
+#define E1000_FTQF_PROTOCOL_MASK 0x000000FF
+#define E1000_FTQF_5TUPLE_MASK_SHIFT 28
+#define E1000_FTQF_QUEUE_MASK 0x03ff0000
+#define E1000_FTQF_QUEUE_SHIFT 16
+#define E1000_FTQF_QUEUE_ENABLE 0x00000100
+
+#define IGB_RSS_OFFLOAD_ALL ( \
+ ETH_RSS_IPV4 | \
+ ETH_RSS_NONFRAG_IPV4_TCP | \
+ ETH_RSS_NONFRAG_IPV4_UDP | \
+ ETH_RSS_IPV6 | \
+ ETH_RSS_NONFRAG_IPV6_TCP | \
+ ETH_RSS_NONFRAG_IPV6_UDP | \
+ ETH_RSS_IPV6_EX | \
+ ETH_RSS_IPV6_TCP_EX | \
+ ETH_RSS_IPV6_UDP_EX)
+
+/* structure for interrupt relative data */
+struct e1000_interrupt {
+ uint32_t flags;
+ uint32_t mask;
+};
+
+/* local vfta copy */
+struct e1000_vfta {
+ uint32_t vfta[IGB_VFTA_SIZE];
+};
+
+/*
+ * VF data which used by PF host only
+ */
+#define E1000_MAX_VF_MC_ENTRIES 30
+struct e1000_vf_info {
+ uint8_t vf_mac_addresses[ETHER_ADDR_LEN];
+ uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES];
+ uint16_t num_vf_mc_hashes;
+ uint16_t default_vf_vlan_id;
+ uint16_t vlans_enabled;
+ uint16_t pf_qos;
+ uint16_t vlan_count;
+ uint16_t tx_rate;
+};
+
+TAILQ_HEAD(e1000_flex_filter_list, e1000_flex_filter);
+
+struct e1000_flex_filter_info {
+ uint16_t len;
+ uint32_t dwords[E1000_MAX_FLEX_FILTER_DWDS]; /* flex bytes in dword. */
+ /* if mask bit is 1b, do not compare corresponding byte in dwords. */
+ uint8_t mask[E1000_FLEX_FILTERS_MASK_SIZE];
+ uint8_t priority;
+};
+
+/* Flex filter structure */
+struct e1000_flex_filter {
+ TAILQ_ENTRY(e1000_flex_filter) entries;
+ uint16_t index; /* index of flex filter */
+ struct e1000_flex_filter_info filter_info;
+ uint16_t queue; /* rx queue assigned to */
+};
+
+TAILQ_HEAD(e1000_5tuple_filter_list, e1000_5tuple_filter);
+TAILQ_HEAD(e1000_2tuple_filter_list, e1000_2tuple_filter);
+
+struct e1000_5tuple_filter_info {
+ uint32_t dst_ip;
+ uint32_t src_ip;
+ uint16_t dst_port;
+ uint16_t src_port;
+ uint8_t proto; /* l4 protocol. */
+ /* the packet matched above 5tuple and contain any set bit will hit this filter. */
+ uint8_t tcp_flags;
+ uint8_t priority; /* seven levels (001b-111b), 111b is highest,
+ used when more than one filter matches. */
+ uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */
+ src_ip_mask:1, /* if mask is 1b, do not compare src ip. */
+ dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
+ src_port_mask:1, /* if mask is 1b, do not compare src port. */
+ proto_mask:1; /* if mask is 1b, do not compare protocol. */
+};
+
+struct e1000_2tuple_filter_info {
+ uint16_t dst_port;
+ uint8_t proto; /* l4 protocol. */
+ /* the packet matched above 2tuple and contain any set bit will hit this filter. */
+ uint8_t tcp_flags;
+ uint8_t priority; /* seven levels (001b-111b), 111b is highest,
+ used when more than one filter matches. */
+ uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */
+ src_ip_mask:1, /* if mask is 1b, do not compare src ip. */
+ dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
+ src_port_mask:1, /* if mask is 1b, do not compare src port. */
+ proto_mask:1; /* if mask is 1b, do not compare protocol. */
+};
+
+/* 5tuple filter structure */
+struct e1000_5tuple_filter {
+ TAILQ_ENTRY(e1000_5tuple_filter) entries;
+ uint16_t index; /* the index of 5tuple filter */
+ struct e1000_5tuple_filter_info filter_info;
+ uint16_t queue; /* rx queue assigned to */
+};
+
+/* 2tuple filter structure */
+struct e1000_2tuple_filter {
+ TAILQ_ENTRY(e1000_2tuple_filter) entries;
+ uint16_t index; /* the index of 2tuple filter */
+ struct e1000_2tuple_filter_info filter_info;
+ uint16_t queue; /* rx queue assigned to */
+};
+
+/*
+ * Structure to store filters' info.
+ */
+struct e1000_filter_info {
+ uint8_t ethertype_mask; /* Bit mask for every used ethertype filter */
+ /* store used ethertype filters*/
+ uint16_t ethertype_filters[E1000_MAX_ETQF_FILTERS];
+ uint8_t flex_mask; /* Bit mask for every used flex filter */
+ struct e1000_flex_filter_list flex_list;
+ /* Bit mask for every used 5tuple filter */
+ uint8_t fivetuple_mask;
+ struct e1000_5tuple_filter_list fivetuple_list;
+ /* Bit mask for every used 2tuple filter */
+ uint8_t twotuple_mask;
+ struct e1000_2tuple_filter_list twotuple_list;
+};
+
+/*
+ * Structure to store private data for each driver instance (for each port).
+ */
+struct e1000_adapter {
+ struct e1000_hw hw;
+ struct e1000_hw_stats stats;
+ struct e1000_interrupt intr;
+ struct e1000_vfta shadow_vfta;
+ struct e1000_vf_info *vfdata;
+ struct e1000_filter_info filter;
+};
+
+#define E1000_DEV_PRIVATE_TO_HW(adapter) \
+ (&((struct e1000_adapter *)adapter)->hw)
+
+#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
+ (&((struct e1000_adapter *)adapter)->stats)
+
+#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
+ (&((struct e1000_adapter *)adapter)->intr)
+
+#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
+ (&((struct e1000_adapter *)adapter)->shadow_vfta)
+
+#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \
+ (&((struct e1000_adapter *)adapter)->vfdata)
+
+#define E1000_DEV_PRIVATE_TO_FILTER_INFO(adapter) \
+ (&((struct e1000_adapter *)adapter)->filter)
+
+/*
+ * RX/TX IGB function prototypes
+ */
+void eth_igb_tx_queue_release(void *txq);
+void eth_igb_rx_queue_release(void *rxq);
+void igb_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+ uint16_t nb_rx_desc, unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mb_pool);
+
+uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev,
+ uint16_t rx_queue_id);
+
+int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset);
+
+int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+ uint16_t nb_tx_desc, unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf);
+
+int eth_igb_rx_init(struct rte_eth_dev *dev);
+
+void eth_igb_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_scattered_pkts(void *rxq,
+ struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
+
+int eth_igb_rss_hash_update(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf);
+
+int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf);
+
+int eth_igbvf_rx_init(struct rte_eth_dev *dev);
+
+void eth_igbvf_tx_init(struct rte_eth_dev *dev);
+
+/*
+ * misc function prototypes
+ */
+void igb_pf_host_init(struct rte_eth_dev *eth_dev);
+
+void igb_pf_mbx_process(struct rte_eth_dev *eth_dev);
+
+int igb_pf_host_configure(struct rte_eth_dev *eth_dev);
+
+/*
+ * RX/TX EM function prototypes
+ */
+void eth_em_tx_queue_release(void *txq);
+void eth_em_rx_queue_release(void *rxq);
+
+void em_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+ uint16_t nb_rx_desc, unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mb_pool);
+
+uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev,
+ uint16_t rx_queue_id);
+
+int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset);
+
+int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+ uint16_t nb_tx_desc, unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf);
+
+int eth_em_rx_init(struct rte_eth_dev *dev);
+
+void eth_em_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+
+#endif /* _E1000_ETHDEV_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _E1000_LOGS_H_
+#define _E1000_LOGS_H_
+
+#define PMD_INIT_LOG(level, fmt, args...) \
+ rte_log(RTE_LOG_ ## level, RTE_LOGTYPE_PMD, \
+ "PMD: %s(): " fmt "\n", __func__, ##args)
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_INIT
+#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>")
+#else
+#define PMD_INIT_FUNC_TRACE() do { } while (0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_RX
+#define PMD_RX_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_TX
+#define PMD_TX_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE
+#define PMD_TX_FREE_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_DRIVER
+#define PMD_DRV_LOG_RAW(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt, __func__, ## args)
+#else
+#define PMD_DRV_LOG_RAW(level, fmt, args...) do { } while (0)
+#endif
+
+#define PMD_DRV_LOG(level, fmt, args...) \
+ PMD_DRV_LOG_RAW(level, fmt "\n", ## args)
+
+#endif /* _E1000_LOGS_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+#include <rte_dev.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+#define EM_EIAC 0x000DC
+
+#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
+
+
+static int eth_em_configure(struct rte_eth_dev *dev);
+static int eth_em_start(struct rte_eth_dev *dev);
+static void eth_em_stop(struct rte_eth_dev *dev);
+static void eth_em_close(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
+static int eth_em_link_update(struct rte_eth_dev *dev,
+ int wait_to_complete);
+static void eth_em_stats_get(struct rte_eth_dev *dev,
+ struct rte_eth_stats *rte_stats);
+static void eth_em_stats_reset(struct rte_eth_dev *dev);
+static void eth_em_infos_get(struct rte_eth_dev *dev,
+ struct rte_eth_dev_info *dev_info);
+static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
+ struct rte_eth_fc_conf *fc_conf);
+static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
+ struct rte_eth_fc_conf *fc_conf);
+static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_em_interrupt_action(struct rte_eth_dev *dev);
+static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
+ void *param);
+
+static int em_hw_init(struct e1000_hw *hw);
+static int em_hardware_init(struct e1000_hw *hw);
+static void em_hw_control_acquire(struct e1000_hw *hw);
+static void em_hw_control_release(struct e1000_hw *hw);
+static void em_init_manageability(struct e1000_hw *hw);
+static void em_release_manageability(struct e1000_hw *hw);
+
+static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
+
+static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+ uint16_t vlan_id, int on);
+static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
+static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
+
+/*
+static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+ uint16_t vlan_id, int on);
+*/
+static int eth_em_led_on(struct rte_eth_dev *dev);
+static int eth_em_led_off(struct rte_eth_dev *dev);
+
+static void em_intr_disable(struct e1000_hw *hw);
+static int em_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+ uint32_t index, uint32_t pool);
+static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
+#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static const struct rte_pci_id pci_id_em_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+static const struct eth_dev_ops eth_em_ops = {
+ .dev_configure = eth_em_configure,
+ .dev_start = eth_em_start,
+ .dev_stop = eth_em_stop,
+ .dev_close = eth_em_close,
+ .promiscuous_enable = eth_em_promiscuous_enable,
+ .promiscuous_disable = eth_em_promiscuous_disable,
+ .allmulticast_enable = eth_em_allmulticast_enable,
+ .allmulticast_disable = eth_em_allmulticast_disable,
+ .link_update = eth_em_link_update,
+ .stats_get = eth_em_stats_get,
+ .stats_reset = eth_em_stats_reset,
+ .dev_infos_get = eth_em_infos_get,
+ .mtu_set = eth_em_mtu_set,
+ .vlan_filter_set = eth_em_vlan_filter_set,
+ .vlan_offload_set = eth_em_vlan_offload_set,
+ .rx_queue_setup = eth_em_rx_queue_setup,
+ .rx_queue_release = eth_em_rx_queue_release,
+ .rx_queue_count = eth_em_rx_queue_count,
+ .rx_descriptor_done = eth_em_rx_descriptor_done,
+ .tx_queue_setup = eth_em_tx_queue_setup,
+ .tx_queue_release = eth_em_tx_queue_release,
+ .dev_led_on = eth_em_led_on,
+ .dev_led_off = eth_em_led_off,
+ .flow_ctrl_get = eth_em_flow_ctrl_get,
+ .flow_ctrl_set = eth_em_flow_ctrl_set,
+ .mac_addr_add = eth_em_rar_set,
+ .mac_addr_remove = eth_em_rar_clear,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = link;
+ struct rte_eth_link *src = &(dev->data->dev_link);
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = &(dev->data->dev_link);
+ struct rte_eth_link *src = link;
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+static int
+eth_em_dev_init(struct rte_eth_dev *eth_dev)
+{
+ struct rte_pci_device *pci_dev;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+
+ pci_dev = eth_dev->pci_dev;
+ eth_dev->dev_ops = ð_em_ops;
+ eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
+ eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
+
+ /* for secondary processes, we don't initialise any further as primary
+ * has already done this work. Only check we don't need a different
+ * RX function */
+ if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+ if (eth_dev->data->scattered_rx)
+ eth_dev->rx_pkt_burst =
+ (eth_rx_burst_t)ð_em_recv_scattered_pkts;
+ return 0;
+ }
+
+ hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
+ hw->device_id = pci_dev->id.device_id;
+
+ /* For ICH8 support we'll need to map the flash memory BAR */
+
+ if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
+ em_hw_init(hw) != 0) {
+ PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
+ "failed to init HW",
+ eth_dev->data->port_id, pci_dev->id.vendor_id,
+ pci_dev->id.device_id);
+ return -(ENODEV);
+ }
+
+ /* Allocate memory for storing MAC addresses */
+ eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
+ hw->mac.rar_entry_count, 0);
+ if (eth_dev->data->mac_addrs == NULL) {
+ PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+ "store MAC addresses",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+ return -(ENOMEM);
+ }
+
+ /* Copy the permanent MAC address */
+ ether_addr_copy((struct ether_addr *) hw->mac.addr,
+ eth_dev->data->mac_addrs);
+
+ /* initialize the vfta */
+ memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+ PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
+ eth_dev->data->port_id, pci_dev->id.vendor_id,
+ pci_dev->id.device_id);
+
+ rte_intr_callback_register(&(pci_dev->intr_handle),
+ eth_em_interrupt_handler, (void *)eth_dev);
+
+ return (0);
+}
+
+static struct eth_driver rte_em_pmd = {
+ {
+ .name = "rte_em_pmd",
+ .id_table = pci_id_em_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
+ },
+ .eth_dev_init = eth_em_dev_init,
+ .dev_private_size = sizeof(struct e1000_adapter),
+};
+
+static int
+rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+ rte_eth_driver_register(&rte_em_pmd);
+ return 0;
+}
+
+static int
+em_hw_init(struct e1000_hw *hw)
+{
+ int diag;
+
+ diag = hw->mac.ops.init_params(hw);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "MAC Initialization Error");
+ return diag;
+ }
+ diag = hw->nvm.ops.init_params(hw);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "NVM Initialization Error");
+ return diag;
+ }
+ diag = hw->phy.ops.init_params(hw);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "PHY Initialization Error");
+ return diag;
+ }
+ (void) e1000_get_bus_info(hw);
+
+ hw->mac.autoneg = 1;
+ hw->phy.autoneg_wait_to_complete = 0;
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+ e1000_init_script_state_82541(hw, TRUE);
+ e1000_set_tbi_compatibility_82543(hw, TRUE);
+
+ /* Copper options */
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+ hw->phy.disable_polarity_correction = 0;
+ hw->phy.ms_type = e1000_ms_hw_default;
+ }
+
+ /*
+ * Start from a known state, this is important in reading the nvm
+ * and mac from that.
+ */
+ e1000_reset_hw(hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ /*
+ * Some PCI-E parts fail the first check due to
+ * the link being in sleep state, call it again,
+ * if it fails a second time its a real issue.
+ */
+ diag = e1000_validate_nvm_checksum(hw);
+ if (diag < 0) {
+ PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+ goto error;
+ }
+ }
+
+ /* Read the permanent MAC address out of the EEPROM */
+ diag = e1000_read_mac_addr(hw);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+ goto error;
+ }
+
+ /* Now initialize the hardware */
+ diag = em_hardware_init(hw);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "Hardware initialization failed");
+ goto error;
+ }
+
+ hw->mac.get_link_status = 1;
+
+ /* Indicate SOL/IDER usage */
+ diag = e1000_check_reset_block(hw);
+ if (diag < 0) {
+ PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
+ "SOL/IDER session");
+ }
+ return (0);
+
+error:
+ em_hw_control_release(hw);
+ return (diag);
+}
+
+static int
+eth_em_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+ PMD_INIT_FUNC_TRACE();
+
+ return (0);
+}
+
+static void
+em_set_pba(struct e1000_hw *hw)
+{
+ uint32_t pba;
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ * Devices before the 82547 had a Packet Buffer of 64K.
+ * After the 82547 the buffer was reduced to 40K.
+ */
+ switch (hw->mac.type) {
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ /* 82547: Total Packet Buffer is 40K */
+ pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ break;
+ case e1000_82573: /* 82573: Total Packet Buffer is 32K */
+ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
+ break;
+ case e1000_ich8lan:
+ pba = E1000_PBA_8K;
+ break;
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ pba = E1000_PBA_10K;
+ break;
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ pba = E1000_PBA_26K;
+ break;
+ default:
+ pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+ }
+
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+}
+
+static int
+eth_em_start(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret, mask;
+
+ PMD_INIT_FUNC_TRACE();
+
+ eth_em_stop(dev);
+
+ e1000_power_up_phy(hw);
+
+ /* Set default PBA value */
+ em_set_pba(hw);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(hw, hw->mac.addr, 0);
+
+ /*
+ * With the 82571 adapter, RAR[0] may be overwritten
+ * when the other port is reset, we make a duplicate
+ * in RAR[14] for that eventuality, this assures
+ * the interface continues to function.
+ */
+ if (hw->mac.type == e1000_82571) {
+ e1000_set_laa_state_82571(hw, TRUE);
+ e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
+ }
+
+ /* Initialize the hardware */
+ if (em_hardware_init(hw)) {
+ PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+ return (-EIO);
+ }
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
+
+ /* Configure for OS presence */
+ em_init_manageability(hw);
+
+ eth_em_tx_init(dev);
+
+ ret = eth_em_rx_init(dev);
+ if (ret) {
+ PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+ em_dev_clear_queues(dev);
+ return ret;
+ }
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
+ ETH_VLAN_EXTEND_MASK;
+ eth_em_vlan_offload_set(dev, mask);
+
+ /* Set Interrupt Throttling Rate to maximum allowed value. */
+ E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
+
+ /* Setup link speed and duplex */
+ switch (dev->data->dev_conf.link_speed) {
+ case ETH_LINK_SPEED_AUTONEG:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_100:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+ else if (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_1000:
+ if ((dev->data->dev_conf.link_duplex ==
+ ETH_LINK_AUTONEG_DUPLEX) ||
+ (dev->data->dev_conf.link_duplex ==
+ ETH_LINK_FULL_DUPLEX))
+ hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10000:
+ default:
+ goto error_invalid_config;
+ }
+ e1000_setup_link(hw);
+
+ /* check if lsc interrupt feature is enabled */
+ if (dev->data->dev_conf.intr_conf.lsc != 0) {
+ ret = eth_em_interrupt_setup(dev);
+ if (ret) {
+ PMD_INIT_LOG(ERR, "Unable to setup interrupts");
+ em_dev_clear_queues(dev);
+ return ret;
+ }
+ }
+
+ PMD_INIT_LOG(DEBUG, "<<");
+
+ return (0);
+
+error_invalid_config:
+ PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
+ dev->data->dev_conf.link_speed,
+ dev->data->dev_conf.link_duplex, dev->data->port_id);
+ em_dev_clear_queues(dev);
+ return (-EINVAL);
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_em_stop(struct rte_eth_dev *dev)
+{
+ struct rte_eth_link link;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ em_intr_disable(hw);
+ e1000_reset_hw(hw);
+ if (hw->mac.type >= e1000_82544)
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ /* Power down the phy. Needed to make the link go down */
+ e1000_power_down_phy(hw);
+
+ em_dev_clear_queues(dev);
+
+ /* clear the recorded link status */
+ memset(&link, 0, sizeof(link));
+ rte_em_dev_atomic_write_link_status(dev, &link);
+}
+
+static void
+eth_em_close(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ eth_em_stop(dev);
+ e1000_phy_hw_reset(hw);
+ em_release_manageability(hw);
+ em_hw_control_release(hw);
+}
+
+static int
+em_get_rx_buffer_size(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+
+ rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
+ return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ * Initialize the hardware
+ *
+ **********************************************************************/
+static int
+em_hardware_init(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+ int diag;
+
+ /* Issue a global reset */
+ e1000_reset_hw(hw);
+
+ /* Let the firmware know the OS is in control */
+ em_hw_control_acquire(hw);
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two standard size (1518)
+ * frames to be received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit. Here we use an arbitrary value of 1500 which will
+ * restart after one full frame is pulled from the buffer. There
+ * could be several smaller frames in the buffer and if so they will
+ * not trigger the XON until their total number reduces the buffer
+ * by 1500.
+ * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+ */
+ rx_buf_size = em_get_rx_buffer_size(hw);
+
+ hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
+ hw->fc.low_water = hw->fc.high_water - 1500;
+
+ if (hw->mac.type == e1000_80003es2lan)
+ hw->fc.pause_time = UINT16_MAX;
+ else
+ hw->fc.pause_time = EM_FC_PAUSE_TIME;
+
+ hw->fc.send_xon = 1;
+
+ /* Set Flow control, use the tunable location if sane */
+ if (em_fc_setting <= e1000_fc_full)
+ hw->fc.requested_mode = em_fc_setting;
+ else
+ hw->fc.requested_mode = e1000_fc_none;
+
+ /* Workaround: no TX flow ctrl for PCH */
+ if (hw->mac.type == e1000_pchlan)
+ hw->fc.requested_mode = e1000_fc_rx_pause;
+
+ /* Override - settings for PCH2LAN, ya its magic :) */
+ if (hw->mac.type == e1000_pch2lan) {
+ hw->fc.high_water = 0x5C20;
+ hw->fc.low_water = 0x5048;
+ hw->fc.pause_time = 0x0650;
+ hw->fc.refresh_time = 0x0400;
+ }
+
+ diag = e1000_init_hw(hw);
+ if (diag < 0)
+ return (diag);
+ e1000_check_for_link(hw);
+ return (0);
+}
+
+/* This function is based on em_update_stats_counters() in e1000/if_em.c */
+static void
+eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_hw_stats *stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+ int pause_frames;
+
+ if(hw->phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
+ stats->sec += E1000_READ_REG(hw, E1000_SEC);
+ }
+
+ stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+ stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+ stats->scc += E1000_READ_REG(hw, E1000_SCC);
+ stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+ stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+ stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+ stats->colc += E1000_READ_REG(hw, E1000_COLC);
+ stats->dc += E1000_READ_REG(hw, E1000_DC);
+ stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+ stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+ stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+
+ /*
+ * For watchdog management we need to know if we have been
+ * paused during the last interval, so capture that here.
+ */
+ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+ stats->xoffrxc += pause_frames;
+ stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+ stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+ stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+ stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+ stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+ stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+ stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+ stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+ stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+ stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+ stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+ stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+ /*
+ * For the 64-bit byte counters the low dword must be read first.
+ * Both registers clear on the read of the high dword.
+ */
+
+ stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+ stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+ stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+ stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+ stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+ stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+ stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+ stats->roc += E1000_READ_REG(hw, E1000_ROC);
+ stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+ stats->tor += E1000_READ_REG(hw, E1000_TORH);
+ stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+ stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+ stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+ stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+ stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+ stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+ stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+ stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+ stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+ stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+ stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ if (hw->mac.type >= e1000_82571) {
+ stats->iac += E1000_READ_REG(hw, E1000_IAC);
+ stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+ stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+ stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+ stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+ stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+ stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+ stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+ stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+ }
+
+ if (hw->mac.type >= e1000_82543) {
+ stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+ stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+ stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+ stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+ stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+ stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+ }
+
+ if (rte_stats == NULL)
+ return;
+
+ /* Rx Errors */
+ rte_stats->ibadcrc = stats->crcerrs;
+ rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
+ rte_stats->imissed = stats->mpc;
+ rte_stats->ierrors = rte_stats->ibadcrc +
+ rte_stats->ibadlen +
+ rte_stats->imissed +
+ stats->rxerrc + stats->algnerrc + stats->cexterr;
+
+ /* Tx Errors */
+ rte_stats->oerrors = stats->ecol + stats->latecol;
+
+ rte_stats->ipackets = stats->gprc;
+ rte_stats->opackets = stats->gptc;
+ rte_stats->ibytes = stats->gorc;
+ rte_stats->obytes = stats->gotc;
+
+ /* XON/XOFF pause frames stats registers */
+ rte_stats->tx_pause_xon = stats->xontxc;
+ rte_stats->rx_pause_xon = stats->xonrxc;
+ rte_stats->tx_pause_xoff = stats->xofftxc;
+ rte_stats->rx_pause_xoff = stats->xoffrxc;
+}
+
+static void
+eth_em_stats_reset(struct rte_eth_dev *dev)
+{
+ struct e1000_hw_stats *hw_stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+ /* HW registers are cleared on read */
+ eth_em_stats_get(dev, NULL);
+
+ /* Reset software totals */
+ memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static uint32_t
+em_get_max_pktlen(const struct e1000_hw *hw)
+{
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ case e1000_pch2lan:
+ case e1000_82574:
+ case e1000_80003es2lan: /* 9K Jumbo Frame size */
+ return (0x2412);
+ case e1000_pchlan:
+ return (0x1000);
+ /* Adapters that do not support jumbo frames */
+ case e1000_82583:
+ case e1000_ich8lan:
+ return (ETHER_MAX_LEN);
+ default:
+ return (MAX_JUMBO_FRAME_SIZE);
+ }
+}
+
+static void
+eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+ dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
+ dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+
+ /*
+ * Starting with 631xESB hw supports 2 TX/RX queues per port.
+ * Unfortunatelly, all these nics have just one TX context.
+ * So we have few choises for TX:
+ * - Use just one TX queue.
+ * - Allow cksum offload only for one TX queue.
+ * - Don't allow TX cksum offload at all.
+ * For now, option #1 was chosen.
+ * To use second RX queue we have to use extended RX descriptor
+ * (Multiple Receive Queues are mutually exclusive with UDP
+ * fragmentation and are not supported when a legacy receive
+ * descriptor format is used).
+ * Which means separate RX routinies - as legacy nics (82540, 82545)
+ * don't support extended RXD.
+ * To avoid it we support just one RX queue for now (no RSS).
+ */
+
+ dev_info->max_rx_queues = 1;
+ dev_info->max_tx_queues = 1;
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link, old;
+ int link_check, count;
+
+ link_check = 0;
+ hw->mac.get_link_status = 1;
+
+ /* possible wait-to-complete in up to 9 seconds */
+ for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+ /* Read the real link status */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ break;
+
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = hw->mac.serdes_has_link;
+ break;
+
+ default:
+ break;
+ }
+ if (link_check || wait_to_complete == 0)
+ break;
+ rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
+ }
+ memset(&link, 0, sizeof(link));
+ rte_em_dev_atomic_read_link_status(dev, &link);
+ old = link;
+
+ /* Now we check if a transition has happened */
+ if (link_check && (link.link_status == 0)) {
+ hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+ &link.link_duplex);
+ link.link_status = 1;
+ } else if (!link_check && (link.link_status == 1)) {
+ link.link_speed = 0;
+ link.link_duplex = 0;
+ link.link_status = 0;
+ }
+ rte_em_dev_atomic_write_link_status(dev, &link);
+
+ /* not changed */
+ if (old.link_status == link.link_status)
+ return -1;
+
+ /* changed */
+ return 0;
+}
+
+/*
+ * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded. For AMT version type f/w
+ * this means that the network i/f is open.
+ */
+static void
+em_hw_control_acquire(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext, swsm;
+
+ /* Let firmware know the driver has taken over */
+ if (hw->mac.type == e1000_82573) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
+
+ } else {
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+ }
+}
+
+/*
+ * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT versions of the
+ * f/w this means that the network i/f is closed.
+ */
+static void
+em_hw_control_release(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext, swsm;
+
+ /* Let firmware taken over control of h/w */
+ if (hw->mac.type == e1000_82573) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+ } else {
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+ }
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+em_init_manageability(struct e1000_hw *hw)
+{
+ if (e1000_enable_mng_pass_thru(hw)) {
+ uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+ uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+ manc2h |= 1 << 5; /* Mng Port 623 */
+ manc2h |= 1 << 6; /* Mng Port 664 */
+ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+em_release_manageability(struct e1000_hw *hw)
+{
+ uint32_t manc;
+
+ if (e1000_enable_mng_pass_thru(hw)) {
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+static void
+eth_em_promiscuous_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_promiscuous_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
+ if (dev->data->all_multicast == 1)
+ rctl |= E1000_RCTL_MPE;
+ else
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ if (dev->data->promiscuous == 1)
+ return; /* must remain in all_multicast mode */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static int
+eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t vfta;
+ uint32_t vid_idx;
+ uint32_t vid_bit;
+
+ vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK);
+ vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+ if (on)
+ vfta |= vid_bit;
+ else
+ vfta &= ~vid_bit;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+ /* update local VFTA copy */
+ shadow_vfta->vfta[vid_idx] = vfta;
+
+ return 0;
+}
+
+static void
+em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* Filter Table Disable */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg &= ~E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t reg;
+ int i;
+
+ /* Filter Table Enable, CFI not used for packet acceptance */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+ /* restore vfta from local copy */
+ for (i = 0; i < IGB_VFTA_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* VLAN Mode Disable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+}
+
+static void
+em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* VLAN Mode Enable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
+{
+ if(mask & ETH_VLAN_STRIP_MASK){
+ if (dev->data->dev_conf.rxmode.hw_vlan_strip)
+ em_vlan_hw_strip_enable(dev);
+ else
+ em_vlan_hw_strip_disable(dev);
+ }
+
+ if(mask & ETH_VLAN_FILTER_MASK){
+ if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+ em_vlan_hw_filter_enable(dev);
+ else
+ em_vlan_hw_filter_disable(dev);
+ }
+}
+
+static void
+em_intr_disable(struct e1000_hw *hw)
+{
+ E1000_WRITE_REG(hw, E1000_IMC, ~0);
+}
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_setup(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
+ rte_intr_enable(&(dev->pci_dev->intr_handle));
+ return (0);
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_get_status(struct rte_eth_dev *dev)
+{
+ uint32_t icr;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ /* read-on-clear nic registers here */
+ icr = E1000_READ_REG(hw, E1000_ICR);
+ if (icr & E1000_ICR_LSC) {
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+ }
+
+ return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_action(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+ uint32_t tctl, rctl;
+ struct rte_eth_link link;
+ int ret;
+
+ if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
+ return -1;
+
+ intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+ rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+ /* set get_link_status to check register later */
+ hw->mac.get_link_status = 1;
+ ret = eth_em_link_update(dev, 0);
+
+ /* check if link has changed */
+ if (ret < 0)
+ return 0;
+
+ memset(&link, 0, sizeof(link));
+ rte_em_dev_atomic_read_link_status(dev, &link);
+ if (link.link_status) {
+ PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
+ dev->data->port_id, (unsigned)link.link_speed,
+ link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+ "full-duplex" : "half-duplex");
+ } else {
+ PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
+ }
+ PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+ dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
+ dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ if (link.link_status) {
+ /* enable Tx/Rx */
+ tctl |= E1000_TCTL_EN;
+ rctl |= E1000_RCTL_EN;
+ } else {
+ /* disable Tx/Rx */
+ tctl &= ~E1000_TCTL_EN;
+ rctl &= ~E1000_RCTL_EN;
+ }
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ * Pointer to interrupt handle.
+ * @param param
+ * The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ * void
+ */
+static void
+eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
+ void *param)
+{
+ struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+ eth_em_interrupt_get_status(dev);
+ eth_em_interrupt_action(dev);
+ _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+}
+
+static int
+eth_em_led_on(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_led_off(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+ struct e1000_hw *hw;
+ uint32_t ctrl;
+ int tx_pause;
+ int rx_pause;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ fc_conf->pause_time = hw->fc.pause_time;
+ fc_conf->high_water = hw->fc.high_water;
+ fc_conf->low_water = hw->fc.low_water;
+ fc_conf->send_xon = hw->fc.send_xon;
+ fc_conf->autoneg = hw->mac.autoneg;
+
+ /*
+ * Return rx_pause and tx_pause status according to actual setting of
+ * the TFCE and RFCE bits in the CTRL register.
+ */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ if (ctrl & E1000_CTRL_TFCE)
+ tx_pause = 1;
+ else
+ tx_pause = 0;
+
+ if (ctrl & E1000_CTRL_RFCE)
+ rx_pause = 1;
+ else
+ rx_pause = 0;
+
+ if (rx_pause && tx_pause)
+ fc_conf->mode = RTE_FC_FULL;
+ else if (rx_pause)
+ fc_conf->mode = RTE_FC_RX_PAUSE;
+ else if (tx_pause)
+ fc_conf->mode = RTE_FC_TX_PAUSE;
+ else
+ fc_conf->mode = RTE_FC_NONE;
+
+ return 0;
+}
+
+static int
+eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+ struct e1000_hw *hw;
+ int err;
+ enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+ e1000_fc_none,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full
+ };
+ uint32_t rx_buf_size;
+ uint32_t max_high_water;
+ uint32_t rctl;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ if (fc_conf->autoneg != hw->mac.autoneg)
+ return -ENOTSUP;
+ rx_buf_size = em_get_rx_buffer_size(hw);
+ PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
+
+ /* At least reserve one Ethernet frame for watermark */
+ max_high_water = rx_buf_size - ETHER_MAX_LEN;
+ if ((fc_conf->high_water > max_high_water) ||
+ (fc_conf->high_water < fc_conf->low_water)) {
+ PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
+ PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
+ return (-EINVAL);
+ }
+
+ hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+ hw->fc.pause_time = fc_conf->pause_time;
+ hw->fc.high_water = fc_conf->high_water;
+ hw->fc.low_water = fc_conf->low_water;
+ hw->fc.send_xon = fc_conf->send_xon;
+
+ err = e1000_setup_link_generic(hw);
+ if (err == E1000_SUCCESS) {
+
+ /* check if we want to forward MAC frames - driver doesn't have native
+ * capability to do that, so we'll write the registers ourselves */
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+ /* set or clear MFLCN.PMCF bit depending on configuration */
+ if (fc_conf->mac_ctrl_frame_fwd != 0)
+ rctl |= E1000_RCTL_PMCF;
+ else
+ rctl &= ~E1000_RCTL_PMCF;
+
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+ }
+
+ PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
+ return (-EIO);
+}
+
+static void
+eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+ uint32_t index, __rte_unused uint32_t pool)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ e1000_rar_set(hw, mac_addr->addr_bytes, index);
+}
+
+static void
+eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+ uint8_t addr[ETHER_ADDR_LEN];
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ memset(addr, 0, sizeof(addr));
+
+ e1000_rar_set(hw, addr, index);
+}
+
+static int
+eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
+{
+ struct rte_eth_dev_info dev_info;
+ struct e1000_hw *hw;
+ uint32_t frame_size;
+ uint32_t rctl;
+
+ eth_em_infos_get(dev, &dev_info);
+ frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
+
+ /* check that mtu is within the allowed range */
+ if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
+ return -EINVAL;
+
+ /* refuse mtu that requires the support of scattered packets when this
+ * feature has not been enabled before. */
+ if (!dev->data->scattered_rx &&
+ frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
+ return -EINVAL;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+ /* switch to jumbo mode if needed */
+ if (frame_size > ETHER_MAX_LEN) {
+ dev->data->dev_conf.rxmode.jumbo_frame = 1;
+ rctl |= E1000_RCTL_LPE;
+ } else {
+ dev->data->dev_conf.rxmode.jumbo_frame = 0;
+ rctl &= ~E1000_RCTL_LPE;
+ }
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /* update max frame size */
+ dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
+ return 0;
+}
+
+struct rte_driver em_pmd_drv = {
+ .type = PMD_PDEV,
+ .init = rte_em_pmd_init,
+};
+
+PMD_REGISTER_DRIVER(em_pmd_drv);
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_ip.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+#include "base/e1000_osdep.h"
+
+#define E1000_TXD_VLAN_SHIFT 16
+
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, 0);
+ return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb) \
+ (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+ (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct em_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct em_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct em_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
+ struct em_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum {
+ EM_CTX_0 = 0, /**< CTX0 */
+ EM_CTX_NUM = 1, /**< CTX NUM */
+};
+
+/** Offload features */
+union em_vlan_macip {
+ uint32_t data;
+ struct {
+ uint16_t l3_len:9; /**< L3 (IP) Header Length. */
+ uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
+ uint16_t vlan_tci;
+ /**< VLAN Tag Control Identifier (CPU order). */
+ } f;
+};
+
+/*
+ * Compare mask for vlan_macip_len.data,
+ * should be in sync with em_vlan_macip.f layout.
+ * */
+#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
+#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
+#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
+/** MAC+IP length. */
+#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
+
+/**
+ * Structure to check if new context need be built
+ */
+struct em_ctx_info {
+ uint64_t flags; /**< ol_flags related to context build. */
+ uint32_t cmp_mask; /**< compare mask */
+ union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct em_tx_queue {
+ volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ uint16_t tx_free_thresh;/**< minimum TX before freeing. */
+ /**< Number of TX descriptors to use before RS bit is set. */
+ uint16_t tx_rs_thresh;
+ /** Number of TX descriptors used since RS bit was set. */
+ uint16_t nb_tx_used;
+ /** Index to last TX descriptor to have been cleaned. */
+ uint16_t last_desc_cleaned;
+ /** Total number of TX descriptors ready to be allocated. */
+ uint16_t nb_tx_free;
+ uint16_t queue_id; /**< TX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ struct em_ctx_info ctx_cache;
+ /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_em_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_em_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+#ifndef DEFAULT_TX_FREE_THRESH
+#define DEFAULT_TX_FREE_THRESH 32
+#endif /* DEFAULT_TX_FREE_THRESH */
+
+#ifndef DEFAULT_TX_RS_THRESH
+#define DEFAULT_TX_RS_THRESH 32
+#endif /* DEFAULT_TX_RS_THRESH */
+
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ * Populates TX context descriptor.
+ */
+static inline void
+em_set_xmit_ctx(struct em_tx_queue* txq,
+ volatile struct e1000_context_desc *ctx_txd,
+ uint64_t flags,
+ union em_vlan_macip hdrlen)
+{
+ uint32_t cmp_mask, cmd_len;
+ uint16_t ipcse, l2len;
+ struct e1000_context_desc ctx;
+
+ cmp_mask = 0;
+ cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
+
+ l2len = hdrlen.f.l2_len;
+ ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
+
+ /* setup IPCS* fields */
+ ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
+ ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
+ offsetof(struct ipv4_hdr, hdr_checksum));
+
+ /*
+ * When doing checksum or TCP segmentation with IPv6 headers,
+ * IPCSE field should be set t0 0.
+ */
+ if (flags & PKT_TX_IP_CKSUM) {
+ ctx.lower_setup.ip_fields.ipcse =
+ (uint16_t)rte_cpu_to_le_16(ipcse - 1);
+ cmd_len |= E1000_TXD_CMD_IP;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ } else {
+ ctx.lower_setup.ip_fields.ipcse = 0;
+ }
+
+ /* setup TUCS* fields */
+ ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
+ ctx.upper_setup.tcp_fields.tucse = 0;
+
+ switch (flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+ offsetof(struct udp_hdr, dgram_cksum));
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+ offsetof(struct tcp_hdr, cksum));
+ cmd_len |= E1000_TXD_CMD_TCP;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ default:
+ ctx.upper_setup.tcp_fields.tucso = 0;
+ }
+
+ ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
+ ctx.tcp_seg_setup.data = 0;
+
+ *ctx_txd = ctx;
+
+ txq->ctx_cache.flags = flags;
+ txq->ctx_cache.cmp_mask = cmp_mask;
+ txq->ctx_cache.hdrlen = hdrlen;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
+ union em_vlan_macip hdrlen)
+{
+ /* If match with the current context */
+ if (likely (txq->ctx_cache.flags == flags &&
+ ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
+ txq->ctx_cache.cmp_mask) == 0))
+ return (EM_CTX_0);
+
+ /* Mismatch */
+ return (EM_CTX_NUM);
+}
+
+/* Reset transmit descriptors after they have been used */
+static inline int
+em_xmit_cleanup(struct em_tx_queue *txq)
+{
+ struct em_tx_entry *sw_ring = txq->sw_ring;
+ volatile struct e1000_data_desc *txr = txq->tx_ring;
+ uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+ uint16_t nb_tx_desc = txq->nb_tx_desc;
+ uint16_t desc_to_clean_to;
+ uint16_t nb_tx_to_clean;
+
+ /* Determine the last descriptor needing to be cleaned */
+ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+ if (desc_to_clean_to >= nb_tx_desc)
+ desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+ /* Check to make sure the last descriptor to clean is done */
+ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+ if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
+ {
+ PMD_TX_FREE_LOG(DEBUG,
+ "TX descriptor %4u is not done"
+ "(port=%d queue=%d)", desc_to_clean_to,
+ txq->port_id, txq->queue_id);
+ /* Failed to clean any descriptors, better luck next time */
+ return -(1);
+ }
+
+ /* Figure out how many descriptors will be cleaned */
+ if (last_desc_cleaned > desc_to_clean_to)
+ nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+ desc_to_clean_to);
+ else
+ nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+ last_desc_cleaned);
+
+ PMD_TX_FREE_LOG(DEBUG,
+ "Cleaning %4u TX descriptors: %4u to %4u "
+ "(port=%d queue=%d)", nb_tx_to_clean,
+ last_desc_cleaned, desc_to_clean_to, txq->port_id,
+ txq->queue_id);
+
+ /*
+ * The last descriptor to clean is done, so that means all the
+ * descriptors from the last descriptor that was cleaned
+ * up to the last descriptor with the RS bit set
+ * are done. Only reset the threshold descriptor.
+ */
+ txr[desc_to_clean_to].upper.fields.status = 0;
+
+ /* Update the txq to reflect the last descriptor that was cleaned */
+ txq->last_desc_cleaned = desc_to_clean_to;
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+ /* No Error */
+ return (0);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
+ static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ return (tmp);
+}
+
+uint16_t
+eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct em_tx_queue *txq;
+ struct em_tx_entry *sw_ring;
+ struct em_tx_entry *txe, *txn;
+ volatile struct e1000_data_desc *txr;
+ volatile struct e1000_data_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint64_t buf_dma_addr;
+ uint32_t popts_spec;
+ uint32_t cmd_type_len;
+ uint16_t slen;
+ uint64_t ol_flags;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint16_t nb_used;
+ uint64_t tx_ol_req;
+ uint32_t ctx;
+ uint32_t new_ctx;
+ union em_vlan_macip hdrlen;
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ /* Determine if the descriptor ring needs to be cleaned. */
+ if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
+ em_xmit_cleanup(txq);
+ }
+
+ /* TX loop */
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ new_ctx = 0;
+ tx_pkt = *tx_pkts++;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * Determine how many (if any) context descriptors
+ * are needed for offload functionality.
+ */
+ ol_flags = tx_pkt->ol_flags;
+
+ /* If hardware offload required */
+ tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
+ if (tx_ol_req) {
+ hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
+ hdrlen.f.l2_len = tx_pkt->l2_len;
+ hdrlen.f.l3_len = tx_pkt->l3_len;
+ /* If new context to be built or reuse the exist ctx. */
+ ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
+
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == EM_CTX_NUM);
+ }
+
+ /*
+ * Keep track of how many descriptors are used this loop
+ * This will always be the number of segments + the number of
+ * Context descriptors required to transmit the packet
+ */
+ nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the hardware offload, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + nb_used - 1);
+
+ /* Circular ring */
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) tx_pkt->pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Make sure there are enough TX descriptors available to
+ * transmit the entire packet.
+ * nb_used better be less than or equal to txq->tx_rs_thresh
+ */
+ while (unlikely (nb_used > txq->nb_tx_free)) {
+ PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
+ "nb_used=%4u nb_free=%4u "
+ "(port=%d queue=%d)",
+ nb_used, txq->nb_tx_free,
+ txq->port_id, txq->queue_id);
+
+ if (em_xmit_cleanup(txq) != 0) {
+ /* Could not clean any descriptors */
+ if (nb_tx == 0)
+ return (0);
+ goto end_of_tx;
+ }
+ }
+
+ /*
+ * By now there are enough free TX descriptors to transmit
+ * the packet.
+ */
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_TXD_DTYP_DATA
+ * - E1000_TXD_DTYP_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_TXD_POPTS_IXSM
+ * - E1000_TXD_POPTS_TXSM
+ *
+ * The following bits must be set in the last Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_TXD_CMD_VLE
+ * - E1000_TXD_CMD_IFCS
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+ E1000_TXD_CMD_IFCS;
+ popts_spec = 0;
+
+ /* Set VLAN Tag offload fields. */
+ if (ol_flags & PKT_TX_VLAN_PKT) {
+ cmd_type_len |= E1000_TXD_CMD_VLE;
+ popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
+ }
+
+ if (tx_ol_req) {
+ /*
+ * Setup the TX Context Descriptor if required
+ */
+ if (new_ctx) {
+ volatile struct e1000_context_desc *ctx_txd;
+
+ ctx_txd = (volatile struct e1000_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+ hdrlen);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /*
+ * Setup the TX Data Descriptor,
+ * This path will go through
+ * whatever new/reuse the context descriptor
+ */
+ popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txd = &txr[tx_id];
+ txn = &sw_ring[txe->next_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up Transmit Data Descriptor.
+ */
+ slen = m_seg->data_len;
+ buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+
+ txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+ txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->upper.data = rte_cpu_to_le_32(popts_spec);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ */
+ cmd_type_len |= E1000_TXD_CMD_EOP;
+ txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+ /* Set RS bit only on threshold packets' last descriptor */
+ if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+ PMD_TX_FREE_LOG(DEBUG,
+ "Setting RS bit on TXD id=%4u "
+ "(port=%d queue=%d)",
+ tx_last, txq->port_id, txq->queue_id);
+
+ cmd_type_len |= E1000_TXD_CMD_RS;
+
+ /* Update txq RS bit counters */
+ txq->nb_tx_used = 0;
+ }
+ txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
+ }
+end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT)
+ */
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+ txq->tx_tail = tx_id;
+
+ return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint64_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0);
+
+ return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_error)
+{
+ uint64_t pkt_flags = 0;
+
+ if (rx_error & E1000_RXD_ERR_IPE)
+ pkt_flags |= PKT_RX_IP_CKSUM_BAD;
+ if (rx_error & E1000_RXD_ERR_TCPE)
+ pkt_flags |= PKT_RX_L4_CKSUM_BAD;
+ return (pkt_flags);
+}
+
+uint16_t
+eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct e1000_rx_desc *rx_ring;
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq;
+ struct em_rx_entry *sw_ring;
+ struct em_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ struct e1000_rx_desc rxd;
+ uint64_t dma_addr;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint8_t status;
+
+ rxq = rx_queue;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ status = rxdp->status;
+ if (! (status & E1000_RXD_STAT_DD))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "status=0x%x pkt_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) status,
+ (unsigned) rte_le_to_cpu_16(rxd.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u",
+ (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_em_prefetch(&rx_ring[rx_id]);
+ rte_em_prefetch(&sw_ring[rx_id]);
+ }
+
+ /* Rearm RXD: attach new mbuf and reset status to zero. */
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->buffer_addr = dma_addr;
+ rxdp->status = 0;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
+ rxq->crc_len);
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = pkt_len;
+ rxm->data_len = pkt_len;
+ rxm->port = rxq->port_id;
+
+ rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
+ rxm->ol_flags = rxm->ol_flags |
+ rx_desc_error_to_pkt_flags(rxd.errors);
+
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+uint16_t
+eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct em_rx_queue *rxq;
+ volatile struct e1000_rx_desc *rx_ring;
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_entry *sw_ring;
+ struct em_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ struct e1000_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint8_t status;
+
+ rxq = rx_queue;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ status = rxdp->status;
+ if (! (status & E1000_RXD_STAT_DD))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "status=0x%x data_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) status,
+ (unsigned) rte_le_to_cpu_16(rxd.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_em_prefetch(&rx_ring[rx_id]);
+ rte_em_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->buffer_addr = dma;
+ rxdp->status = 0;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.length);
+ rxm->data_len = data_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt_len = data_len;
+ first_seg->nb_segs = 1;
+ } else {
+ first_seg->pkt_len += data_len;
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (status & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len = (uint16_t)
+ (last_seg->data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - IP checksum flag,
+ * - error flags.
+ */
+ first_seg->port = rxq->port_id;
+
+ first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
+ first_seg->ol_flags = first_seg->ol_flags |
+ rx_desc_error_to_pkt_flags(rxd.errors);
+
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch((char *)first_seg->buf_addr +
+ first_seg->data_off);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define EM_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define EM_MIN_RING_DESC 32
+#define EM_MAX_RING_DESC 4096
+
+#define EM_MAX_BUF_SIZE 16384
+#define EM_RCTL_FLXBUF_STEP 1024
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+ uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+ const struct rte_memzone *mz;
+ char z_name[RTE_MEMZONE_NAMESIZE];
+
+ snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+ dev->driver->pci_drv.name, ring_name, dev->data->port_id,
+ queue_id);
+
+ if ((mz = rte_memzone_lookup(z_name)) != 0)
+ return (mz);
+
+#ifdef RTE_LIBRTE_XEN_DOM0
+ return rte_memzone_reserve_bounded(z_name, ring_size,
+ socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
+#else
+ return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
+#endif
+}
+
+static void
+em_tx_queue_release_mbufs(struct em_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i != txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+em_tx_queue_release(struct em_tx_queue *txq)
+{
+ if (txq != NULL) {
+ em_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+ }
+}
+
+void
+eth_em_tx_queue_release(void *txq)
+{
+ em_tx_queue_release(txq);
+}
+
+/* (Re)set dynamic em_tx_queue fields to defaults */
+static void
+em_reset_tx_queue(struct em_tx_queue *txq)
+{
+ uint16_t i, nb_desc, prev;
+ static const struct e1000_data_desc txd_init = {
+ .upper.fields = {.status = E1000_TXD_STAT_DD},
+ };
+
+ nb_desc = txq->nb_tx_desc;
+
+ /* Initialize ring entries */
+
+ prev = (uint16_t) (nb_desc - 1);
+
+ for (i = 0; i < nb_desc; i++) {
+ txq->tx_ring[i] = txd_init;
+ txq->sw_ring[i].mbuf = NULL;
+ txq->sw_ring[i].last_id = i;
+ txq->sw_ring[prev].next_id = i;
+ prev = i;
+ }
+
+ /*
+ * Always allow 1 descriptor to be un-allocated to avoid
+ * a H/W race condition
+ */
+ txq->nb_tx_free = (uint16_t)(nb_desc - 1);
+ txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
+ txq->nb_tx_used = 0;
+ txq->tx_tail = 0;
+
+ memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
+}
+
+int
+eth_em_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct em_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t tsize;
+ uint16_t tx_rs_thresh, tx_free_thresh;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of EM_ALIGN.
+ */
+ if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
+ (nb_desc > EM_MAX_RING_DESC) ||
+ (nb_desc < EM_MIN_RING_DESC)) {
+ return -(EINVAL);
+ }
+
+ tx_free_thresh = tx_conf->tx_free_thresh;
+ if (tx_free_thresh == 0)
+ tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
+ DEFAULT_TX_FREE_THRESH);
+
+ tx_rs_thresh = tx_conf->tx_rs_thresh;
+ if (tx_rs_thresh == 0)
+ tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
+ DEFAULT_TX_RS_THRESH);
+
+ if (tx_free_thresh >= (nb_desc - 3)) {
+ PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
+ "number of TX descriptors minus 3. "
+ "(tx_free_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (int)dev->data->port_id, (int)queue_idx);
+ return -(EINVAL);
+ }
+ if (tx_rs_thresh > tx_free_thresh) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
+ "tx_free_thresh. (tx_free_thresh=%u "
+ "tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -(EINVAL);
+ }
+
+ /*
+ * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
+ * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
+ * by the NIC and all descriptors are written back after the NIC
+ * accumulates WTHRESH descriptors.
+ */
+ if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
+ PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+ "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
+ "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id, (int)queue_idx);
+ return -(EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed... */
+ if (dev->data->tx_queues[queue_idx] != NULL) {
+ em_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
+ if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
+ socket_id)) == NULL)
+ return (-ENOMEM);
+
+ /* Allocate the tx queue data structure. */
+ if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
+ RTE_CACHE_LINE_SIZE)) == NULL)
+ return (-ENOMEM);
+
+ /* Allocate software ring */
+ if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(txq->sw_ring[0]) * nb_desc,
+ RTE_CACHE_LINE_SIZE)) == NULL) {
+ em_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->tx_free_thresh = tx_free_thresh;
+ txq->tx_rs_thresh = tx_rs_thresh;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+ txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+#else
+ txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+#endif
+ txq->tx_ring = (struct e1000_data_desc *) tz->addr;
+
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ em_reset_tx_queue(txq);
+
+ dev->data->tx_queues[queue_idx] = txq;
+ return (0);
+}
+
+static void
+em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i != rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+em_rx_queue_release(struct em_rx_queue *rxq)
+{
+ if (rxq != NULL) {
+ em_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+ }
+}
+
+void
+eth_em_rx_queue_release(void *rxq)
+{
+ em_rx_queue_release(rxq);
+}
+
+/* Reset dynamic em_rx_queue fields back to defaults */
+static void
+em_reset_rx_queue(struct em_rx_queue *rxq)
+{
+ rxq->rx_tail = 0;
+ rxq->nb_rx_hold = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_em_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct em_rx_queue *rxq;
+ struct e1000_hw *hw;
+ uint32_t rsize;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of EM_ALIGN.
+ */
+ if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
+ (nb_desc > EM_MAX_RING_DESC) ||
+ (nb_desc < EM_MIN_RING_DESC)) {
+ return (-EINVAL);
+ }
+
+ /*
+ * EM devices don't support drop_en functionality
+ */
+ if (rx_conf->rx_drop_en) {
+ PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
+ "device");
+ return (-EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed. */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ em_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate RX ring for max possible mumber of hardware descriptors. */
+ rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
+ if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
+ socket_id)) == NULL)
+ return (-ENOMEM);
+
+ /* Allocate the RX queue data structure. */
+ if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
+ RTE_CACHE_LINE_SIZE)) == NULL)
+ return (-ENOMEM);
+
+ /* Allocate software ring. */
+ if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof (rxq->sw_ring[0]) * nb_desc,
+ RTE_CACHE_LINE_SIZE)) == NULL) {
+ em_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+ 0 : ETHER_CRC_LEN);
+
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+ rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+ rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+#else
+ rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+#endif
+ rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
+
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ em_reset_rx_queue(rxq);
+
+ return (0);
+}
+
+uint32_t
+eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define EM_RXQ_SCAN_INTERVAL 4
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq;
+ uint32_t desc = 0;
+
+ if (rx_queue_id >= dev->data->nb_rx_queues) {
+ PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
+ return 0;
+ }
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+ while ((desc < rxq->nb_rx_desc) &&
+ (rxdp->status & E1000_RXD_STAT_DD)) {
+ desc += EM_RXQ_SCAN_INTERVAL;
+ rxdp += EM_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return desc;
+}
+
+int
+eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq = rx_queue;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return 0;
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ rxdp = &rxq->rx_ring[desc];
+ return !!(rxdp->status & E1000_RXD_STAT_DD);
+}
+
+void
+em_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct em_tx_queue *txq;
+ struct em_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (txq != NULL) {
+ em_tx_queue_release_mbufs(txq);
+ em_reset_tx_queue(txq);
+ }
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (rxq != NULL) {
+ em_rx_queue_release_mbufs(rxq);
+ em_reset_rx_queue(rxq);
+ }
+ }
+}
+
+/*
+ * Takes as input/output parameter RX buffer size.
+ * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
+ */
+static uint32_t
+em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
+{
+ /*
+ * For BSIZE & BSEX all configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ static const struct {
+ uint32_t bufsz;
+ uint32_t rctl;
+ } bufsz_to_rctl[] = {
+ {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
+ {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
+ {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
+ {2048, E1000_RCTL_SZ_2048},
+ {1024, E1000_RCTL_SZ_1024},
+ {512, E1000_RCTL_SZ_512},
+ {256, E1000_RCTL_SZ_256},
+ };
+
+ int i;
+ uint32_t rctl_bsize;
+
+ rctl_bsize = *bufsz;
+
+ /*
+ * Starting from 82571 it is possible to specify RX buffer size
+ * by RCTL.FLXBUF. When this field is different from zero, the
+ * RX buffer size = RCTL.FLXBUF * 1K
+ * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
+ * It is working ok on real HW, but by some reason doesn't work
+ * on VMware emulated 82574L.
+ * So for now, always use BSIZE/BSEX to setup RX buffer size.
+ * If you don't plan to use it on VMware emulated 82574L and
+ * would like to specify RX buffer size in 1K granularity,
+ * uncomment the following lines:
+ * ***************************************************************
+ * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
+ * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
+ * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
+ * *bufsz = rctl_bsize;
+ * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
+ * E1000_RCTL_FLXBUF_MASK);
+ * }
+ * ***************************************************************
+ */
+
+ for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
+ i++) {
+ if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
+ *bufsz = bufsz_to_rctl[i].bufsz;
+ return (bufsz_to_rctl[i].rctl);
+ }
+ }
+
+ /* Should never happen. */
+ return (-EINVAL);
+}
+
+static int
+em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
+{
+ struct em_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+ static const struct e1000_rx_desc rxd_init = {
+ .buffer_addr = 0,
+ };
+
+ /* Initialize software ring entries */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile struct e1000_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu", rxq->queue_id);
+ return (-ENOMEM);
+ }
+
+ dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+
+ /* Clear HW ring memory */
+ rxq->rx_ring[i] = rxd_init;
+
+ rxd = &rxq->rx_ring[i];
+ rxd->buffer_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+int
+eth_em_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct em_rx_queue *rxq;
+ uint32_t rctl;
+ uint32_t rfctl;
+ uint32_t rxcsum;
+ uint32_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+
+ /* Disable extended descriptor type. */
+ rfctl &= ~E1000_RFCTL_EXTEN;
+ /* Disable accelerated acknowledge */
+ if (hw->mac.type == e1000_82574)
+ rfctl |= E1000_RFCTL_ACK_DIS;
+
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+ /*
+ * XXX TEMPORARY WORKAROUND: on some systems with 82573
+ * long latencies are observed, like Lenovo X60. This
+ * change eliminates the problem, but since having positive
+ * values in RDTR is a known source of problems on other
+ * platforms another solution is being sought.
+ */
+ if (hw->mac.type == e1000_82573)
+ E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
+
+ dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
+
+ /* Determine RX bufsize. */
+ rctl_bsize = EM_MAX_BUF_SIZE;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t buf_size;
+
+ rxq = dev->data->rx_queues[i];
+ buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM;
+ rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
+ }
+
+ rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
+
+ /* Configure and enable each RX queue. */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and setup queue */
+ ret = em_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ rxq->crc_len =
+ (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+ 0 : ETHER_CRC_LEN);
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(*rxq->rx_ring));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+ rxdctl &= 0xFE000000;
+ rxdctl |= rxq->pthresh & 0x3F;
+ rxdctl |= (rxq->hthresh & 0x3F) << 8;
+ rxdctl |= (rxq->wthresh & 0x3F) << 16;
+ rxdctl |= E1000_RXDCTL_GRAN;
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+
+ /*
+ * Due to EM devices not having any sort of hardware
+ * limit for packet length, jumbo frame of any size
+ * can be accepted, thus we have to enable scattered
+ * rx if jumbo frames are enabled (or if buffer size
+ * is too small to accommodate non-jumbo packets)
+ * to avoid splitting packets that don't fit into
+ * one buffer.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame ||
+ rctl_bsize < ETHER_MAX_LEN) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst =
+ (eth_rx_burst_t)eth_em_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ }
+
+ if (dev->data->dev_conf.rxmode.enable_scatter) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+
+ if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+ rxcsum |= E1000_RXCSUM_IPOFL;
+ else
+ rxcsum &= ~E1000_RXCSUM_IPOFL;
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* No MRQ or RSS support for now */
+
+ /* Set early receive threshold on appropriate hw */
+ if ((hw->mac.type == e1000_ich9lan ||
+ hw->mac.type == e1000_pch2lan ||
+ hw->mac.type == e1000_ich10lan) &&
+ dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+ u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
+ E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
+ }
+
+ if (hw->mac.type == e1000_pch2lan) {
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
+ else
+ e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
+ }
+
+ /* Setup the Receive Control Register. */
+ if (dev->data->dev_conf.rxmode.hw_strip_crc)
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+ else
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+ /* Legacy descriptor type. */
+ rctl &= ~E1000_RCTL_DTYP_MASK;
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ rctl |= E1000_RCTL_LPE;
+ else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_em_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct em_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(*txq->tx_ring));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ /*
+ * bit 22 is reserved, on some models should always be 0,
+ * on others - always 1.
+ */
+ txdctl &= E1000_TXDCTL_COUNT_DESC;
+ txdctl |= txq->pthresh & 0x3F;
+ txdctl |= (txq->hthresh & 0x3F) << 8;
+ txdctl |= (txq->wthresh & 0x3F) << 16;
+ txdctl |= E1000_TXDCTL_GRAN;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+#include <rte_dev.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+/*
+ * Default values for port configuration
+ */
+#define IGB_DEFAULT_RX_FREE_THRESH 32
+#define IGB_DEFAULT_RX_PTHRESH 8
+#define IGB_DEFAULT_RX_HTHRESH 8
+#define IGB_DEFAULT_RX_WTHRESH 0
+
+#define IGB_DEFAULT_TX_PTHRESH 32
+#define IGB_DEFAULT_TX_HTHRESH 0
+#define IGB_DEFAULT_TX_WTHRESH 0
+
+/* Bit shift and mask */
+#define IGB_4_BIT_WIDTH (CHAR_BIT / 2)
+#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
+#define IGB_8_BIT_WIDTH CHAR_BIT
+#define IGB_8_BIT_MASK UINT8_MAX
+
+static int eth_igb_configure(struct rte_eth_dev *dev);
+static int eth_igb_start(struct rte_eth_dev *dev);
+static void eth_igb_stop(struct rte_eth_dev *dev);
+static void eth_igb_close(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
+static int eth_igb_link_update(struct rte_eth_dev *dev,
+ int wait_to_complete);
+static void eth_igb_stats_get(struct rte_eth_dev *dev,
+ struct rte_eth_stats *rte_stats);
+static void eth_igb_stats_reset(struct rte_eth_dev *dev);
+static void eth_igb_infos_get(struct rte_eth_dev *dev,
+ struct rte_eth_dev_info *dev_info);
+static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
+ struct rte_eth_dev_info *dev_info);
+static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
+ struct rte_eth_fc_conf *fc_conf);
+static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
+ struct rte_eth_fc_conf *fc_conf);
+static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
+static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
+ void *param);
+static int igb_hardware_init(struct e1000_hw *hw);
+static void igb_hw_control_acquire(struct e1000_hw *hw);
+static void igb_hw_control_release(struct e1000_hw *hw);
+static void igb_init_manageability(struct e1000_hw *hw);
+static void igb_release_manageability(struct e1000_hw *hw);
+
+static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
+
+static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
+ uint16_t vlan_id, int on);
+static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
+static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
+
+static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
+
+static int eth_igb_led_on(struct rte_eth_dev *dev);
+static int eth_igb_led_off(struct rte_eth_dev *dev);
+
+static void igb_intr_disable(struct e1000_hw *hw);
+static int igb_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_igb_rar_set(struct rte_eth_dev *dev,
+ struct ether_addr *mac_addr,
+ uint32_t index, uint32_t pool);
+static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+static void igbvf_intr_disable(struct e1000_hw *hw);
+static int igbvf_dev_configure(struct rte_eth_dev *dev);
+static int igbvf_dev_start(struct rte_eth_dev *dev);
+static void igbvf_dev_stop(struct rte_eth_dev *dev);
+static void igbvf_dev_close(struct rte_eth_dev *dev);
+static int eth_igbvf_link_update(struct e1000_hw *hw);
+static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
+static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
+static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
+ uint16_t vlan_id, int on);
+static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
+static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
+static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
+ struct rte_eth_rss_reta_entry64 *reta_conf,
+ uint16_t reta_size);
+static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
+ struct rte_eth_rss_reta_entry64 *reta_conf,
+ uint16_t reta_size);
+
+static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
+ struct rte_eth_syn_filter *filter,
+ bool add);
+static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
+ struct rte_eth_syn_filter *filter);
+static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg);
+static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter);
+static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
+ struct rte_eth_flex_filter *filter,
+ bool add);
+static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
+ struct rte_eth_flex_filter *filter);
+static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg);
+static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *filter,
+ bool add);
+static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *filter);
+static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg);
+static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ethertype_filter *filter,
+ bool add);
+static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg);
+static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ethertype_filter *filter);
+static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
+ enum rte_filter_type filter_type,
+ enum rte_filter_op filter_op,
+ void *arg);
+
+/*
+ * Define VF Stats MACRO for Non "cleared on read" register
+ */
+#define UPDATE_VF_STAT(reg, last, cur) \
+{ \
+ u32 latest = E1000_READ_REG(hw, reg); \
+ cur += latest - last; \
+ last = latest; \
+}
+
+
+#define IGB_FC_PAUSE_TIME 0x0680
+#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
+#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
+
+static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static const struct rte_pci_id pci_id_igb_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+/*
+ * The set of PCI devices this driver supports (for 82576&I350 VF)
+ */
+static const struct rte_pci_id pci_id_igbvf_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+static const struct eth_dev_ops eth_igb_ops = {
+ .dev_configure = eth_igb_configure,
+ .dev_start = eth_igb_start,
+ .dev_stop = eth_igb_stop,
+ .dev_close = eth_igb_close,
+ .promiscuous_enable = eth_igb_promiscuous_enable,
+ .promiscuous_disable = eth_igb_promiscuous_disable,
+ .allmulticast_enable = eth_igb_allmulticast_enable,
+ .allmulticast_disable = eth_igb_allmulticast_disable,
+ .link_update = eth_igb_link_update,
+ .stats_get = eth_igb_stats_get,
+ .stats_reset = eth_igb_stats_reset,
+ .dev_infos_get = eth_igb_infos_get,
+ .mtu_set = eth_igb_mtu_set,
+ .vlan_filter_set = eth_igb_vlan_filter_set,
+ .vlan_tpid_set = eth_igb_vlan_tpid_set,
+ .vlan_offload_set = eth_igb_vlan_offload_set,
+ .rx_queue_setup = eth_igb_rx_queue_setup,
+ .rx_queue_release = eth_igb_rx_queue_release,
+ .rx_queue_count = eth_igb_rx_queue_count,
+ .rx_descriptor_done = eth_igb_rx_descriptor_done,
+ .tx_queue_setup = eth_igb_tx_queue_setup,
+ .tx_queue_release = eth_igb_tx_queue_release,
+ .dev_led_on = eth_igb_led_on,
+ .dev_led_off = eth_igb_led_off,
+ .flow_ctrl_get = eth_igb_flow_ctrl_get,
+ .flow_ctrl_set = eth_igb_flow_ctrl_set,
+ .mac_addr_add = eth_igb_rar_set,
+ .mac_addr_remove = eth_igb_rar_clear,
+ .reta_update = eth_igb_rss_reta_update,
+ .reta_query = eth_igb_rss_reta_query,
+ .rss_hash_update = eth_igb_rss_hash_update,
+ .rss_hash_conf_get = eth_igb_rss_hash_conf_get,
+ .filter_ctrl = eth_igb_filter_ctrl,
+};
+
+/*
+ * dev_ops for virtual function, bare necessities for basic vf
+ * operation have been implemented
+ */
+static const struct eth_dev_ops igbvf_eth_dev_ops = {
+ .dev_configure = igbvf_dev_configure,
+ .dev_start = igbvf_dev_start,
+ .dev_stop = igbvf_dev_stop,
+ .dev_close = igbvf_dev_close,
+ .link_update = eth_igb_link_update,
+ .stats_get = eth_igbvf_stats_get,
+ .stats_reset = eth_igbvf_stats_reset,
+ .vlan_filter_set = igbvf_vlan_filter_set,
+ .dev_infos_get = eth_igbvf_infos_get,
+ .rx_queue_setup = eth_igb_rx_queue_setup,
+ .rx_queue_release = eth_igb_rx_queue_release,
+ .tx_queue_setup = eth_igb_tx_queue_setup,
+ .tx_queue_release = eth_igb_tx_queue_release,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = link;
+ struct rte_eth_link *src = &(dev->data->dev_link);
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = &(dev->data->dev_link);
+ struct rte_eth_link *src = link;
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+static inline void
+igb_intr_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
+ E1000_WRITE_FLUSH(hw);
+}
+
+static void
+igb_intr_disable(struct e1000_hw *hw)
+{
+ E1000_WRITE_REG(hw, E1000_IMC, ~0);
+ E1000_WRITE_FLUSH(hw);
+}
+
+static inline int32_t
+igb_pf_reset_hw(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+ int32_t status;
+
+ status = e1000_reset_hw(hw);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /* Set PF Reset Done bit so PF/VF Mail Ops can work */
+ ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ return status;
+}
+
+static void
+igb_identify_hardware(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ hw->vendor_id = dev->pci_dev->id.vendor_id;
+ hw->device_id = dev->pci_dev->id.device_id;
+ hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
+ hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
+
+ e1000_set_mac_type(hw);
+
+ /* need to check if it is a vf device below */
+}
+
+static int
+igb_reset_swfw_lock(struct e1000_hw *hw)
+{
+ int ret_val;
+
+ /*
+ * Do mac ops initialization manually here, since we will need
+ * some function pointers set by this call.
+ */
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ return ret_val;
+
+ /*
+ * SMBI lock should not fail in this early stage. If this is the case,
+ * it is due to an improper exit of the application.
+ * So force the release of the faulty lock.
+ */
+ if (e1000_get_hw_semaphore_generic(hw) < 0) {
+ PMD_DRV_LOG(DEBUG, "SMBI lock released");
+ }
+ e1000_put_hw_semaphore_generic(hw);
+
+ if (hw->mac.ops.acquire_swfw_sync != NULL) {
+ uint16_t mask;
+
+ /*
+ * Phy lock should not fail in this early stage. If this is the case,
+ * it is due to an improper exit of the application.
+ * So force the release of the faulty lock.
+ */
+ mask = E1000_SWFW_PHY0_SM << hw->bus.func;
+ if (hw->bus.func > E1000_FUNC_1)
+ mask <<= 2;
+ if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
+ PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
+ hw->bus.func);
+ }
+ hw->mac.ops.release_swfw_sync(hw, mask);
+
+ /*
+ * This one is more tricky since it is common to all ports; but
+ * swfw_sync retries last long enough (1s) to be almost sure that if
+ * lock can not be taken it is due to an improper lock of the
+ * semaphore.
+ */
+ mask = E1000_SWFW_EEP_SM;
+ if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
+ PMD_DRV_LOG(DEBUG, "SWFW common locks released");
+ }
+ hw->mac.ops.release_swfw_sync(hw, mask);
+ }
+
+ return E1000_SUCCESS;
+}
+
+static int
+eth_igb_dev_init(struct rte_eth_dev *eth_dev)
+{
+ int error = 0;
+ struct rte_pci_device *pci_dev;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
+ uint32_t ctrl_ext;
+
+ pci_dev = eth_dev->pci_dev;
+ eth_dev->dev_ops = ð_igb_ops;
+ eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
+ eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
+
+ /* for secondary processes, we don't initialise any further as primary
+ * has already done this work. Only check we don't need a different
+ * RX function */
+ if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+ if (eth_dev->data->scattered_rx)
+ eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
+ return 0;
+ }
+
+ hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
+
+ igb_identify_hardware(eth_dev);
+ if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
+ error = -EIO;
+ goto err_late;
+ }
+
+ e1000_get_bus_info(hw);
+
+ /* Reset any pending lock */
+ if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
+ error = -EIO;
+ goto err_late;
+ }
+
+ /* Finish initialization */
+ if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
+ error = -EIO;
+ goto err_late;
+ }
+
+ hw->mac.autoneg = 1;
+ hw->phy.autoneg_wait_to_complete = 0;
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+ /* Copper options */
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+ hw->phy.disable_polarity_correction = 0;
+ hw->phy.ms_type = e1000_ms_hw_default;
+ }
+
+ /*
+ * Start from a known state, this is important in reading the nvm
+ * and mac from that.
+ */
+ igb_pf_reset_hw(hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ /*
+ * Some PCI-E parts fail the first check due to
+ * the link being in sleep state, call it again,
+ * if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+ error = -EIO;
+ goto err_late;
+ }
+ }
+
+ /* Read the permanent MAC address out of the EEPROM */
+ if (e1000_read_mac_addr(hw) != 0) {
+ PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+ error = -EIO;
+ goto err_late;
+ }
+
+ /* Allocate memory for storing MAC addresses */
+ eth_dev->data->mac_addrs = rte_zmalloc("e1000",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
+ if (eth_dev->data->mac_addrs == NULL) {
+ PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+ "store MAC addresses",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+ error = -ENOMEM;
+ goto err_late;
+ }
+
+ /* Copy the permanent MAC address */
+ ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
+
+ /* initialize the vfta */
+ memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+ /* Now initialize the hardware */
+ if (igb_hardware_init(hw) != 0) {
+ PMD_INIT_LOG(ERR, "Hardware initialization failed");
+ rte_free(eth_dev->data->mac_addrs);
+ eth_dev->data->mac_addrs = NULL;
+ error = -ENODEV;
+ goto err_late;
+ }
+ hw->mac.get_link_status = 1;
+
+ /* Indicate SOL/IDER usage */
+ if (e1000_check_reset_block(hw) < 0) {
+ PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
+ "SOL/IDER session");
+ }
+
+ /* initialize PF if max_vfs not zero */
+ igb_pf_host_init(eth_dev);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /* Set PF Reset Done bit so PF/VF Mail Ops can work */
+ ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
+ eth_dev->data->port_id, pci_dev->id.vendor_id,
+ pci_dev->id.device_id);
+
+ rte_intr_callback_register(&(pci_dev->intr_handle),
+ eth_igb_interrupt_handler, (void *)eth_dev);
+
+ /* enable uio intr after callback register */
+ rte_intr_enable(&(pci_dev->intr_handle));
+
+ /* enable support intr */
+ igb_intr_enable(eth_dev);
+
+ TAILQ_INIT(&filter_info->flex_list);
+ filter_info->flex_mask = 0;
+ TAILQ_INIT(&filter_info->twotuple_list);
+ filter_info->twotuple_mask = 0;
+ TAILQ_INIT(&filter_info->fivetuple_list);
+ filter_info->fivetuple_mask = 0;
+
+ return 0;
+
+err_late:
+ igb_hw_control_release(hw);
+
+ return (error);
+}
+
+/*
+ * Virtual Function device init
+ */
+static int
+eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
+{
+ struct rte_pci_device *pci_dev;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ int diag;
+
+ PMD_INIT_FUNC_TRACE();
+
+ eth_dev->dev_ops = &igbvf_eth_dev_ops;
+ eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
+ eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
+
+ /* for secondary processes, we don't initialise any further as primary
+ * has already done this work. Only check we don't need a different
+ * RX function */
+ if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+ if (eth_dev->data->scattered_rx)
+ eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
+ return 0;
+ }
+
+ pci_dev = eth_dev->pci_dev;
+
+ hw->device_id = pci_dev->id.device_id;
+ hw->vendor_id = pci_dev->id.vendor_id;
+ hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
+
+ /* Initialize the shared code (base driver) */
+ diag = e1000_setup_init_funcs(hw, TRUE);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
+ diag);
+ return -EIO;
+ }
+
+ /* init_mailbox_params */
+ hw->mbx.ops.init_params(hw);
+
+ /* Disable the interrupts for VF */
+ igbvf_intr_disable(hw);
+
+ diag = hw->mac.ops.reset_hw(hw);
+
+ /* Allocate memory for storing MAC addresses */
+ eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
+ hw->mac.rar_entry_count, 0);
+ if (eth_dev->data->mac_addrs == NULL) {
+ PMD_INIT_LOG(ERR,
+ "Failed to allocate %d bytes needed to store MAC "
+ "addresses",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+ return -ENOMEM;
+ }
+
+ /* Copy the permanent MAC address */
+ ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
+ ð_dev->data->mac_addrs[0]);
+
+ PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
+ "mac.type=%s",
+ eth_dev->data->port_id, pci_dev->id.vendor_id,
+ pci_dev->id.device_id, "igb_mac_82576_vf");
+
+ return 0;
+}
+
+static struct eth_driver rte_igb_pmd = {
+ {
+ .name = "rte_igb_pmd",
+ .id_table = pci_id_igb_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
+ },
+ .eth_dev_init = eth_igb_dev_init,
+ .dev_private_size = sizeof(struct e1000_adapter),
+};
+
+/*
+ * virtual function driver struct
+ */
+static struct eth_driver rte_igbvf_pmd = {
+ {
+ .name = "rte_igbvf_pmd",
+ .id_table = pci_id_igbvf_map,
+ .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
+ },
+ .eth_dev_init = eth_igbvf_dev_init,
+ .dev_private_size = sizeof(struct e1000_adapter),
+};
+
+static int
+rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+ rte_eth_driver_register(&rte_igb_pmd);
+ return 0;
+}
+
+static void
+igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
+ uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+/*
+ * VF Driver initialization routine.
+ * Invoked one at EAL init time.
+ * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
+ */
+static int
+rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+ PMD_INIT_FUNC_TRACE();
+
+ rte_eth_driver_register(&rte_igbvf_pmd);
+ return (0);
+}
+
+static int
+eth_igb_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+ PMD_INIT_FUNC_TRACE();
+
+ return (0);
+}
+
+static int
+eth_igb_start(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret, i, mask;
+ uint32_t ctrl_ext;
+
+ PMD_INIT_FUNC_TRACE();
+
+ /* Power up the phy. Needed to make the link go Up */
+ e1000_power_up_phy(hw);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ if (hw->mac.type == e1000_82575) {
+ uint32_t pba;
+
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+ }
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(hw, hw->mac.addr, 0);
+
+ /* Initialize the hardware */
+ if (igb_hardware_init(hw)) {
+ PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+ return (-EIO);
+ }
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /* Set PF Reset Done bit so PF/VF Mail Ops can work */
+ ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ /* configure PF module if SRIOV enabled */
+ igb_pf_host_configure(dev);
+
+ /* Configure for OS presence */
+ igb_init_manageability(hw);
+
+ eth_igb_tx_init(dev);
+
+ /* This can fail when allocating mbufs for descriptor rings */
+ ret = eth_igb_rx_init(dev);
+ if (ret) {
+ PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+ igb_dev_clear_queues(dev);
+ return ret;
+ }
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ /*
+ * VLAN Offload Settings
+ */
+ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
+ ETH_VLAN_EXTEND_MASK;
+ eth_igb_vlan_offload_set(dev, mask);
+
+ if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
+ /* Enable VLAN filter since VMDq always use VLAN filter */
+ igb_vmdq_vlan_hw_filter_enable(dev);
+ }
+
+ /*
+ * Configure the Interrupt Moderation register (EITR) with the maximum
+ * possible value (0xFFFF) to minimize "System Partial Write" issued by
+ * spurious [DMA] memory updates of RX and TX ring descriptors.
+ *
+ * With a EITR granularity of 2 microseconds in the 82576, only 7/8
+ * spurious memory updates per second should be expected.
+ * ((65535 * 2) / 1000.1000 ~= 0.131 second).
+ *
+ * Because interrupts are not used at all, the MSI-X is not activated
+ * and interrupt moderation is controlled by EITR[0].
+ *
+ * Note that having [almost] disabled memory updates of RX and TX ring
+ * descriptors through the Interrupt Moderation mechanism, memory
+ * updates of ring descriptors are now moderated by the configurable
+ * value of Write-Back Threshold registers.
+ */
+ if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
+ (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
+ (hw->mac.type == e1000_i211)) {
+ uint32_t ivar;
+
+ /* Enable all RX & TX queues in the IVAR registers */
+ ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
+ for (i = 0; i < 8; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
+
+ /* Configure EITR with the maximum possible value (0xFFFF) */
+ E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
+ }
+
+ /* Setup link speed and duplex */
+ switch (dev->data->dev_conf.link_speed) {
+ case ETH_LINK_SPEED_AUTONEG:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_100:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_1000:
+ if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
+ (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
+ hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10000:
+ default:
+ goto error_invalid_config;
+ }
+ e1000_setup_link(hw);
+
+ /* check if lsc interrupt feature is enabled */
+ if (dev->data->dev_conf.intr_conf.lsc != 0)
+ ret = eth_igb_lsc_interrupt_setup(dev);
+
+ /* resume enabled intr since hw reset */
+ igb_intr_enable(dev);
+
+ PMD_INIT_LOG(DEBUG, "<<");
+
+ return (0);
+
+error_invalid_config:
+ PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
+ dev->data->dev_conf.link_speed,
+ dev->data->dev_conf.link_duplex, dev->data->port_id);
+ igb_dev_clear_queues(dev);
+ return (-EINVAL);
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_igb_stop(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct rte_eth_link link;
+ struct e1000_flex_filter *p_flex;
+ struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
+ struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
+
+ igb_intr_disable(hw);
+ igb_pf_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ /* Set bit for Go Link disconnect */
+ if (hw->mac.type >= e1000_82580) {
+ uint32_t phpm_reg;
+
+ phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+ phpm_reg |= E1000_82580_PM_GO_LINKD;
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+ }
+
+ /* Power down the phy. Needed to make the link go Down */
+ if (hw->phy.media_type == e1000_media_type_copper)
+ e1000_power_down_phy(hw);
+ else
+ e1000_shutdown_fiber_serdes_link(hw);
+
+ igb_dev_clear_queues(dev);
+
+ /* clear the recorded link status */
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+
+ /* Remove all flex filters of the device */
+ while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
+ TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
+ rte_free(p_flex);
+ }
+ filter_info->flex_mask = 0;
+
+ /* Remove all ntuple filters of the device */
+ for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
+ p_5tuple != NULL; p_5tuple = p_5tuple_next) {
+ p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
+ TAILQ_REMOVE(&filter_info->fivetuple_list,
+ p_5tuple, entries);
+ rte_free(p_5tuple);
+ }
+ filter_info->fivetuple_mask = 0;
+ for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
+ p_2tuple != NULL; p_2tuple = p_2tuple_next) {
+ p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
+ TAILQ_REMOVE(&filter_info->twotuple_list,
+ p_2tuple, entries);
+ rte_free(p_2tuple);
+ }
+ filter_info->twotuple_mask = 0;
+}
+
+static void
+eth_igb_close(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link;
+
+ eth_igb_stop(dev);
+ e1000_phy_hw_reset(hw);
+ igb_release_manageability(hw);
+ igb_hw_control_release(hw);
+
+ /* Clear bit for Go Link disconnect */
+ if (hw->mac.type >= e1000_82580) {
+ uint32_t phpm_reg;
+
+ phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+ phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+ }
+
+ igb_dev_clear_queues(dev);
+
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+}
+
+static int
+igb_get_rx_buffer_size(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+ if (hw->mac.type == e1000_82576) {
+ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
+ } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
+ /* PBS needs to be translated according to a lookup table */
+ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
+ rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
+ rx_buf_size = (rx_buf_size << 10);
+ } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
+ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
+ } else {
+ rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
+ }
+
+ return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ * Initialize the hardware
+ *
+ **********************************************************************/
+static int
+igb_hardware_init(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+ int diag;
+
+ /* Let the firmware know the OS is in control */
+ igb_hw_control_acquire(hw);
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two standard size (1518)
+ * frames to be received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit. Here we use an arbitrary value of 1500 which will
+ * restart after one full frame is pulled from the buffer. There
+ * could be several smaller frames in the buffer and if so they will
+ * not trigger the XON until their total number reduces the buffer
+ * by 1500.
+ * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+ */
+ rx_buf_size = igb_get_rx_buffer_size(hw);
+
+ hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
+ hw->fc.low_water = hw->fc.high_water - 1500;
+ hw->fc.pause_time = IGB_FC_PAUSE_TIME;
+ hw->fc.send_xon = 1;
+
+ /* Set Flow control, use the tunable location if sane */
+ if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
+ hw->fc.requested_mode = igb_fc_setting;
+ else
+ hw->fc.requested_mode = e1000_fc_none;
+
+ /* Issue a global reset */
+ igb_pf_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ diag = e1000_init_hw(hw);
+ if (diag < 0)
+ return (diag);
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
+ e1000_get_phy_info(hw);
+ e1000_check_for_link(hw);
+
+ return (0);
+}
+
+/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
+static void
+eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_hw_stats *stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+ int pause_frames;
+
+ if(hw->phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ stats->symerrs +=
+ E1000_READ_REG(hw,E1000_SYMERRS);
+ stats->sec += E1000_READ_REG(hw, E1000_SEC);
+ }
+
+ stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+ stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+ stats->scc += E1000_READ_REG(hw, E1000_SCC);
+ stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+ stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+ stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+ stats->colc += E1000_READ_REG(hw, E1000_COLC);
+ stats->dc += E1000_READ_REG(hw, E1000_DC);
+ stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+ stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+ stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+ /*
+ ** For watchdog management we need to know if we have been
+ ** paused during the last interval, so capture that here.
+ */
+ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+ stats->xoffrxc += pause_frames;
+ stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+ stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+ stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+ stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+ stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+ stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+ stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+ stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+ stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+ stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+ stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+ stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+ stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+ stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+ stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+ stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+ stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+ stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+ stats->roc += E1000_READ_REG(hw, E1000_ROC);
+ stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+ stats->tor += E1000_READ_REG(hw, E1000_TORH);
+ stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+ stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+ stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+ stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+ stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+ stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+ stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+ stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+ stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+ stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+ stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ stats->iac += E1000_READ_REG(hw, E1000_IAC);
+ stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+ stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+ stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+ stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+ stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+ stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+ stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+ stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Host to Card Statistics */
+
+ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
+ stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
+ stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
+ stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
+ stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
+ stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
+ stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
+ stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
+ stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
+ stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
+ stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
+ stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
+ stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
+ stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
+
+ stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+ stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+ stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+ stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+ stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+ stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+
+ if (rte_stats == NULL)
+ return;
+
+ /* Rx Errors */
+ rte_stats->ibadcrc = stats->crcerrs;
+ rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
+ rte_stats->imissed = stats->mpc;
+ rte_stats->ierrors = rte_stats->ibadcrc +
+ rte_stats->ibadlen +
+ rte_stats->imissed +
+ stats->rxerrc + stats->algnerrc + stats->cexterr;
+
+ /* Tx Errors */
+ rte_stats->oerrors = stats->ecol + stats->latecol;
+
+ /* XON/XOFF pause frames */
+ rte_stats->tx_pause_xon = stats->xontxc;
+ rte_stats->rx_pause_xon = stats->xonrxc;
+ rte_stats->tx_pause_xoff = stats->xofftxc;
+ rte_stats->rx_pause_xoff = stats->xoffrxc;
+
+ rte_stats->ipackets = stats->gprc;
+ rte_stats->opackets = stats->gptc;
+ rte_stats->ibytes = stats->gorc;
+ rte_stats->obytes = stats->gotc;
+}
+
+static void
+eth_igb_stats_reset(struct rte_eth_dev *dev)
+{
+ struct e1000_hw_stats *hw_stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+ /* HW registers are cleared on read */
+ eth_igb_stats_get(dev, NULL);
+
+ /* Reset software totals */
+ memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static void
+eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+ /* Good Rx packets, include VF loopback */
+ UPDATE_VF_STAT(E1000_VFGPRC,
+ hw_stats->last_gprc, hw_stats->gprc);
+
+ /* Good Rx octets, include VF loopback */
+ UPDATE_VF_STAT(E1000_VFGORC,
+ hw_stats->last_gorc, hw_stats->gorc);
+
+ /* Good Tx packets, include VF loopback */
+ UPDATE_VF_STAT(E1000_VFGPTC,
+ hw_stats->last_gptc, hw_stats->gptc);
+
+ /* Good Tx octets, include VF loopback */
+ UPDATE_VF_STAT(E1000_VFGOTC,
+ hw_stats->last_gotc, hw_stats->gotc);
+
+ /* Rx Multicst packets */
+ UPDATE_VF_STAT(E1000_VFMPRC,
+ hw_stats->last_mprc, hw_stats->mprc);
+
+ /* Good Rx loopback packets */
+ UPDATE_VF_STAT(E1000_VFGPRLBC,
+ hw_stats->last_gprlbc, hw_stats->gprlbc);
+
+ /* Good Rx loopback octets */
+ UPDATE_VF_STAT(E1000_VFGORLBC,
+ hw_stats->last_gorlbc, hw_stats->gorlbc);
+
+ /* Good Tx loopback packets */
+ UPDATE_VF_STAT(E1000_VFGPTLBC,
+ hw_stats->last_gptlbc, hw_stats->gptlbc);
+
+ /* Good Tx loopback octets */
+ UPDATE_VF_STAT(E1000_VFGOTLBC,
+ hw_stats->last_gotlbc, hw_stats->gotlbc);
+
+ if (rte_stats == NULL)
+ return;
+
+ rte_stats->ipackets = hw_stats->gprc;
+ rte_stats->ibytes = hw_stats->gorc;
+ rte_stats->opackets = hw_stats->gptc;
+ rte_stats->obytes = hw_stats->gotc;
+ rte_stats->imcasts = hw_stats->mprc;
+ rte_stats->ilbpackets = hw_stats->gprlbc;
+ rte_stats->ilbbytes = hw_stats->gorlbc;
+ rte_stats->olbpackets = hw_stats->gptlbc;
+ rte_stats->olbbytes = hw_stats->gotlbc;
+
+}
+
+static void
+eth_igbvf_stats_reset(struct rte_eth_dev *dev)
+{
+ struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+ /* Sync HW register to the last stats */
+ eth_igbvf_stats_get(dev, NULL);
+
+ /* reset HW current stats*/
+ memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
+ offsetof(struct e1000_vf_stats, gprc));
+
+}
+
+static void
+eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
+ dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+ dev_info->rx_offload_capa =
+ DEV_RX_OFFLOAD_VLAN_STRIP |
+ DEV_RX_OFFLOAD_IPV4_CKSUM |
+ DEV_RX_OFFLOAD_UDP_CKSUM |
+ DEV_RX_OFFLOAD_TCP_CKSUM;
+ dev_info->tx_offload_capa =
+ DEV_TX_OFFLOAD_VLAN_INSERT |
+ DEV_TX_OFFLOAD_IPV4_CKSUM |
+ DEV_TX_OFFLOAD_UDP_CKSUM |
+ DEV_TX_OFFLOAD_TCP_CKSUM |
+ DEV_TX_OFFLOAD_SCTP_CKSUM;
+
+ switch (hw->mac.type) {
+ case e1000_82575:
+ dev_info->max_rx_queues = 4;
+ dev_info->max_tx_queues = 4;
+ dev_info->max_vmdq_pools = 0;
+ break;
+
+ case e1000_82576:
+ dev_info->max_rx_queues = 16;
+ dev_info->max_tx_queues = 16;
+ dev_info->max_vmdq_pools = ETH_8_POOLS;
+ dev_info->vmdq_queue_num = 16;
+ break;
+
+ case e1000_82580:
+ dev_info->max_rx_queues = 8;
+ dev_info->max_tx_queues = 8;
+ dev_info->max_vmdq_pools = ETH_8_POOLS;
+ dev_info->vmdq_queue_num = 8;
+ break;
+
+ case e1000_i350:
+ dev_info->max_rx_queues = 8;
+ dev_info->max_tx_queues = 8;
+ dev_info->max_vmdq_pools = ETH_8_POOLS;
+ dev_info->vmdq_queue_num = 8;
+ break;
+
+ case e1000_i354:
+ dev_info->max_rx_queues = 8;
+ dev_info->max_tx_queues = 8;
+ break;
+
+ case e1000_i210:
+ dev_info->max_rx_queues = 4;
+ dev_info->max_tx_queues = 4;
+ dev_info->max_vmdq_pools = 0;
+ break;
+
+ case e1000_i211:
+ dev_info->max_rx_queues = 2;
+ dev_info->max_tx_queues = 2;
+ dev_info->max_vmdq_pools = 0;
+ break;
+
+ default:
+ /* Should not happen */
+ break;
+ }
+ dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
+ dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
+
+ dev_info->default_rxconf = (struct rte_eth_rxconf) {
+ .rx_thresh = {
+ .pthresh = IGB_DEFAULT_RX_PTHRESH,
+ .hthresh = IGB_DEFAULT_RX_HTHRESH,
+ .wthresh = IGB_DEFAULT_RX_WTHRESH,
+ },
+ .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
+ .rx_drop_en = 0,
+ };
+
+ dev_info->default_txconf = (struct rte_eth_txconf) {
+ .tx_thresh = {
+ .pthresh = IGB_DEFAULT_TX_PTHRESH,
+ .hthresh = IGB_DEFAULT_TX_HTHRESH,
+ .wthresh = IGB_DEFAULT_TX_WTHRESH,
+ },
+ .txq_flags = 0,
+ };
+}
+
+static void
+eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
+ dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+ dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
+ DEV_RX_OFFLOAD_IPV4_CKSUM |
+ DEV_RX_OFFLOAD_UDP_CKSUM |
+ DEV_RX_OFFLOAD_TCP_CKSUM;
+ dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
+ DEV_TX_OFFLOAD_IPV4_CKSUM |
+ DEV_TX_OFFLOAD_UDP_CKSUM |
+ DEV_TX_OFFLOAD_TCP_CKSUM |
+ DEV_TX_OFFLOAD_SCTP_CKSUM;
+ switch (hw->mac.type) {
+ case e1000_vfadapt:
+ dev_info->max_rx_queues = 2;
+ dev_info->max_tx_queues = 2;
+ break;
+ case e1000_vfadapt_i350:
+ dev_info->max_rx_queues = 1;
+ dev_info->max_tx_queues = 1;
+ break;
+ default:
+ /* Should not happen */
+ break;
+ }
+
+ dev_info->default_rxconf = (struct rte_eth_rxconf) {
+ .rx_thresh = {
+ .pthresh = IGB_DEFAULT_RX_PTHRESH,
+ .hthresh = IGB_DEFAULT_RX_HTHRESH,
+ .wthresh = IGB_DEFAULT_RX_WTHRESH,
+ },
+ .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
+ .rx_drop_en = 0,
+ };
+
+ dev_info->default_txconf = (struct rte_eth_txconf) {
+ .tx_thresh = {
+ .pthresh = IGB_DEFAULT_TX_PTHRESH,
+ .hthresh = IGB_DEFAULT_TX_HTHRESH,
+ .wthresh = IGB_DEFAULT_TX_WTHRESH,
+ },
+ .txq_flags = 0,
+ };
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link, old;
+ int link_check, count;
+
+ link_check = 0;
+ hw->mac.get_link_status = 1;
+
+ /* possible wait-to-complete in up to 9 seconds */
+ for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+ /* Read the real link status */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ break;
+
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = hw->mac.serdes_has_link;
+ break;
+
+ /* VF device is type_unknown */
+ case e1000_media_type_unknown:
+ eth_igbvf_link_update(hw);
+ link_check = !hw->mac.get_link_status;
+ break;
+
+ default:
+ break;
+ }
+ if (link_check || wait_to_complete == 0)
+ break;
+ rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
+ }
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_read_link_status(dev, &link);
+ old = link;
+
+ /* Now we check if a transition has happened */
+ if (link_check) {
+ hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+ &link.link_duplex);
+ link.link_status = 1;
+ } else if (!link_check) {
+ link.link_speed = 0;
+ link.link_duplex = 0;
+ link.link_status = 0;
+ }
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+
+ /* not changed */
+ if (old.link_status == link.link_status)
+ return -1;
+
+ /* changed */
+ return 0;
+}
+
+/*
+ * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded.
+ */
+static void
+igb_hw_control_acquire(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Let firmware know the driver has taken over */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded.
+ */
+static void
+igb_hw_control_release(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Let firmware taken over control of h/w */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+igb_init_manageability(struct e1000_hw *hw)
+{
+ if (e1000_enable_mng_pass_thru(hw)) {
+ uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+ uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+ manc2h |= 1 << 5; /* Mng Port 623 */
+ manc2h |= 1 << 6; /* Mng Port 664 */
+ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+static void
+igb_release_manageability(struct e1000_hw *hw)
+{
+ if (e1000_enable_mng_pass_thru(hw)) {
+ uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+static void
+eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= (~E1000_RCTL_UPE);
+ if (dev->data->all_multicast == 1)
+ rctl |= E1000_RCTL_MPE;
+ else
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ if (dev->data->promiscuous == 1)
+ return; /* must remain in all_multicast mode */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static int
+eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t vfta;
+ uint32_t vid_idx;
+ uint32_t vid_bit;
+
+ vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK);
+ vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+ if (on)
+ vfta |= vid_bit;
+ else
+ vfta &= ~vid_bit;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+ /* update local VFTA copy */
+ shadow_vfta->vfta[vid_idx] = vfta;
+
+ return 0;
+}
+
+static void
+eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg = ETHER_TYPE_VLAN ;
+
+ reg |= (tpid << 16);
+ E1000_WRITE_REG(hw, E1000_VET, reg);
+}
+
+static void
+igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* Filter Table Disable */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg &= ~E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t reg;
+ int i;
+
+ /* Filter Table Enable, CFI not used for packet acceptance */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+ /* restore VFTA table */
+ for (i = 0; i < IGB_VFTA_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* VLAN Mode Disable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* VLAN Mode Enable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* CTRL_EXT: Extended VLAN */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* Update maximum packet length */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ VLAN_TAG_SIZE);
+}
+
+static void
+igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* CTRL_EXT: Extended VLAN */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= E1000_CTRL_EXT_EXTEND_VLAN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* Update maximum packet length */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ 2 * VLAN_TAG_SIZE);
+}
+
+static void
+eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
+{
+ if(mask & ETH_VLAN_STRIP_MASK){
+ if (dev->data->dev_conf.rxmode.hw_vlan_strip)
+ igb_vlan_hw_strip_enable(dev);
+ else
+ igb_vlan_hw_strip_disable(dev);
+ }
+
+ if(mask & ETH_VLAN_FILTER_MASK){
+ if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+ igb_vlan_hw_filter_enable(dev);
+ else
+ igb_vlan_hw_filter_disable(dev);
+ }
+
+ if(mask & ETH_VLAN_EXTEND_MASK){
+ if (dev->data->dev_conf.rxmode.hw_vlan_extend)
+ igb_vlan_hw_extend_enable(dev);
+ else
+ igb_vlan_hw_extend_disable(dev);
+ }
+}
+
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ intr->mask |= E1000_ICR_LSC;
+
+ return 0;
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
+{
+ uint32_t icr;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ igb_intr_disable(hw);
+
+ /* read-on-clear nic registers here */
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ intr->flags = 0;
+ if (icr & E1000_ICR_LSC) {
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+ }
+
+ if (icr & E1000_ICR_VMMB)
+ intr->flags |= E1000_FLAG_MAILBOX;
+
+ return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_action(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+ uint32_t tctl, rctl;
+ struct rte_eth_link link;
+ int ret;
+
+ if (intr->flags & E1000_FLAG_MAILBOX) {
+ igb_pf_mbx_process(dev);
+ intr->flags &= ~E1000_FLAG_MAILBOX;
+ }
+
+ igb_intr_enable(dev);
+ rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+ if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
+ intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+
+ /* set get_link_status to check register later */
+ hw->mac.get_link_status = 1;
+ ret = eth_igb_link_update(dev, 0);
+
+ /* check if link has changed */
+ if (ret < 0)
+ return 0;
+
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_read_link_status(dev, &link);
+ if (link.link_status) {
+ PMD_INIT_LOG(INFO,
+ " Port %d: Link Up - speed %u Mbps - %s",
+ dev->data->port_id,
+ (unsigned)link.link_speed,
+ link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+ "full-duplex" : "half-duplex");
+ } else {
+ PMD_INIT_LOG(INFO, " Port %d: Link Down",
+ dev->data->port_id);
+ }
+ PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+ dev->pci_dev->addr.domain,
+ dev->pci_dev->addr.bus,
+ dev->pci_dev->addr.devid,
+ dev->pci_dev->addr.function);
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ if (link.link_status) {
+ /* enable Tx/Rx */
+ tctl |= E1000_TCTL_EN;
+ rctl |= E1000_RCTL_EN;
+ } else {
+ /* disable Tx/Rx */
+ tctl &= ~E1000_TCTL_EN;
+ rctl &= ~E1000_RCTL_EN;
+ }
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+ _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+ }
+
+ return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ * Pointer to interrupt handle.
+ * @param param
+ * The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ * void
+ */
+static void
+eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
+ void *param)
+{
+ struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+ eth_igb_interrupt_get_status(dev);
+ eth_igb_interrupt_action(dev);
+}
+
+static int
+eth_igb_led_on(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_led_off(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+ struct e1000_hw *hw;
+ uint32_t ctrl;
+ int tx_pause;
+ int rx_pause;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ fc_conf->pause_time = hw->fc.pause_time;
+ fc_conf->high_water = hw->fc.high_water;
+ fc_conf->low_water = hw->fc.low_water;
+ fc_conf->send_xon = hw->fc.send_xon;
+ fc_conf->autoneg = hw->mac.autoneg;
+
+ /*
+ * Return rx_pause and tx_pause status according to actual setting of
+ * the TFCE and RFCE bits in the CTRL register.
+ */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ if (ctrl & E1000_CTRL_TFCE)
+ tx_pause = 1;
+ else
+ tx_pause = 0;
+
+ if (ctrl & E1000_CTRL_RFCE)
+ rx_pause = 1;
+ else
+ rx_pause = 0;
+
+ if (rx_pause && tx_pause)
+ fc_conf->mode = RTE_FC_FULL;
+ else if (rx_pause)
+ fc_conf->mode = RTE_FC_RX_PAUSE;
+ else if (tx_pause)
+ fc_conf->mode = RTE_FC_TX_PAUSE;
+ else
+ fc_conf->mode = RTE_FC_NONE;
+
+ return 0;
+}
+
+static int
+eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+ struct e1000_hw *hw;
+ int err;
+ enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+ e1000_fc_none,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full
+ };
+ uint32_t rx_buf_size;
+ uint32_t max_high_water;
+ uint32_t rctl;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ if (fc_conf->autoneg != hw->mac.autoneg)
+ return -ENOTSUP;
+ rx_buf_size = igb_get_rx_buffer_size(hw);
+ PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
+
+ /* At least reserve one Ethernet frame for watermark */
+ max_high_water = rx_buf_size - ETHER_MAX_LEN;
+ if ((fc_conf->high_water > max_high_water) ||
+ (fc_conf->high_water < fc_conf->low_water)) {
+ PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
+ PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
+ return (-EINVAL);
+ }
+
+ hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+ hw->fc.pause_time = fc_conf->pause_time;
+ hw->fc.high_water = fc_conf->high_water;
+ hw->fc.low_water = fc_conf->low_water;
+ hw->fc.send_xon = fc_conf->send_xon;
+
+ err = e1000_setup_link_generic(hw);
+ if (err == E1000_SUCCESS) {
+
+ /* check if we want to forward MAC frames - driver doesn't have native
+ * capability to do that, so we'll write the registers ourselves */
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+ /* set or clear MFLCN.PMCF bit depending on configuration */
+ if (fc_conf->mac_ctrl_frame_fwd != 0)
+ rctl |= E1000_RCTL_PMCF;
+ else
+ rctl &= ~E1000_RCTL_PMCF;
+
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+ }
+
+ PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
+ return (-EIO);
+}
+
+#define E1000_RAH_POOLSEL_SHIFT (18)
+static void
+eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+ uint32_t index, __rte_unused uint32_t pool)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rah;
+
+ e1000_rar_set(hw, mac_addr->addr_bytes, index);
+ rah = E1000_READ_REG(hw, E1000_RAH(index));
+ rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
+ E1000_WRITE_REG(hw, E1000_RAH(index), rah);
+}
+
+static void
+eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+ uint8_t addr[ETHER_ADDR_LEN];
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ memset(addr, 0, sizeof(addr));
+
+ e1000_rar_set(hw, addr, index);
+}
+
+/*
+ * Virtual Function operations
+ */
+static void
+igbvf_intr_disable(struct e1000_hw *hw)
+{
+ PMD_INIT_FUNC_TRACE();
+
+ /* Clear interrupt mask to stop from interrupts being generated */
+ E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+static void
+igbvf_stop_adapter(struct rte_eth_dev *dev)
+{
+ u32 reg_val;
+ u16 i;
+ struct rte_eth_dev_info dev_info;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ memset(&dev_info, 0, sizeof(dev_info));
+ eth_igbvf_infos_get(dev, &dev_info);
+
+ /* Clear interrupt mask to stop from interrupts being generated */
+ igbvf_intr_disable(hw);
+
+ /* Clear any pending interrupts, flush previous writes */
+ E1000_READ_REG(hw, E1000_EICR);
+
+ /* Disable the transmit unit. Each queue must be disabled. */
+ for (i = 0; i < dev_info.max_tx_queues; i++)
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
+
+ /* Disable the receive unit by stopping each queue */
+ for (i = 0; i < dev_info.max_rx_queues; i++) {
+ reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
+ while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
+ ;
+ }
+
+ /* flush all queues disables */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(2);
+}
+
+static int eth_igbvf_link_update(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ struct e1000_mac_info *mac = &hw->mac;
+ int ret_val = E1000_SUCCESS;
+
+ PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
+
+ /*
+ * We only want to run this if there has been a rst asserted.
+ * in this case that could mean a link change, device reset,
+ * or a virtual function reset
+ */
+
+ /* If we were hit with a reset or timeout drop the link */
+ if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
+ mac->get_link_status = TRUE;
+
+ if (!mac->get_link_status)
+ goto out;
+
+ /* if link status is down no point in checking to see if pf is up */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+ goto out;
+
+ /* if we passed all the tests above then the link is up and we no
+ * longer need to check for link */
+ mac->get_link_status = FALSE;
+
+out:
+ return ret_val;
+}
+
+
+static int
+igbvf_dev_configure(struct rte_eth_dev *dev)
+{
+ struct rte_eth_conf* conf = &dev->data->dev_conf;
+
+ PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
+ dev->data->port_id);
+
+ /*
+ * VF has no ability to enable/disable HW CRC
+ * Keep the persistent behavior the same as Host PF
+ */
+#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
+ if (!conf->rxmode.hw_strip_crc) {
+ PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip");
+ conf->rxmode.hw_strip_crc = 1;
+ }
+#else
+ if (conf->rxmode.hw_strip_crc) {
+ PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip");
+ conf->rxmode.hw_strip_crc = 0;
+ }
+#endif
+
+ return 0;
+}
+
+static int
+igbvf_dev_start(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret;
+
+ PMD_INIT_FUNC_TRACE();
+
+ hw->mac.ops.reset_hw(hw);
+
+ /* Set all vfta */
+ igbvf_set_vfta_all(dev,1);
+
+ eth_igbvf_tx_init(dev);
+
+ /* This can fail when allocating mbufs for descriptor rings */
+ ret = eth_igbvf_rx_init(dev);
+ if (ret) {
+ PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+ igb_dev_clear_queues(dev);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void
+igbvf_dev_stop(struct rte_eth_dev *dev)
+{
+ PMD_INIT_FUNC_TRACE();
+
+ igbvf_stop_adapter(dev);
+
+ /*
+ * Clear what we set, but we still keep shadow_vfta to
+ * restore after device starts
+ */
+ igbvf_set_vfta_all(dev,0);
+
+ igb_dev_clear_queues(dev);
+}
+
+static void
+igbvf_dev_close(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+
+ e1000_reset_hw(hw);
+
+ igbvf_dev_stop(dev);
+}
+
+static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ uint32_t msgbuf[2];
+
+ /* After set vlan, vlan strip will also be enabled in igb driver*/
+ msgbuf[0] = E1000_VF_SET_VLAN;
+ msgbuf[1] = vid;
+ /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+ if (on)
+ msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+ return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
+}
+
+static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ int i = 0, j = 0, vfta = 0, mask = 1;
+
+ for (i = 0; i < IGB_VFTA_SIZE; i++){
+ vfta = shadow_vfta->vfta[i];
+ if(vfta){
+ mask = 1;
+ for (j = 0; j < 32; j++){
+ if(vfta & mask)
+ igbvf_set_vfta(hw,
+ (uint16_t)((i<<5)+j), on);
+ mask<<=1;
+ }
+ }
+ }
+
+}
+
+static int
+igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t vid_idx = 0;
+ uint32_t vid_bit = 0;
+ int ret = 0;
+
+ PMD_INIT_FUNC_TRACE();
+
+ /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
+ ret = igbvf_set_vfta(hw, vlan_id, !!on);
+ if(ret){
+ PMD_INIT_LOG(ERR, "Unable to set VF vlan");
+ return ret;
+ }
+ vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
+ vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
+
+ /*Save what we set and retore it after device reset*/
+ if (on)
+ shadow_vfta->vfta[vid_idx] |= vid_bit;
+ else
+ shadow_vfta->vfta[vid_idx] &= ~vid_bit;
+
+ return 0;
+}
+
+static int
+eth_igb_rss_reta_update(struct rte_eth_dev *dev,
+ struct rte_eth_rss_reta_entry64 *reta_conf,
+ uint16_t reta_size)
+{
+ uint8_t i, j, mask;
+ uint32_t reta, r;
+ uint16_t idx, shift;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (reta_size != ETH_RSS_RETA_SIZE_128) {
+ PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
+ "(%d) doesn't match the number hardware can supported "
+ "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
+ idx = i / RTE_RETA_GROUP_SIZE;
+ shift = i % RTE_RETA_GROUP_SIZE;
+ mask = (uint8_t)((reta_conf[idx].mask >> shift) &
+ IGB_4_BIT_MASK);
+ if (!mask)
+ continue;
+ if (mask == IGB_4_BIT_MASK)
+ r = 0;
+ else
+ r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
+ for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
+ if (mask & (0x1 << j))
+ reta |= reta_conf[idx].reta[shift + j] <<
+ (CHAR_BIT * j);
+ else
+ reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
+ }
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
+ }
+
+ return 0;
+}
+
+static int
+eth_igb_rss_reta_query(struct rte_eth_dev *dev,
+ struct rte_eth_rss_reta_entry64 *reta_conf,
+ uint16_t reta_size)
+{
+ uint8_t i, j, mask;
+ uint32_t reta;
+ uint16_t idx, shift;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (reta_size != ETH_RSS_RETA_SIZE_128) {
+ PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
+ "(%d) doesn't match the number hardware can supported "
+ "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
+ idx = i / RTE_RETA_GROUP_SIZE;
+ shift = i % RTE_RETA_GROUP_SIZE;
+ mask = (uint8_t)((reta_conf[idx].mask >> shift) &
+ IGB_4_BIT_MASK);
+ if (!mask)
+ continue;
+ reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
+ for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
+ if (mask & (0x1 << j))
+ reta_conf[idx].reta[shift + j] =
+ ((reta >> (CHAR_BIT * j)) &
+ IGB_8_BIT_MASK);
+ }
+ }
+
+ return 0;
+}
+
+#define MAC_TYPE_FILTER_SUP(type) do {\
+ if ((type) != e1000_82580 && (type) != e1000_i350 &&\
+ (type) != e1000_82576)\
+ return -ENOTSUP;\
+} while (0)
+
+static int
+eth_igb_syn_filter_set(struct rte_eth_dev *dev,
+ struct rte_eth_syn_filter *filter,
+ bool add)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t synqf, rfctl;
+
+ if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
+ return -EINVAL;
+
+ synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
+
+ if (add) {
+ if (synqf & E1000_SYN_FILTER_ENABLE)
+ return -EINVAL;
+
+ synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
+ E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
+
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ if (filter->hig_pri)
+ rfctl |= E1000_RFCTL_SYNQFP;
+ else
+ rfctl &= ~E1000_RFCTL_SYNQFP;
+
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+ } else {
+ if (!(synqf & E1000_SYN_FILTER_ENABLE))
+ return -ENOENT;
+ synqf = 0;
+ }
+
+ E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
+ E1000_WRITE_FLUSH(hw);
+ return 0;
+}
+
+static int
+eth_igb_syn_filter_get(struct rte_eth_dev *dev,
+ struct rte_eth_syn_filter *filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t synqf, rfctl;
+
+ synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
+ if (synqf & E1000_SYN_FILTER_ENABLE) {
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
+ filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
+ E1000_SYN_FILTER_QUEUE_SHIFT);
+ return 0;
+ }
+
+ return -ENOENT;
+}
+
+static int
+eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret;
+
+ MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+ if (filter_op == RTE_ETH_FILTER_NOP)
+ return 0;
+
+ if (arg == NULL) {
+ PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
+ filter_op);
+ return -EINVAL;
+ }
+
+ switch (filter_op) {
+ case RTE_ETH_FILTER_ADD:
+ ret = eth_igb_syn_filter_set(dev,
+ (struct rte_eth_syn_filter *)arg,
+ TRUE);
+ break;
+ case RTE_ETH_FILTER_DELETE:
+ ret = eth_igb_syn_filter_set(dev,
+ (struct rte_eth_syn_filter *)arg,
+ FALSE);
+ break;
+ case RTE_ETH_FILTER_GET:
+ ret = eth_igb_syn_filter_get(dev,
+ (struct rte_eth_syn_filter *)arg);
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+#define MAC_TYPE_FILTER_SUP_EXT(type) do {\
+ if ((type) != e1000_82580 && (type) != e1000_i350)\
+ return -ENOSYS; \
+} while (0)
+
+/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
+static inline int
+ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
+ struct e1000_2tuple_filter_info *filter_info)
+{
+ if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
+ return -EINVAL;
+ if (filter->priority > E1000_2TUPLE_MAX_PRI)
+ return -EINVAL; /* filter index is out of range. */
+ if (filter->tcp_flags > TCP_FLAG_ALL)
+ return -EINVAL; /* flags is invalid. */
+
+ switch (filter->dst_port_mask) {
+ case UINT16_MAX:
+ filter_info->dst_port_mask = 0;
+ filter_info->dst_port = filter->dst_port;
+ break;
+ case 0:
+ filter_info->dst_port_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid dst_port mask.");
+ return -EINVAL;
+ }
+
+ switch (filter->proto_mask) {
+ case UINT8_MAX:
+ filter_info->proto_mask = 0;
+ filter_info->proto = filter->proto;
+ break;
+ case 0:
+ filter_info->proto_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid protocol mask.");
+ return -EINVAL;
+ }
+
+ filter_info->priority = (uint8_t)filter->priority;
+ if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
+ filter_info->tcp_flags = filter->tcp_flags;
+ else
+ filter_info->tcp_flags = 0;
+
+ return 0;
+}
+
+static inline struct e1000_2tuple_filter *
+igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
+ struct e1000_2tuple_filter_info *key)
+{
+ struct e1000_2tuple_filter *it;
+
+ TAILQ_FOREACH(it, filter_list, entries) {
+ if (memcmp(key, &it->filter_info,
+ sizeof(struct e1000_2tuple_filter_info)) == 0) {
+ return it;
+ }
+ }
+ return NULL;
+}
+
+/*
+ * igb_add_2tuple_filter - add a 2tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be added.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_add_2tuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_2tuple_filter *filter;
+ uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
+ uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
+ int i, ret;
+
+ filter = rte_zmalloc("e1000_2tuple_filter",
+ sizeof(struct e1000_2tuple_filter), 0);
+ if (filter == NULL)
+ return -ENOMEM;
+
+ ret = ntuple_filter_to_2tuple(ntuple_filter,
+ &filter->filter_info);
+ if (ret < 0) {
+ rte_free(filter);
+ return ret;
+ }
+ if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
+ &filter->filter_info) != NULL) {
+ PMD_DRV_LOG(ERR, "filter exists.");
+ rte_free(filter);
+ return -EEXIST;
+ }
+ filter->queue = ntuple_filter->queue;
+
+ /*
+ * look for an unused 2tuple filter index,
+ * and insert the filter to list.
+ */
+ for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
+ if (!(filter_info->twotuple_mask & (1 << i))) {
+ filter_info->twotuple_mask |= 1 << i;
+ filter->index = i;
+ TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
+ filter,
+ entries);
+ break;
+ }
+ }
+ if (i >= E1000_MAX_TTQF_FILTERS) {
+ PMD_DRV_LOG(ERR, "2tuple filters are full.");
+ rte_free(filter);
+ return -ENOSYS;
+ }
+
+ imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
+ if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
+ imir |= E1000_IMIR_PORT_BP;
+ else
+ imir &= ~E1000_IMIR_PORT_BP;
+
+ imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
+
+ ttqf |= E1000_TTQF_QUEUE_ENABLE;
+ ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
+ ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
+ if (filter->filter_info.proto_mask == 0)
+ ttqf &= ~E1000_TTQF_MASK_ENABLE;
+
+ /* tcp flags bits setting. */
+ if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
+ if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_URG;
+ if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_ACK;
+ if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_PSH;
+ if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_RST;
+ if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_SYN;
+ if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_FIN;
+ } else
+ imir_ext |= E1000_IMIREXT_CTRL_BP;
+ E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
+ E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
+ E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
+ return 0;
+}
+
+/*
+ * igb_remove_2tuple_filter - remove a 2tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be removed.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_remove_2tuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_2tuple_filter_info filter_2tuple;
+ struct e1000_2tuple_filter *filter;
+ int ret;
+
+ memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
+ ret = ntuple_filter_to_2tuple(ntuple_filter,
+ &filter_2tuple);
+ if (ret < 0)
+ return ret;
+
+ filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
+ &filter_2tuple);
+ if (filter == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ return -ENOENT;
+ }
+
+ filter_info->twotuple_mask &= ~(1 << filter->index);
+ TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
+ rte_free(filter);
+
+ E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
+ E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
+ E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
+ return 0;
+}
+
+static inline struct e1000_flex_filter *
+eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
+ struct e1000_flex_filter_info *key)
+{
+ struct e1000_flex_filter *it;
+
+ TAILQ_FOREACH(it, filter_list, entries) {
+ if (memcmp(key, &it->filter_info,
+ sizeof(struct e1000_flex_filter_info)) == 0)
+ return it;
+ }
+
+ return NULL;
+}
+
+static int
+eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
+ struct rte_eth_flex_filter *filter,
+ bool add)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_flex_filter *flex_filter, *it;
+ uint32_t wufc, queueing, mask;
+ uint32_t reg_off;
+ uint8_t shift, i, j = 0;
+
+ flex_filter = rte_zmalloc("e1000_flex_filter",
+ sizeof(struct e1000_flex_filter), 0);
+ if (flex_filter == NULL)
+ return -ENOMEM;
+
+ flex_filter->filter_info.len = filter->len;
+ flex_filter->filter_info.priority = filter->priority;
+ memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
+ for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
+ mask = 0;
+ /* reverse bits in flex filter's mask*/
+ for (shift = 0; shift < CHAR_BIT; shift++) {
+ if (filter->mask[i] & (0x01 << shift))
+ mask |= (0x80 >> shift);
+ }
+ flex_filter->filter_info.mask[i] = mask;
+ }
+
+ wufc = E1000_READ_REG(hw, E1000_WUFC);
+ if (flex_filter->index < E1000_MAX_FHFT)
+ reg_off = E1000_FHFT(flex_filter->index);
+ else
+ reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
+
+ if (add) {
+ if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
+ &flex_filter->filter_info) != NULL) {
+ PMD_DRV_LOG(ERR, "filter exists.");
+ rte_free(flex_filter);
+ return -EEXIST;
+ }
+ flex_filter->queue = filter->queue;
+ /*
+ * look for an unused flex filter index
+ * and insert the filter into the list.
+ */
+ for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
+ if (!(filter_info->flex_mask & (1 << i))) {
+ filter_info->flex_mask |= 1 << i;
+ flex_filter->index = i;
+ TAILQ_INSERT_TAIL(&filter_info->flex_list,
+ flex_filter,
+ entries);
+ break;
+ }
+ }
+ if (i >= E1000_MAX_FLEX_FILTERS) {
+ PMD_DRV_LOG(ERR, "flex filters are full.");
+ rte_free(flex_filter);
+ return -ENOSYS;
+ }
+
+ E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
+ (E1000_WUFC_FLX0 << flex_filter->index));
+ queueing = filter->len |
+ (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
+ (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
+ E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
+ queueing);
+ for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
+ E1000_WRITE_REG(hw, reg_off,
+ flex_filter->filter_info.dwords[j]);
+ reg_off += sizeof(uint32_t);
+ E1000_WRITE_REG(hw, reg_off,
+ flex_filter->filter_info.dwords[++j]);
+ reg_off += sizeof(uint32_t);
+ E1000_WRITE_REG(hw, reg_off,
+ (uint32_t)flex_filter->filter_info.mask[i]);
+ reg_off += sizeof(uint32_t) * 2;
+ ++j;
+ }
+ } else {
+ it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
+ &flex_filter->filter_info);
+ if (it == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ rte_free(flex_filter);
+ return -ENOENT;
+ }
+
+ for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
+ E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
+ E1000_WRITE_REG(hw, E1000_WUFC, wufc &
+ (~(E1000_WUFC_FLX0 << it->index)));
+
+ filter_info->flex_mask &= ~(1 << it->index);
+ TAILQ_REMOVE(&filter_info->flex_list, it, entries);
+ rte_free(it);
+ rte_free(flex_filter);
+ }
+
+ return 0;
+}
+
+static int
+eth_igb_get_flex_filter(struct rte_eth_dev *dev,
+ struct rte_eth_flex_filter *filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_flex_filter flex_filter, *it;
+ uint32_t wufc, queueing, wufc_en = 0;
+
+ memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
+ flex_filter.filter_info.len = filter->len;
+ flex_filter.filter_info.priority = filter->priority;
+ memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
+ memcpy(flex_filter.filter_info.mask, filter->mask,
+ RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
+
+ it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
+ &flex_filter.filter_info);
+ if (it == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ return -ENOENT;
+ }
+
+ wufc = E1000_READ_REG(hw, E1000_WUFC);
+ wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
+
+ if ((wufc & wufc_en) == wufc_en) {
+ uint32_t reg_off = 0;
+ if (it->index < E1000_MAX_FHFT)
+ reg_off = E1000_FHFT(it->index);
+ else
+ reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
+
+ queueing = E1000_READ_REG(hw,
+ reg_off + E1000_FHFT_QUEUEING_OFFSET);
+ filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
+ filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
+ E1000_FHFT_QUEUEING_PRIO_SHIFT;
+ filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
+ E1000_FHFT_QUEUEING_QUEUE_SHIFT;
+ return 0;
+ }
+ return -ENOENT;
+}
+
+static int
+eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_flex_filter *filter;
+ int ret = 0;
+
+ MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
+
+ if (filter_op == RTE_ETH_FILTER_NOP)
+ return ret;
+
+ if (arg == NULL) {
+ PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
+ filter_op);
+ return -EINVAL;
+ }
+
+ filter = (struct rte_eth_flex_filter *)arg;
+ if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
+ || filter->len % sizeof(uint64_t) != 0) {
+ PMD_DRV_LOG(ERR, "filter's length is out of range");
+ return -EINVAL;
+ }
+ if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
+ PMD_DRV_LOG(ERR, "filter's priority is out of range");
+ return -EINVAL;
+ }
+
+ switch (filter_op) {
+ case RTE_ETH_FILTER_ADD:
+ ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
+ break;
+ case RTE_ETH_FILTER_DELETE:
+ ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
+ break;
+ case RTE_ETH_FILTER_GET:
+ ret = eth_igb_get_flex_filter(dev, filter);
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
+static inline int
+ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
+ struct e1000_5tuple_filter_info *filter_info)
+{
+ if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
+ return -EINVAL;
+ if (filter->priority > E1000_2TUPLE_MAX_PRI)
+ return -EINVAL; /* filter index is out of range. */
+ if (filter->tcp_flags > TCP_FLAG_ALL)
+ return -EINVAL; /* flags is invalid. */
+
+ switch (filter->dst_ip_mask) {
+ case UINT32_MAX:
+ filter_info->dst_ip_mask = 0;
+ filter_info->dst_ip = filter->dst_ip;
+ break;
+ case 0:
+ filter_info->dst_ip_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
+ return -EINVAL;
+ }
+
+ switch (filter->src_ip_mask) {
+ case UINT32_MAX:
+ filter_info->src_ip_mask = 0;
+ filter_info->src_ip = filter->src_ip;
+ break;
+ case 0:
+ filter_info->src_ip_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid src_ip mask.");
+ return -EINVAL;
+ }
+
+ switch (filter->dst_port_mask) {
+ case UINT16_MAX:
+ filter_info->dst_port_mask = 0;
+ filter_info->dst_port = filter->dst_port;
+ break;
+ case 0:
+ filter_info->dst_port_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid dst_port mask.");
+ return -EINVAL;
+ }
+
+ switch (filter->src_port_mask) {
+ case UINT16_MAX:
+ filter_info->src_port_mask = 0;
+ filter_info->src_port = filter->src_port;
+ break;
+ case 0:
+ filter_info->src_port_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid src_port mask.");
+ return -EINVAL;
+ }
+
+ switch (filter->proto_mask) {
+ case UINT8_MAX:
+ filter_info->proto_mask = 0;
+ filter_info->proto = filter->proto;
+ break;
+ case 0:
+ filter_info->proto_mask = 1;
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "invalid protocol mask.");
+ return -EINVAL;
+ }
+
+ filter_info->priority = (uint8_t)filter->priority;
+ if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
+ filter_info->tcp_flags = filter->tcp_flags;
+ else
+ filter_info->tcp_flags = 0;
+
+ return 0;
+}
+
+static inline struct e1000_5tuple_filter *
+igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
+ struct e1000_5tuple_filter_info *key)
+{
+ struct e1000_5tuple_filter *it;
+
+ TAILQ_FOREACH(it, filter_list, entries) {
+ if (memcmp(key, &it->filter_info,
+ sizeof(struct e1000_5tuple_filter_info)) == 0) {
+ return it;
+ }
+ }
+ return NULL;
+}
+
+/*
+ * igb_add_5tuple_filter_82576 - add a 5tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be added.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_5tuple_filter *filter;
+ uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
+ uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
+ uint8_t i;
+ int ret;
+
+ filter = rte_zmalloc("e1000_5tuple_filter",
+ sizeof(struct e1000_5tuple_filter), 0);
+ if (filter == NULL)
+ return -ENOMEM;
+
+ ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+ &filter->filter_info);
+ if (ret < 0) {
+ rte_free(filter);
+ return ret;
+ }
+
+ if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
+ &filter->filter_info) != NULL) {
+ PMD_DRV_LOG(ERR, "filter exists.");
+ rte_free(filter);
+ return -EEXIST;
+ }
+ filter->queue = ntuple_filter->queue;
+
+ /*
+ * look for an unused 5tuple filter index,
+ * and insert the filter to list.
+ */
+ for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
+ if (!(filter_info->fivetuple_mask & (1 << i))) {
+ filter_info->fivetuple_mask |= 1 << i;
+ filter->index = i;
+ TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
+ filter,
+ entries);
+ break;
+ }
+ }
+ if (i >= E1000_MAX_FTQF_FILTERS) {
+ PMD_DRV_LOG(ERR, "5tuple filters are full.");
+ rte_free(filter);
+ return -ENOSYS;
+ }
+
+ ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
+ if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
+ ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
+ if (filter->filter_info.dst_ip_mask == 0)
+ ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
+ if (filter->filter_info.src_port_mask == 0)
+ ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
+ if (filter->filter_info.proto_mask == 0)
+ ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
+ ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
+ E1000_FTQF_QUEUE_MASK;
+ ftqf |= E1000_FTQF_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
+ E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
+ E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
+
+ spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
+ E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
+
+ imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
+ if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
+ imir |= E1000_IMIR_PORT_BP;
+ else
+ imir &= ~E1000_IMIR_PORT_BP;
+ imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
+
+ /* tcp flags bits setting. */
+ if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
+ if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_URG;
+ if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_ACK;
+ if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_PSH;
+ if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_RST;
+ if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_SYN;
+ if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
+ imir_ext |= E1000_IMIREXT_CTRL_FIN;
+ } else
+ imir_ext |= E1000_IMIREXT_CTRL_BP;
+ E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
+ E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
+ return 0;
+}
+
+/*
+ * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be removed.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_5tuple_filter_info filter_5tuple;
+ struct e1000_5tuple_filter *filter;
+ int ret;
+
+ memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
+ ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+ &filter_5tuple);
+ if (ret < 0)
+ return ret;
+
+ filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
+ &filter_5tuple);
+ if (filter == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ return -ENOENT;
+ }
+
+ filter_info->fivetuple_mask &= ~(1 << filter->index);
+ TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
+ rte_free(filter);
+
+ E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
+ E1000_FTQF_VF_BP | E1000_FTQF_MASK);
+ E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
+ E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
+ E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
+ E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
+ E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
+ return 0;
+}
+
+static int
+eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
+{
+ uint32_t rctl;
+ struct e1000_hw *hw;
+ struct rte_eth_dev_info dev_info;
+ uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
+ VLAN_TAG_SIZE);
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+#ifdef RTE_LIBRTE_82571_SUPPORT
+ /* XXX: not bigger than max_rx_pktlen */
+ if (hw->mac.type == e1000_82571)
+ return -ENOTSUP;
+#endif
+ eth_igb_infos_get(dev, &dev_info);
+
+ /* check that mtu is within the allowed range */
+ if ((mtu < ETHER_MIN_MTU) ||
+ (frame_size > dev_info.max_rx_pktlen))
+ return -EINVAL;
+
+ /* refuse mtu that requires the support of scattered packets when this
+ * feature has not been enabled before. */
+ if (!dev->data->scattered_rx &&
+ frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
+ return -EINVAL;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+ /* switch to jumbo mode if needed */
+ if (frame_size > ETHER_MAX_LEN) {
+ dev->data->dev_conf.rxmode.jumbo_frame = 1;
+ rctl |= E1000_RCTL_LPE;
+ } else {
+ dev->data->dev_conf.rxmode.jumbo_frame = 0;
+ rctl &= ~E1000_RCTL_LPE;
+ }
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /* update max frame size */
+ dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
+
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len);
+
+ return 0;
+}
+
+/*
+ * igb_add_del_ntuple_filter - add or delete a ntuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
+ * add: if true, add filter, if false, remove filter
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter,
+ bool add)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret;
+
+ switch (ntuple_filter->flags) {
+ case RTE_5TUPLE_FLAGS:
+ case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+ if (hw->mac.type != e1000_82576)
+ return -ENOTSUP;
+ if (add)
+ ret = igb_add_5tuple_filter_82576(dev,
+ ntuple_filter);
+ else
+ ret = igb_remove_5tuple_filter_82576(dev,
+ ntuple_filter);
+ break;
+ case RTE_2TUPLE_FLAGS:
+ case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+ if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
+ return -ENOTSUP;
+ if (add)
+ ret = igb_add_2tuple_filter(dev, ntuple_filter);
+ else
+ ret = igb_remove_2tuple_filter(dev, ntuple_filter);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+/*
+ * igb_get_ntuple_filter - get a ntuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+igb_get_ntuple_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ntuple_filter *ntuple_filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ struct e1000_5tuple_filter_info filter_5tuple;
+ struct e1000_2tuple_filter_info filter_2tuple;
+ struct e1000_5tuple_filter *p_5tuple_filter;
+ struct e1000_2tuple_filter *p_2tuple_filter;
+ int ret;
+
+ switch (ntuple_filter->flags) {
+ case RTE_5TUPLE_FLAGS:
+ case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+ if (hw->mac.type != e1000_82576)
+ return -ENOTSUP;
+ memset(&filter_5tuple,
+ 0,
+ sizeof(struct e1000_5tuple_filter_info));
+ ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+ &filter_5tuple);
+ if (ret < 0)
+ return ret;
+ p_5tuple_filter = igb_5tuple_filter_lookup_82576(
+ &filter_info->fivetuple_list,
+ &filter_5tuple);
+ if (p_5tuple_filter == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ return -ENOENT;
+ }
+ ntuple_filter->queue = p_5tuple_filter->queue;
+ break;
+ case RTE_2TUPLE_FLAGS:
+ case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+ if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
+ return -ENOTSUP;
+ memset(&filter_2tuple,
+ 0,
+ sizeof(struct e1000_2tuple_filter_info));
+ ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
+ if (ret < 0)
+ return ret;
+ p_2tuple_filter = igb_2tuple_filter_lookup(
+ &filter_info->twotuple_list,
+ &filter_2tuple);
+ if (p_2tuple_filter == NULL) {
+ PMD_DRV_LOG(ERR, "filter doesn't exist.");
+ return -ENOENT;
+ }
+ ntuple_filter->queue = p_2tuple_filter->queue;
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * igb_ntuple_filter_handle - Handle operations for ntuple filter.
+ * @dev: pointer to rte_eth_dev structure
+ * @filter_op:operation will be taken.
+ * @arg: a pointer to specific structure corresponding to the filter_op
+ */
+static int
+igb_ntuple_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret;
+
+ MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+ if (filter_op == RTE_ETH_FILTER_NOP)
+ return 0;
+
+ if (arg == NULL) {
+ PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
+ filter_op);
+ return -EINVAL;
+ }
+
+ switch (filter_op) {
+ case RTE_ETH_FILTER_ADD:
+ ret = igb_add_del_ntuple_filter(dev,
+ (struct rte_eth_ntuple_filter *)arg,
+ TRUE);
+ break;
+ case RTE_ETH_FILTER_DELETE:
+ ret = igb_add_del_ntuple_filter(dev,
+ (struct rte_eth_ntuple_filter *)arg,
+ FALSE);
+ break;
+ case RTE_ETH_FILTER_GET:
+ ret = igb_get_ntuple_filter(dev,
+ (struct rte_eth_ntuple_filter *)arg);
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
+ ret = -EINVAL;
+ break;
+ }
+ return ret;
+}
+
+static inline int
+igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
+ uint16_t ethertype)
+{
+ int i;
+
+ for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
+ if (filter_info->ethertype_filters[i] == ethertype &&
+ (filter_info->ethertype_mask & (1 << i)))
+ return i;
+ }
+ return -1;
+}
+
+static inline int
+igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
+ uint16_t ethertype)
+{
+ int i;
+
+ for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
+ if (!(filter_info->ethertype_mask & (1 << i))) {
+ filter_info->ethertype_mask |= 1 << i;
+ filter_info->ethertype_filters[i] = ethertype;
+ return i;
+ }
+ }
+ return -1;
+}
+
+static inline int
+igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
+ uint8_t idx)
+{
+ if (idx >= E1000_MAX_ETQF_FILTERS)
+ return -1;
+ filter_info->ethertype_mask &= ~(1 << idx);
+ filter_info->ethertype_filters[idx] = 0;
+ return idx;
+}
+
+
+static int
+igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ethertype_filter *filter,
+ bool add)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ uint32_t etqf = 0;
+ int ret;
+
+ if (filter->ether_type == ETHER_TYPE_IPv4 ||
+ filter->ether_type == ETHER_TYPE_IPv6) {
+ PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
+ " ethertype filter.", filter->ether_type);
+ return -EINVAL;
+ }
+
+ if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
+ PMD_DRV_LOG(ERR, "mac compare is unsupported.");
+ return -EINVAL;
+ }
+ if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
+ PMD_DRV_LOG(ERR, "drop option is unsupported.");
+ return -EINVAL;
+ }
+
+ ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
+ if (ret >= 0 && add) {
+ PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
+ filter->ether_type);
+ return -EEXIST;
+ }
+ if (ret < 0 && !add) {
+ PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
+ filter->ether_type);
+ return -ENOENT;
+ }
+
+ if (add) {
+ ret = igb_ethertype_filter_insert(filter_info,
+ filter->ether_type);
+ if (ret < 0) {
+ PMD_DRV_LOG(ERR, "ethertype filters are full.");
+ return -ENOSYS;
+ }
+
+ etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
+ etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
+ etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
+ } else {
+ ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
+ if (ret < 0)
+ return -ENOSYS;
+ }
+ E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+static int
+igb_get_ethertype_filter(struct rte_eth_dev *dev,
+ struct rte_eth_ethertype_filter *filter)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_filter_info *filter_info =
+ E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+ uint32_t etqf;
+ int ret;
+
+ ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
+ if (ret < 0) {
+ PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
+ filter->ether_type);
+ return -ENOENT;
+ }
+
+ etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
+ if (etqf & E1000_ETQF_FILTER_ENABLE) {
+ filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
+ filter->flags = 0;
+ filter->queue = (etqf & E1000_ETQF_QUEUE) >>
+ E1000_ETQF_QUEUE_SHIFT;
+ return 0;
+ }
+
+ return -ENOENT;
+}
+
+/*
+ * igb_ethertype_filter_handle - Handle operations for ethertype filter.
+ * @dev: pointer to rte_eth_dev structure
+ * @filter_op:operation will be taken.
+ * @arg: a pointer to specific structure corresponding to the filter_op
+ */
+static int
+igb_ethertype_filter_handle(struct rte_eth_dev *dev,
+ enum rte_filter_op filter_op,
+ void *arg)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret;
+
+ MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+ if (filter_op == RTE_ETH_FILTER_NOP)
+ return 0;
+
+ if (arg == NULL) {
+ PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
+ filter_op);
+ return -EINVAL;
+ }
+
+ switch (filter_op) {
+ case RTE_ETH_FILTER_ADD:
+ ret = igb_add_del_ethertype_filter(dev,
+ (struct rte_eth_ethertype_filter *)arg,
+ TRUE);
+ break;
+ case RTE_ETH_FILTER_DELETE:
+ ret = igb_add_del_ethertype_filter(dev,
+ (struct rte_eth_ethertype_filter *)arg,
+ FALSE);
+ break;
+ case RTE_ETH_FILTER_GET:
+ ret = igb_get_ethertype_filter(dev,
+ (struct rte_eth_ethertype_filter *)arg);
+ break;
+ default:
+ PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
+ ret = -EINVAL;
+ break;
+ }
+ return ret;
+}
+
+static int
+eth_igb_filter_ctrl(struct rte_eth_dev *dev,
+ enum rte_filter_type filter_type,
+ enum rte_filter_op filter_op,
+ void *arg)
+{
+ int ret = -EINVAL;
+
+ switch (filter_type) {
+ case RTE_ETH_FILTER_NTUPLE:
+ ret = igb_ntuple_filter_handle(dev, filter_op, arg);
+ break;
+ case RTE_ETH_FILTER_ETHERTYPE:
+ ret = igb_ethertype_filter_handle(dev, filter_op, arg);
+ break;
+ case RTE_ETH_FILTER_SYN:
+ ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
+ break;
+ case RTE_ETH_FILTER_FLEXIBLE:
+ ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
+ break;
+ default:
+ PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
+ filter_type);
+ break;
+ }
+
+ return ret;
+}
+
+static struct rte_driver pmd_igb_drv = {
+ .type = PMD_PDEV,
+ .init = rte_igb_pmd_init,
+};
+
+static struct rte_driver pmd_igbvf_drv = {
+ .type = PMD_PDEV,
+ .init = rte_igbvf_pmd_init,
+};
+
+PMD_REGISTER_DRIVER(pmd_igb_drv);
+PMD_REGISTER_DRIVER(pmd_igbvf_drv);
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_eal.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memcpy.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+
+#include "base/e1000_defines.h"
+#include "base/e1000_regs.h"
+#include "base/e1000_hw.h"
+#include "e1000_ethdev.h"
+
+static inline uint16_t
+dev_num_vf(struct rte_eth_dev *eth_dev)
+{
+ return eth_dev->pci_dev->max_vfs;
+}
+
+static inline
+int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
+{
+ unsigned char vf_mac_addr[ETHER_ADDR_LEN];
+ struct e1000_vf_info *vfinfo =
+ *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
+ uint16_t vfn;
+
+ for (vfn = 0; vfn < vf_num; vfn++) {
+ eth_random_addr(vf_mac_addr);
+ /* keep the random address as default */
+ memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
+ ETHER_ADDR_LEN);
+ }
+
+ return 0;
+}
+
+static inline int
+igb_mb_intr_setup(struct rte_eth_dev *dev)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ intr->mask |= E1000_ICR_VMMB;
+
+ return 0;
+}
+
+void igb_pf_host_init(struct rte_eth_dev *eth_dev)
+{
+ struct e1000_vf_info **vfinfo =
+ E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ uint16_t vf_num;
+ uint8_t nb_queue;
+
+ RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
+ if (0 == (vf_num = dev_num_vf(eth_dev)))
+ return;
+
+ if (hw->mac.type == e1000_i350)
+ nb_queue = 1;
+ else if(hw->mac.type == e1000_82576)
+ /* per datasheet, it should be 2, but 1 seems correct */
+ nb_queue = 1;
+ else
+ return;
+
+ *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
+ if (*vfinfo == NULL)
+ rte_panic("Cannot allocate memory for private VF data\n");
+
+ RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
+ RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
+ RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
+ RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
+
+ igb_vf_perm_addr_gen(eth_dev, vf_num);
+
+ /* set mb interrupt mask */
+ igb_mb_intr_setup(eth_dev);
+
+ return;
+}
+
+#define E1000_RAH_POOLSEL_SHIFT (18)
+int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
+{
+ uint32_t vtctl;
+ uint16_t vf_num;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ uint32_t vlanctrl;
+ int i;
+ uint32_t rah;
+
+ if (0 == (vf_num = dev_num_vf(eth_dev)))
+ return -1;
+
+ /* enable VMDq and set the default pool for PF */
+ vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
+ vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
+ vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
+ << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
+ vtctl |= E1000_VT_CTL_VM_REPL_EN;
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
+
+ /* Enable pools reserved to PF only */
+ E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
+ E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
+
+ /* PFDMA Tx General Switch Control Enables VMDQ loopback */
+ if (hw->mac.type == e1000_i350)
+ E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
+ else
+ E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
+
+ /* clear VMDq map to perment rar 0 */
+ rah = E1000_READ_REG(hw, E1000_RAH(0));
+ rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
+ E1000_WRITE_REG(hw, E1000_RAH(0), rah);
+
+ /* clear VMDq map to scan rar 32 */
+ rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
+ rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
+ E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
+
+ /* set VMDq map to default PF pool */
+ rah = E1000_READ_REG(hw, E1000_RAH(0));
+ rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
+ E1000_RAH_POOLSEL_SHIFT));
+ E1000_WRITE_REG(hw, E1000_RAH(0), rah);
+
+ /*
+ * enable vlan filtering and allow all vlan tags through
+ */
+ vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
+ vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
+ E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
+
+ /* VFTA - enable all vlan filters */
+ for (i = 0; i < IGB_VFTA_SIZE; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
+ }
+
+ /* Enable/Disable MAC Anti-Spoofing */
+ e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
+
+ return 0;
+}
+
+static void
+set_rx_mode(struct rte_eth_dev *dev)
+{
+ struct rte_eth_dev_data *dev_data =
+ (struct rte_eth_dev_data*)dev->data->dev_private;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
+ uint16_t vfn = dev_num_vf(dev);
+
+ /* Check for Promiscuous and All Multicast modes */
+ fctrl = E1000_READ_REG(hw, E1000_RCTL);
+
+ /* set all bits that we expect to always be set */
+ fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
+ fctrl |= E1000_RCTL_BAM;;
+
+ /* clear the bits we are changing the status of */
+ fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
+
+ if (dev_data->promiscuous) {
+ fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
+ } else {
+ if (dev_data->all_multicast) {
+ fctrl |= E1000_RCTL_MPE;
+ vmolr |= E1000_VMOLR_MPME;
+ } else {
+ vmolr |= E1000_VMOLR_ROMPE;
+ }
+ }
+
+ if ((hw->mac.type == e1000_82576) ||
+ (hw->mac.type == e1000_i350)) {
+ vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
+ ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
+ E1000_VMOLR_ROPE);
+ E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
+ }
+
+ E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
+}
+
+static inline void
+igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_info *vfinfo =
+ *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+ uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
+
+ vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
+ E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
+ E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
+
+ E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
+
+ /* reset multicast table array for vf */
+ vfinfo[vf].num_vf_mc_hashes = 0;
+
+ /* reset rx mode */
+ set_rx_mode(dev);
+}
+
+static inline void
+igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* enable transmit and receive for vf */
+ reg = E1000_READ_REG(hw, E1000_VFTE);
+ reg |= (reg | (1 << vf));
+ E1000_WRITE_REG(hw, E1000_VFTE, reg);
+
+ reg = E1000_READ_REG(hw, E1000_VFRE);
+ reg |= (reg | (1 << vf));
+ E1000_WRITE_REG(hw, E1000_VFRE, reg);
+
+ igb_vf_reset_event(dev, vf);
+}
+
+static int
+igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_info *vfinfo =
+ *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+ unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
+ int rar_entry = hw->mac.rar_entry_count - (vf + 1);
+ uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
+ uint32_t rah;
+
+ igb_vf_reset_msg(dev, vf);
+
+ hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
+ rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
+ rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
+ E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
+
+ /* reply to reset with ack and vf mac address */
+ msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
+ rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
+ e1000_write_mbx(hw, msgbuf, 3, vf);
+
+ return 0;
+}
+
+static int
+igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_info *vfinfo =
+ *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+ int rar_entry = hw->mac.rar_entry_count - (vf + 1);
+ uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
+
+ if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
+ rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
+ hw->mac.ops.rar_set(hw, new_mac, rar_entry);
+ return 0;
+ }
+ return -1;
+}
+
+static int
+igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
+{
+ int i;
+ uint32_t vector_bit;
+ uint32_t vector_reg;
+ uint32_t mta_reg;
+ int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
+ E1000_VT_MSGINFO_SHIFT;
+ uint16_t *hash_list = (uint16_t *)&msgbuf[1];
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_info *vfinfo =
+ *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+
+ /* only so many hash values supported */
+ entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
+
+ /*
+ * salt away the number of multi cast addresses assigned
+ * to this VF for later use to restore when the PF multi cast
+ * list changes
+ */
+ vfinfo->num_vf_mc_hashes = (uint16_t)entries;
+
+ /*
+ * VFs are limited to using the MTA hash table for their multicast
+ * addresses
+ */
+ for (i = 0; i < entries; i++) {
+ vfinfo->vf_mc_hashes[i] = hash_list[i];
+ }
+
+ for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
+ vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
+ vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
+ mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
+ mta_reg |= (1 << vector_bit);
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
+ }
+
+ return 0;
+}
+
+static int
+igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+ int add, vid;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vf_info *vfinfo =
+ *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+ uint32_t vid_idx, vid_bit, vfta;
+
+ add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
+ >> E1000_VT_MSGINFO_SHIFT;
+ vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
+
+ if (add)
+ vfinfo[vf].vlan_count++;
+ else if (vfinfo[vf].vlan_count)
+ vfinfo[vf].vlan_count--;
+
+ vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK);
+ vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+ if (add)
+ vfta |= vid_bit;
+ else
+ vfta &= ~vid_bit;
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+static int
+igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
+ uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ uint32_t vmolr;
+
+ if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
+ return -1;
+
+ vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
+
+ vmolr &= ~E1000_VMOLR_RLPML_MASK;
+ vmolr |= rlpml;
+
+ /* Enable Long Packet support */
+ vmolr |= E1000_VMOLR_LPE;
+
+ E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+static int
+igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
+{
+ uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
+ uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
+ int32_t retval;
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
+ if (retval) {
+ PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
+ return retval;
+ }
+
+ /* do nothing with the message already processed */
+ if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
+ return retval;
+
+ /* flush the ack before we write any messages back */
+ E1000_WRITE_FLUSH(hw);
+
+ /* perform VF reset */
+ if (msgbuf[0] == E1000_VF_RESET) {
+ return igb_vf_reset(dev, vf, msgbuf);
+ }
+
+ /* check & process VF to PF mailbox message */
+ switch ((msgbuf[0] & 0xFFFF)) {
+ case E1000_VF_SET_MAC_ADDR:
+ retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
+ break;
+ case E1000_VF_SET_MULTICAST:
+ retval = igb_vf_set_multicast(dev, vf, msgbuf);
+ break;
+ case E1000_VF_SET_LPE:
+ retval = igb_vf_set_rlpml(dev, vf, msgbuf);
+ break;
+ case E1000_VF_SET_VLAN:
+ retval = igb_vf_set_vlan(dev, vf, msgbuf);
+ break;
+ default:
+ PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
+ (unsigned) msgbuf[0]);
+ retval = E1000_ERR_MBX;
+ break;
+ }
+
+ /* response the VF according to the message process result */
+ if (retval)
+ msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
+ else
+ msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
+
+ msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
+
+ e1000_write_mbx(hw, msgbuf, 1, vf);
+
+ return retval;
+}
+
+static inline void
+igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
+{
+ uint32_t msg = E1000_VT_MSGTYPE_NACK;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ e1000_write_mbx(hw, &msg, 1, vf);
+}
+
+void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
+{
+ uint16_t vf;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+
+ for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
+ /* check & process vf function level reset */
+ if (!e1000_check_for_rst(hw, vf))
+ igb_vf_reset_event(eth_dev, vf);
+
+ /* check & process vf mailbox messages */
+ if (!e1000_check_for_msg(hw, vf))
+ igb_rcv_msg_from_vf(eth_dev, vf);
+
+ /* check & process acks from vf */
+ if (!e1000_check_for_ack(hw, vf))
+ igb_rcv_ack_from_vf(eth_dev, vf);
+ }
+}
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+/* Bit Mask to indicate what bits required for building TX context */
+#define IGB_TX_OFFLOAD_MASK ( \
+ PKT_TX_VLAN_PKT | \
+ PKT_TX_IP_CKSUM | \
+ PKT_TX_L4_MASK)
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, 0);
+ return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb) \
+ (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+ (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct igb_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct igb_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct igb_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
+ struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint16_t reg_idx; /**< RX queue register index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+ uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
+};
+
+/**
+ * Hardware context number
+ */
+enum igb_advctx_num {
+ IGB_CTX_0 = 0, /**< CTX0 */
+ IGB_CTX_1 = 1, /**< CTX1 */
+ IGB_CTX_NUM = 2, /**< CTX_NUM */
+};
+
+/** Offload features */
+union igb_vlan_macip {
+ uint32_t data;
+ struct {
+ uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */
+ uint16_t vlan_tci;
+ /**< VLAN Tag Control Identifier (CPU order). */
+ } f;
+};
+
+/*
+ * Compare mask for vlan_macip_len.data,
+ * should be in sync with igb_vlan_macip.f layout.
+ * */
+#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
+#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
+#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
+/** MAC+IP length. */
+#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
+
+/**
+ * Strucutre to check if new context need be built
+ */
+struct igb_advctx_info {
+ uint64_t flags; /**< ol_flags related to context build. */
+ uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
+ union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct igb_tx_queue {
+ volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint32_t txd_type; /**< Device-specific TXD type */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ uint16_t tx_head;
+ /**< Index of first used TX descriptor. */
+ uint16_t queue_id; /**< TX queue index. */
+ uint16_t reg_idx; /**< TX queue register index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint32_t ctx_curr;
+ /**< Current used hardware descriptor. */
+ uint32_t ctx_start;
+ /**< Start context position for transmit queue. */
+ struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
+ /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_igb_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_igb_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+/*
+ * Macro for VMDq feature for 1 GbE NIC.
+ */
+#define E1000_VMOLR_SIZE (8)
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ * Advanced context descriptor are almost same between igb/ixgbe
+ * This is a separate function, looking for optimization opportunity here
+ * Rework required to go with the pre-defined values.
+ */
+
+static inline void
+igbe_set_xmit_ctx(struct igb_tx_queue* txq,
+ volatile struct e1000_adv_tx_context_desc *ctx_txd,
+ uint64_t ol_flags, uint32_t vlan_macip_lens)
+{
+ uint32_t type_tucmd_mlhl;
+ uint32_t mss_l4len_idx;
+ uint32_t ctx_idx, ctx_curr;
+ uint32_t cmp_mask;
+
+ ctx_curr = txq->ctx_curr;
+ ctx_idx = ctx_curr + txq->ctx_start;
+
+ cmp_mask = 0;
+ type_tucmd_mlhl = 0;
+
+ if (ol_flags & PKT_TX_VLAN_PKT) {
+ cmp_mask |= TX_VLAN_CMP_MASK;
+ }
+
+ if (ol_flags & PKT_TX_IP_CKSUM) {
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ }
+
+ /* Specify which HW CTX to upload. */
+ mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ default:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ break;
+ }
+
+ txq->ctx_cache[ctx_curr].flags = ol_flags;
+ txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
+ txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
+ vlan_macip_lens & cmp_mask;
+
+ ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
+ ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
+ ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
+ ctx_txd->seqnum_seed = 0;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
+ uint32_t vlan_macip_lens)
+{
+ /* If match with the current context */
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* If match with the second context */
+ txq->ctx_curr ^= 1;
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* Mismatch, use the previous context */
+ return (IGB_CTX_NUM);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
+ static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ return tmp;
+}
+
+static inline uint32_t
+tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
+{
+ static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
+ return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
+}
+
+uint16_t
+eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_tx_queue *txq;
+ struct igb_tx_entry *sw_ring;
+ struct igb_tx_entry *txe, *txn;
+ volatile union e1000_adv_tx_desc *txr;
+ volatile union e1000_adv_tx_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ union igb_vlan_macip vlan_macip_lens;
+ union {
+ uint16_t u16;
+ struct {
+ uint16_t l3_len:9;
+ uint16_t l2_len:7;
+ };
+ } l2_l3_len;
+ uint64_t buf_dma_addr;
+ uint32_t olinfo_status;
+ uint32_t cmd_type_len;
+ uint32_t pkt_len;
+ uint16_t slen;
+ uint64_t ol_flags;
+ uint16_t tx_end;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint64_t tx_ol_req;
+ uint32_t new_ctx = 0;
+ uint32_t ctx = 0;
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ tx_pkt = *tx_pkts++;
+ pkt_len = tx_pkt->pkt_len;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the VLAN Tag Identifier, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
+
+ ol_flags = tx_pkt->ol_flags;
+ l2_l3_len.l2_len = tx_pkt->l2_len;
+ l2_l3_len.l3_len = tx_pkt->l3_len;
+ vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci;
+ vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16;
+ tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
+
+ /* If a Context Descriptor need be built . */
+ if (tx_ol_req) {
+ ctx = what_advctx_update(txq, tx_ol_req,
+ vlan_macip_lens.data);
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == IGB_CTX_NUM);
+ ctx = txq->ctx_curr;
+ tx_last = (uint16_t) (tx_last + new_ctx);
+ }
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Check if there are enough free descriptors in the TX ring
+ * to transmit the next packet.
+ * This operation is based on the two following rules:
+ *
+ * 1- Only check that the last needed TX descriptor can be
+ * allocated (by construction, if that descriptor is free,
+ * all intermediate ones are also free).
+ *
+ * For this purpose, the index of the last TX descriptor
+ * used for a packet (the "last descriptor" of a packet)
+ * is recorded in the TX entries (the last one included)
+ * that are associated with all TX descriptors allocated
+ * for that packet.
+ *
+ * 2- Avoid to allocate the last free TX descriptor of the
+ * ring, in order to never set the TDT register with the
+ * same value stored in parallel by the NIC in the TDH
+ * register, which makes the TX engine of the NIC enter
+ * in a deadlock situation.
+ *
+ * By extension, avoid to allocate a free descriptor that
+ * belongs to the last set of free descriptors allocated
+ * to the same packet previously transmitted.
+ */
+
+ /*
+ * The "last descriptor" of the previously sent packet, if any,
+ * which used the last descriptor to allocate.
+ */
+ tx_end = sw_ring[tx_last].last_id;
+
+ /*
+ * The next descriptor following that "last descriptor" in the
+ * ring.
+ */
+ tx_end = sw_ring[tx_end].next_id;
+
+ /*
+ * The "last descriptor" associated with that next descriptor.
+ */
+ tx_end = sw_ring[tx_end].last_id;
+
+ /*
+ * Check that this descriptor is free.
+ */
+ if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
+ if (nb_tx == 0)
+ return (0);
+ goto end_of_tx;
+ }
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_ADVTXD_DTYP_DATA
+ * - E1000_ADVTXD_DCMD_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_ADVTXD_DCMD_IFCS
+ * - E1000_ADVTXD_MAC_1588
+ * - E1000_ADVTXD_DCMD_VLE
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = txq->txd_type |
+ E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (ol_flags & PKT_TX_IEEE1588_TMST)
+ cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
+#endif
+ if (tx_ol_req) {
+ /* Setup TX Advanced context descriptor if required */
+ if (new_ctx) {
+ volatile struct e1000_adv_tx_context_desc *
+ ctx_txd;
+
+ ctx_txd = (volatile struct
+ e1000_adv_tx_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+ vlan_macip_lens.data);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /* Setup the TX Advanced Data Descriptor */
+ cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
+ olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
+ olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txn = &sw_ring[txe->next_id];
+ txd = &txr[tx_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up transmit descriptor.
+ */
+ slen = (uint16_t) m_seg->data_len;
+ buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+ txd->read.buffer_addr =
+ rte_cpu_to_le_64(buf_dma_addr);
+ txd->read.cmd_type_len =
+ rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->read.olinfo_status =
+ rte_cpu_to_le_32(olinfo_status);
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ * and Report Status (RS).
+ */
+ txd->read.cmd_type_len |=
+ rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ }
+ end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT).
+ */
+ E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ txq->tx_tail = tx_id;
+
+ return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+static inline uint64_t
+rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
+{
+ uint64_t pkt_flags;
+
+ static uint64_t ip_pkt_types_map[16] = {
+ 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
+ PKT_RX_IPV6_HDR, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ };
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ static uint32_t ip_pkt_etqf_map[8] = {
+ 0, 0, 0, PKT_RX_IEEE1588_PTP,
+ 0, 0, 0, 0,
+ };
+
+ pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
+ ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#else
+ pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#endif
+ return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH);
+}
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint64_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (rx_status & E1000_RXD_STAT_TMST)
+ pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
+#endif
+ return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_status)
+{
+ /*
+ * Bit 30: IPE, IPv4 checksum error
+ * Bit 29: L4I, L4I integrity error
+ */
+
+ static uint64_t error_to_pkt_flags_map[4] = {
+ 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
+ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
+ };
+ return error_to_pkt_flags_map[(rx_status >>
+ E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
+}
+
+uint16_t
+eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_rx_queue *rxq;
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma_addr;
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint64_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rxq = rx_queue;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x pkt_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.hdr_addr = dma_addr;
+ rxdp->read.pkt_addr = dma_addr;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
+ rxq->crc_len);
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = pkt_len;
+ rxm->data_len = pkt_len;
+ rxm->port = rxq->port_id;
+
+ rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+ pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+ rxm->ol_flags = pkt_flags;
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+uint16_t
+eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_rx_queue *rxq;
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint64_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rxq = rx_queue;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x data_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.pkt_addr = dma;
+ rxdp->read.hdr_addr = dma;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
+ rxm->data_len = data_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt_len = data_len;
+ first_seg->nb_segs = 1;
+ } else {
+ first_seg->pkt_len += data_len;
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (staterr & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len = (uint16_t)
+ (last_seg->data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ first_seg->port = rxq->port_id;
+ first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
+
+ /*
+ * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
+ * set in the pkt_flags field.
+ */
+ first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+ pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+ first_seg->ol_flags = pkt_flags;
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch((char *)first_seg->buf_addr +
+ first_seg->data_off);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define IGB_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RING_DESC 32
+#define IGB_MAX_RING_DESC 4096
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+ uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+ char z_name[RTE_MEMZONE_NAMESIZE];
+ const struct rte_memzone *mz;
+
+ snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+ dev->driver->pci_drv.name, ring_name,
+ dev->data->port_id, queue_id);
+ mz = rte_memzone_lookup(z_name);
+ if (mz)
+ return mz;
+
+#ifdef RTE_LIBRTE_XEN_DOM0
+ return rte_memzone_reserve_bounded(z_name, ring_size,
+ socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
+#else
+ return rte_memzone_reserve_aligned(z_name, ring_size,
+ socket_id, 0, IGB_ALIGN);
+#endif
+}
+
+static void
+igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_tx_queue_release(struct igb_tx_queue *txq)
+{
+ if (txq != NULL) {
+ igb_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+ }
+}
+
+void
+eth_igb_tx_queue_release(void *txq)
+{
+ igb_tx_queue_release(txq);
+}
+
+static void
+igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
+{
+ txq->tx_head = 0;
+ txq->tx_tail = 0;
+ txq->ctx_curr = 0;
+ memset((void*)&txq->ctx_cache, 0,
+ IGB_CTX_NUM * sizeof(struct igb_advctx_info));
+}
+
+static void
+igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
+{
+ static const union e1000_adv_tx_desc zeroed_desc = {{0}};
+ struct igb_tx_entry *txe = txq->sw_ring;
+ uint16_t i, prev;
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ /* Zero out HW ring memory */
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ txq->tx_ring[i] = zeroed_desc;
+ }
+
+ /* Initialize ring entries */
+ prev = (uint16_t)(txq->nb_tx_desc - 1);
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
+
+ txd->wb.status = E1000_TXD_STAT_DD;
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->txd_type = E1000_ADVTXD_DTYP_DATA;
+ /* 82575 specific, each tx queue will use 2 hw contexts */
+ if (hw->mac.type == e1000_82575)
+ txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
+
+ igb_reset_tx_queue_stat(txq);
+}
+
+int
+eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct igb_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /*
+ * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
+ * driver.
+ */
+ if (tx_conf->tx_free_thresh != 0)
+ PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_rs_thresh != 0)
+ PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_thresh.wthresh == 0)
+ PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
+ "consider setting the TX WTHRESH value to 4, 8, "
+ "or 16.");
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->tx_queues[queue_idx] != NULL) {
+ igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the tx queue data structure */
+ txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
+ RTE_CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return (-ENOMEM);
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
+ tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
+ size, socket_id);
+ if (tz == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
+ txq->wthresh = 1;
+ txq->queue_id = queue_idx;
+ txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+ queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+ txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+#else
+ txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+#endif
+ txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
+ /* Allocate software ring */
+ txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(struct igb_tx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE);
+ if (txq->sw_ring == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ igb_reset_tx_queue(txq, dev);
+ dev->tx_pkt_burst = eth_igb_xmit_pkts;
+ dev->data->tx_queues[queue_idx] = txq;
+
+ return (0);
+}
+
+static void
+igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_rx_queue_release(struct igb_rx_queue *rxq)
+{
+ if (rxq != NULL) {
+ igb_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+ }
+}
+
+void
+eth_igb_rx_queue_release(void *rxq)
+{
+ igb_rx_queue_release(rxq);
+}
+
+static void
+igb_reset_rx_queue(struct igb_rx_queue *rxq)
+{
+ static const union e1000_adv_rx_desc zeroed_desc = {{0}};
+ unsigned i;
+
+ /* Zero out HW ring memory */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ rxq->rx_ring[i] = zeroed_desc;
+ }
+
+ rxq->rx_tail = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct igb_rx_queue *rxq;
+ struct e1000_hw *hw;
+ unsigned int size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return (-EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the RX queue data structure. */
+ rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
+ RTE_CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return (-ENOMEM);
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
+ rxq->wthresh = 1;
+ rxq->drop_en = rx_conf->rx_drop_en;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+ queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
+ ETHER_CRC_LEN);
+
+ /*
+ * Allocate RX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
+ rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
+ if (rz == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
+ rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+ rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+#else
+ rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+#endif
+ rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
+
+ /* Allocate software ring. */
+ rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof(struct igb_rx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE);
+ if (rxq->sw_ring == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ igb_reset_rx_queue(rxq);
+
+ return 0;
+}
+
+uint32_t
+eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define IGB_RXQ_SCAN_INTERVAL 4
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_queue *rxq;
+ uint32_t desc = 0;
+
+ if (rx_queue_id >= dev->data->nb_rx_queues) {
+ PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
+ return 0;
+ }
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+ while ((desc < rxq->nb_rx_desc) &&
+ (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
+ desc += IGB_RXQ_SCAN_INTERVAL;
+ rxdp += IGB_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return 0;
+}
+
+int
+eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_queue *rxq = rx_queue;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return 0;
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ rxdp = &rxq->rx_ring[desc];
+ return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
+}
+
+void
+igb_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct igb_tx_queue *txq;
+ struct igb_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (txq != NULL) {
+ igb_tx_queue_release_mbufs(txq);
+ igb_reset_tx_queue(txq, dev);
+ }
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (rxq != NULL) {
+ igb_rx_queue_release_mbufs(rxq);
+ igb_reset_rx_queue(rxq);
+ }
+ }
+}
+
+/**
+ * Receive Side Scaling (RSS).
+ * See section 7.1.1.7 in the following document:
+ * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
+ *
+ * Principles:
+ * The source and destination IP addresses of the IP header and the source and
+ * destination ports of TCP/UDP headers, if any, of received packets are hashed
+ * against a configurable random key to compute a 32-bit RSS hash result.
+ * The seven (7) LSBs of the 32-bit hash result are used as an index into a
+ * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
+ * RSS output index which is used as the RX queue index where to store the
+ * received packets.
+ * The following output is supplied in the RX write-back descriptor:
+ * - 32-bit result of the Microsoft RSS hash function,
+ * - 4-bit RSS type field.
+ */
+
+/*
+ * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
+ * Used as the default key.
+ */
+static uint8_t rss_intel_key[40] = {
+ 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
+ 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
+ 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
+ 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
+ 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
+};
+
+static void
+igb_rss_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc &= ~E1000_MRQC_ENABLE_MASK;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+static void
+igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
+{
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+ uint16_t i;
+
+ hash_key = rss_conf->rss_key;
+ if (hash_key != NULL) {
+ /* Fill in RSS hash key */
+ for (i = 0; i < 10; i++) {
+ rss_key = hash_key[(i * 4)];
+ rss_key |= hash_key[(i * 4) + 1] << 8;
+ rss_key |= hash_key[(i * 4) + 2] << 16;
+ rss_key |= hash_key[(i * 4) + 3] << 24;
+ E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
+ }
+ }
+
+ /* Set configured hashing protocols in MRQC register */
+ rss_hf = rss_conf->rss_hf;
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
+ if (rss_hf & ETH_RSS_IPV4)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
+ if (rss_hf & ETH_RSS_IPV6)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
+ if (rss_hf & ETH_RSS_IPV6_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
+ if (rss_hf & ETH_RSS_IPV6_TCP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
+ if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+int
+eth_igb_rss_hash_update(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Before changing anything, first check that the update RSS operation
+ * does not attempt to disable RSS, if RSS was enabled at
+ * initialization time, or does not attempt to enable RSS, if RSS was
+ * disabled at initialization time.
+ */
+ rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
+ if (rss_hf != 0) /* Enable RSS */
+ return -(EINVAL);
+ return 0; /* Nothing to do */
+ }
+ /* RSS enabled */
+ if (rss_hf == 0) /* Disable RSS */
+ return -(EINVAL);
+ igb_hw_rss_hash_set(hw, rss_conf);
+ return 0;
+}
+
+int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
+ struct rte_eth_rss_conf *rss_conf)
+{
+ struct e1000_hw *hw;
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint64_t rss_hf;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ hash_key = rss_conf->rss_key;
+ if (hash_key != NULL) {
+ /* Return RSS hash key */
+ for (i = 0; i < 10; i++) {
+ rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
+ hash_key[(i * 4)] = rss_key & 0x000000FF;
+ hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
+ hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
+ hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
+ }
+ }
+
+ /* Get RSS functions configured in MRQC register */
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
+ rss_conf->rss_hf = 0;
+ return 0;
+ }
+ rss_hf = 0;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
+ rss_hf |= ETH_RSS_IPV4;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
+ rss_hf |= ETH_RSS_IPV6;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
+ rss_hf |= ETH_RSS_IPV6_EX;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
+ rss_hf |= ETH_RSS_IPV6_TCP_EX;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
+ rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
+ if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
+ rss_hf |= ETH_RSS_IPV6_UDP_EX;
+ rss_conf->rss_hf = rss_hf;
+ return 0;
+}
+
+static void
+igb_rss_configure(struct rte_eth_dev *dev)
+{
+ struct rte_eth_rss_conf rss_conf;
+ struct e1000_hw *hw;
+ uint32_t shift;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Fill in redirection table. */
+ shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+ for (i = 0; i < 128; i++) {
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+ uint8_t q_idx;
+
+ q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
+ i % dev->data->nb_rx_queues : 0);
+ reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+ }
+
+ /*
+ * Configure the RSS key and the RSS protocols used to compute
+ * the RSS hash of input packets.
+ */
+ rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
+ if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
+ igb_rss_disable(dev);
+ return;
+ }
+ if (rss_conf.rss_key == NULL)
+ rss_conf.rss_key = rss_intel_key; /* Default hash key */
+ igb_hw_rss_hash_set(hw, &rss_conf);
+}
+
+/*
+ * Check if the mac type support VMDq or not.
+ * Return 1 if it supports, otherwise, return 0.
+ */
+static int
+igb_is_vmdq_supported(const struct rte_eth_dev *dev)
+{
+ const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ case e1000_82580:
+ case e1000_i350:
+ return 1;
+ case e1000_82540:
+ case e1000_82541:
+ case e1000_82542:
+ case e1000_82543:
+ case e1000_82544:
+ case e1000_82545:
+ case e1000_82546:
+ case e1000_82547:
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ case e1000_i210:
+ case e1000_i211:
+ default:
+ PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
+ return 0;
+ }
+}
+
+static int
+igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
+{
+ struct rte_eth_vmdq_rx_conf *cfg;
+ struct e1000_hw *hw;
+ uint32_t mrqc, vt_ctl, vmolr, rctl;
+ int i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
+
+ /* Check if mac type can support VMDq, return value of 0 means NOT support */
+ if (igb_is_vmdq_supported(dev) == 0)
+ return -1;
+
+ igb_rss_disable(dev);
+
+ /* RCTL: eanble VLAN filter */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /* MRQC: enable vmdq */
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc |= E1000_MRQC_ENABLE_VMDQ;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+ /* VTCTL: pool selection according to VLAN tag */
+ vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+ if (cfg->enable_default_pool)
+ vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
+ vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+
+ for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+ vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+ vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
+ E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
+ E1000_VMOLR_MPME);
+
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
+ vmolr |= E1000_VMOLR_AUPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
+ vmolr |= E1000_VMOLR_ROMPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
+ vmolr |= E1000_VMOLR_ROPE;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
+ vmolr |= E1000_VMOLR_BAM;
+ if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
+ vmolr |= E1000_VMOLR_MPME;
+
+ E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+ }
+
+ /*
+ * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
+ * Both 82576 and 82580 support it
+ */
+ if (hw->mac.type != e1000_i350) {
+ for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+ vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+ vmolr |= E1000_VMOLR_STRVLAN;
+ E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+ }
+ }
+
+ /* VFTA - enable all vlan filters */
+ for (i = 0; i < IGB_VFTA_SIZE; i++)
+ E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
+
+ /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
+ if (hw->mac.type != e1000_82580)
+ E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
+
+ /*
+ * RAH/RAL - allow pools to read specific mac addresses
+ * In this case, all pools should be able to read from mac addr 0
+ */
+ E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
+ E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
+
+ /* VLVF: set up filters for vlan tags as configured */
+ for (i = 0; i < cfg->nb_pool_maps; i++) {
+ /* set vlan id in VF register and set the valid bit */
+ E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
+ (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
+ ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
+ E1000_VLVF_POOLSEL_MASK)));
+ }
+
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+
+static int
+igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
+{
+ struct igb_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+
+ /* Initialize software ring entries. */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union e1000_adv_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu", rxq->queue_id);
+ return (-ENOMEM);
+ }
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+ rxd = &rxq->rx_ring[i];
+ rxd->read.hdr_addr = dma_addr;
+ rxd->read.pkt_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+#define E1000_MRQC_DEF_Q_SHIFT (3)
+static int
+igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t mrqc;
+
+ if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
+ /*
+ * SRIOV active scheme
+ * FIXME if support RSS together with VMDq & SRIOV
+ */
+ mrqc = E1000_MRQC_ENABLE_VMDQ;
+ /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
+ mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+ } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
+ /*
+ * SRIOV inactive scheme
+ */
+ switch (dev->data->dev_conf.rxmode.mq_mode) {
+ case ETH_MQ_RX_RSS:
+ igb_rss_configure(dev);
+ break;
+ case ETH_MQ_RX_VMDQ_ONLY:
+ /*Configure general VMDQ only RX parameters*/
+ igb_vmdq_rx_hw_configure(dev);
+ break;
+ case ETH_MQ_RX_NONE:
+ /* if mq_mode is none, disable rss mode.*/
+ default:
+ igb_rss_disable(dev);
+ break;
+ }
+ }
+
+ return 0;
+}
+
+int
+eth_igb_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ uint32_t rctl;
+ uint32_t rxcsum;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ srrctl = 0;
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+ rctl |= E1000_RCTL_LPE;
+
+ /*
+ * Set maximum packet length by default, and might be updated
+ * together with enabling/disabling dual VLAN.
+ */
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ VLAN_TAG_SIZE);
+ } else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ rxq->crc_len =
+ (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+ 0 : ETHER_CRC_LEN);
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ /* It adds dual VLAN length for supporting dual VLAN */
+ if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ 2 * VLAN_TAG_SIZE) > buf_size){
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG,
+ "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /* Set if packets are dropped when no descriptors available */
+ if (rxq->drop_en)
+ srrctl |= E1000_SRRCTL_DROP_EN;
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
+ }
+
+ if (dev->data->dev_conf.rxmode.enable_scatter) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup BSIZE field of RCTL register, if needed.
+ * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
+ * register, since the code above configures the SRRCTL register of
+ * the RX queue in such a case.
+ * All configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ if (rctl_bsize > 0) {
+ if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
+ rctl |= E1000_RCTL_SZ_512;
+ else /* 256 <= buf_size < 512 - use 256 */
+ rctl |= E1000_RCTL_SZ_256;
+ }
+
+ /*
+ * Configure RSS if device configured with multiple RX queues.
+ */
+ igb_dev_mq_rx_configure(dev);
+
+ /* Update the rctl since igb_dev_mq_rx_configure may change its value */
+ rctl |= E1000_READ_REG(hw, E1000_RCTL);
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= E1000_RXCSUM_PCSD;
+
+ /* Enable both L3/L4 rx checksum offload */
+ if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+ rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ else
+ rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register. */
+ if (dev->data->dev_conf.rxmode.hw_strip_crc) {
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+
+ /* set STRCRC bit in all queues */
+ if (hw->mac.type == e1000_i350 ||
+ hw->mac.type == e1000_i210 ||
+ hw->mac.type == e1000_i211 ||
+ hw->mac.type == e1000_i354) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ uint32_t dvmolr = E1000_READ_REG(hw,
+ E1000_DVMOLR(rxq->reg_idx));
+ dvmolr |= E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+ }
+ }
+ } else {
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ /* clear STRCRC bit in all queues */
+ if (hw->mac.type == e1000_i350 ||
+ hw->mac.type == e1000_i210 ||
+ hw->mac.type == e1000_i211 ||
+ hw->mac.type == e1000_i354) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ uint32_t dvmolr = E1000_READ_REG(hw,
+ E1000_DVMOLR(rxq->reg_idx));
+ dvmolr &= ~E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+ }
+ }
+ }
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igb_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ e1000_config_collision_dist(hw);
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+/*********************************************************************
+ *
+ * Enable VF receive unit.
+ *
+ **********************************************************************/
+int
+eth_igbvf_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* setup MTU */
+ e1000_rlpml_set_vf(hw,
+ (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ VLAN_TAG_SIZE));
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ /* It adds dual VLAN length for supporting dual VLAN */
+ if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+ 2 * VLAN_TAG_SIZE) > buf_size){
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG,
+ "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /* Set if packets are dropped when no descriptors available */
+ if (rxq->drop_en)
+ srrctl |= E1000_SRRCTL_DROP_EN;
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ if (hw->mac.type == e1000_vfadapt) {
+ /*
+ * Workaround of 82576 VF Erratum
+ * force set WTHRESH to 1
+ * to avoid Write-Back not triggered sometimes
+ */
+ rxdctl |= 0x10000;
+ PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
+ }
+ else
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ if (dev->data->dev_conf.rxmode.enable_scatter) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable VF transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igbvf_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ if (hw->mac.type == e1000_82576) {
+ /*
+ * Workaround of 82576 VF Erratum
+ * force set WTHRESH to 1
+ * to avoid Write-Back not triggered sometimes
+ */
+ txdctl |= 0x10000;
+ PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
+ }
+ else
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+}
+
--- /dev/null
+DPDK_2.0 {
+
+ local: *;
+};
DIRS-$(CONFIG_RTE_LIBRTE_CFGFILE) += librte_cfgfile
DIRS-$(CONFIG_RTE_LIBRTE_CMDLINE) += librte_cmdline
DIRS-$(CONFIG_RTE_LIBRTE_ETHER) += librte_ether
-DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += librte_pmd_e1000
DIRS-$(CONFIG_RTE_LIBRTE_IXGBE_PMD) += librte_pmd_ixgbe
DIRS-$(CONFIG_RTE_LIBRTE_I40E_PMD) += librte_pmd_i40e
DIRS-$(CONFIG_RTE_LIBRTE_FM10K_PMD) += librte_pmd_fm10k
+++ /dev/null
-# BSD LICENSE
-#
-# Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions
-# are met:
-#
-# * Redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in
-# the documentation and/or other materials provided with the
-# distribution.
-# * Neither the name of Intel Corporation nor the names of its
-# contributors may be used to endorse or promote products derived
-# from this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-include $(RTE_SDK)/mk/rte.vars.mk
-
-#
-# library name
-#
-LIB = librte_pmd_e1000.a
-
-CFLAGS += -O3
-CFLAGS += $(WERROR_FLAGS)
-
-EXPORT_MAP := rte_pmd_e1000_version.map
-
-LIBABIVER := 1
-
-ifeq ($(CC), icc)
-#
-# CFLAGS for icc
-#
-CFLAGS_BASE_DRIVER = -wd177 -wd181 -wd188 -wd869 -wd2259
-else
-#
-# CFLAGS for gcc
-#
-CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter
-CFLAGS_BASE_DRIVER += -Wno-unused-variable
-endif
-
-#
-# Add extra flags for base driver files (also known as shared code)
-# to disable warnings in them
-#
-BASE_DRIVER_OBJS=$(patsubst %.c,%.o,$(notdir $(wildcard $(SRCDIR)/e1000/*.c)))
-$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER)))
-
-VPATH += $(SRCDIR)/e1000
-
-#
-# all source are stored in SRCS-y
-#
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c
-SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c
-SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c
-
-# this lib depends upon:
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc
-
-include $(RTE_SDK)/mk/rte.lib.mk
+++ /dev/null
-..
- BSD LICENSE
-
- Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- * Neither the name of Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived
- from this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-This directory contains source code of FreeBSD em & igb drivers of version
-cid-shared-code.2014.04.21 released by LAD. The sub-directory of lad/
-contains the original source package.
-Few changes to the original FreeBSD sources were made to:
-- Adopt it for PMD usage mode:
- e1000_osdep.c
- e1000_osdep.h
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
- * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset,
- u16 *data);
-STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset,
- u16 data);
-STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
-STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data);
-STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data);
-STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
-
-/* A table for the GG82563 cable length where the range is defined
- * with a lower bound at "index" and the upper bound at
- * "index + 5".
- */
-STATIC const u16 e1000_gg82563_cable_length_table[] = {
- 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
-#define GG82563_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_gg82563_cable_length_table) / \
- sizeof(e1000_gg82563_cable_length_table[0]))
-
-/**
- * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_phy_params_80003es2lan");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return E1000_SUCCESS;
- } else {
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
- phy->type = e1000_phy_gg82563;
-
- phy->ops.acquire = e1000_acquire_phy_80003es2lan;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.release = e1000_release_phy_80003es2lan;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
-
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
- phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
- phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
- phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
-
- phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000_get_phy_id(hw);
-
- /* Verify phy id */
- if (phy->id != GG82563_E_PHY_ID)
- return -E1000_ERR_PHY;
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- nvm->type = e1000_nvm_eeprom_spi;
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
-
- /* Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* EEPROM access above 16k is unsupported */
- if (size > 14)
- size = 14;
- nvm->word_size = 1 << size;
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
- nvm->ops.read = e1000_read_nvm_eerd;
- nvm->ops.release = e1000_release_nvm_80003es2lan;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_80003es2lan;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_80003es2lan");
-
- /* Set media type and media-dependent function pointers */
- switch (hw->device_id) {
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
- mac->ops.setup_physical_interface =
- e1000_setup_fiber_serdes_link_generic;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- mac->ops.check_for_link = e1000_check_for_copper_link_generic;
- mac->ops.setup_physical_interface =
- e1000_setup_copper_link_80003es2lan;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
- E1000_FWSM_MODE_MASK);
- /* Adaptive IFS not supported */
- mac->adaptive_ifs = false;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_80003es2lan;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* check management mode */
- mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
-
- /* set lan id for port to determine which phy lock to use */
- hw->mac.ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
-
- hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
- hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
- hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
-}
-
-/**
- * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to acquire access rights to the correct PHY.
- **/
-STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- DEBUGFUNC("e1000_acquire_phy_80003es2lan");
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
- return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_release_phy_80003es2lan - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY.
- **/
-STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- DEBUGFUNC("e1000_release_phy_80003es2lan");
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
- e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
- * @hw: pointer to the HW structure
- *
- * Acquire the semaphore to access the Kumeran interface.
- *
- **/
-STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
-
- mask = E1000_SWFW_CSR_SM;
-
- return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
- * @hw: pointer to the HW structure
- *
- * Release the semaphore used to access the Kumeran interface
- **/
-STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
-
- mask = E1000_SWFW_CSR_SM;
-
- e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Acquire the semaphore to access the EEPROM.
- **/
-STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
-
- ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_acquire_nvm_generic(hw);
-
- if (ret_val)
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Release the semaphore used to access the EEPROM.
- **/
-STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_80003es2lan");
-
- e1000_release_nvm_generic(hw);
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 i = 0;
- s32 timeout = 50;
-
- DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
-
- while (i < timeout) {
- if (e1000_get_hw_semaphore_generic(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /* Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000_put_hw_semaphore_generic(hw);
- msec_delay_irq(5);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
-
- while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
- ; /* Empty */
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: pointer to the data returned from the operation
- *
- * Read the GG82563 PHY register.
- **/
-STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- page_select = GG82563_PHY_PAGE_SELECT;
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
- }
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
- if (ret_val) {
- e1000_release_phy_80003es2lan(hw);
- return ret_val;
- }
-
- if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
- /* The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- usec_delay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
- e1000_release_phy_80003es2lan(hw);
- return -E1000_ERR_PHY;
- }
-
- usec_delay(200);
-
- ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- usec_delay(200);
- } else {
- ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
- }
-
- e1000_release_phy_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: value to write to the register
- *
- * Write to the GG82563 PHY register.
- **/
-STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- page_select = GG82563_PHY_PAGE_SELECT;
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
- }
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
- if (ret_val) {
- e1000_release_phy_80003es2lan(hw);
- return ret_val;
- }
-
- if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
- /* The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- usec_delay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
- e1000_release_phy_80003es2lan(hw);
- return -E1000_ERR_PHY;
- }
-
- usec_delay(200);
-
- ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- usec_delay(200);
- } else {
- ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
- }
-
- e1000_release_phy_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @words: number of words to write
- * @data: buffer of data to write to the NVM
- *
- * Write "words" of data to the ESB2 NVM.
- **/
-STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- DEBUGFUNC("e1000_write_nvm_80003es2lan");
-
- return e1000_write_nvm_spi(hw, offset, words, data);
-}
-
-/**
- * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
- * @hw: pointer to the HW structure
- *
- * Wait a specific amount of time for manageability processes to complete.
- * This is a function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
-
- if (hw->bus.func == 1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
-
- while (timeout) {
- if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
- break;
- msec_delay(1);
- timeout--;
- }
- if (!timeout) {
- DEBUGOUT("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
- * @hw: pointer to the HW structure
- *
- * Force the speed and duplex settings onto the PHY. This is a
- * function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
-
- if (!(hw->phy.ops.read_reg))
- return E1000_SUCCESS;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
-
- ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- /* Reset the phy to commit changes. */
- phy_data |= MII_CR_RESET;
-
- ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
-
- if (hw->phy.autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- /* We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1000_phy_reset_dsp_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Resetting the phy means we need to verify the TX_CLK corresponds
- * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
- */
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
-
- /* In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_80003es2lan - Set approximate cable length
- * @hw: pointer to the HW structure
- *
- * Find the approximate cable length as measured by the GG82563 PHY.
- * This is a function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- DEBUGFUNC("e1000_get_cable_length_80003es2lan");
-
- if (!(hw->phy.ops.read_reg))
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
- if (ret_val)
- return ret_val;
-
- index = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
- if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
- return -E1000_ERR_PHY;
-
- phy->min_cable_length = e1000_gg82563_cable_length_table[index];
- phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_link_up_info_80003es2lan - Report speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to speed buffer
- * @duplex: pointer to duplex buffer
- *
- * Retrieve the current speed and duplex configuration.
- **/
-STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
-
- if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
- duplex);
- hw->phy.ops.cfg_on_link_up(hw);
- } else {
- ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
- speed,
- duplex);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Perform a global reset to the ESB2 controller.
- **/
-STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 kum_reg_data;
-
- DEBUGFUNC("e1000_reset_hw_80003es2lan");
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT("Issuing a global reset to MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- e1000_release_phy_80003es2lan(hw);
-
- /* Disable IBIST slave mode (far-end loopback) */
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
- if (ret_val)
- return ret_val;
- kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
- e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- kum_reg_data);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- return e1000_check_alt_mac_addr_generic(hw);
-}
-
-/**
- * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
- **/
-STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 kum_reg_data;
- u16 i;
-
- DEBUGFUNC("e1000_init_hw_80003es2lan");
-
- e1000_initialize_hw_bits_80003es2lan(hw);
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- /* An error is not fatal and we should not stop init due to this */
- if (ret_val)
- DEBUGOUT("Error initializing identification LED\n");
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
- if (ret_val)
- return ret_val;
-
- /* Disable IBIST slave mode (far-end loopback) */
- e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- &kum_reg_data);
- kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
- e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- kum_reg_data);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
-
- /* ...for both queues. */
- reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
-
- /* Enable retransmit on late collisions */
- reg_data = E1000_READ_REG(hw, E1000_TCTL);
- reg_data |= E1000_TCTL_RTLC;
- E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
- E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = E1000_READ_REG(hw, E1000_TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
-
- /* default to true to enable the MDIC W/A */
- hw->dev_spec._80003es2lan.mdic_wa_enable = true;
-
- ret_val =
- e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
- E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
- if (!ret_val) {
- if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
- E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
- hw->dev_spec._80003es2lan.mdic_wa_enable = false;
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
-
- /* Transmit Descriptor Control 0 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = E1000_READ_REG(hw, E1000_TARC(0));
- reg &= ~(0xF << 27); /* 30:27 */
- if (hw->phy.media_type != e1000_media_type_copper)
- reg &= ~(1 << 20);
- E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = E1000_READ_REG(hw, E1000_TARC(1));
- if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- E1000_WRITE_REG(hw, E1000_TARC(1), reg);
-
- /* Disable IPv6 extension header parsing because some malformed
- * IPv6 headers can hang the Rx.
- */
- reg = E1000_READ_REG(hw, E1000_RFCTL);
- reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
- E1000_WRITE_REG(hw, E1000_RFCTL, reg);
-
- return;
-}
-
-/**
- * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
- * @hw: pointer to the HW structure
- *
- * Setup some GG82563 PHY registers for obtaining link
- **/
-STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 reg;
- u16 data;
-
- DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
- data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
-
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (phy->mdix) {
- case 1:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (phy->disable_polarity_correction)
- data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = hw->phy.ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Bypass Rx and Tx FIFO's */
- reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
- data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
- if (ret_val)
- return ret_val;
-
- reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
- if (ret_val)
- return ret_val;
- data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
- if (ret_val)
- return ret_val;
-
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (!hw->mac.ops.check_mng_mode(hw)) {
- /* Enable Electrical Idle on the PHY */
- data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- data);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- data);
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_ICR_DIS_PADDING;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
- * @hw: pointer to the HW structure
- *
- * Essentially a wrapper for setting up all things "copper" related.
- * This is a function pointer entry point called by the mac module.
- **/
-STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps.
- */
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
- 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- ®_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- reg_data);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- ®_data);
- if (ret_val)
- return ret_val;
- reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val =
- e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
- * @hw: pointer to the HW structure
- * @duplex: current duplex setting
- *
- * Configure the KMRN interface by applying last minute quirks for
- * 10/100 operation.
- **/
-STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 speed;
- u16 duplex;
-
- DEBUGFUNC("e1000_configure_on_link_up");
-
- if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
- &duplex);
- if (ret_val)
- return ret_val;
-
- if (speed == SPEED_1000)
- ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
- else
- ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
- * @hw: pointer to the HW structure
- * @duplex: current duplex setting
- *
- * Configure the KMRN interface by applying last minute quirks for
- * 10/100 operation.
- **/
-STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
-{
- s32 ret_val;
- u32 tipg;
- u32 i = 0;
- u16 reg_data, reg_data2;
-
- DEBUGFUNC("e1000_configure_kmrn_for_10_100");
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val =
- e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, E1000_TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
- E1000_WRITE_REG(hw, E1000_TIPG, tipg);
-
- do {
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- ®_data);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- ®_data2);
- if (ret_val)
- return ret_val;
- i++;
- } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-}
-
-/**
- * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
- * @hw: pointer to the HW structure
- *
- * Configure the KMRN interface by applying last minute quirks for
- * gigabit operation.
- **/
-STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data, reg_data2;
- u32 tipg;
- u32 i = 0;
-
- DEBUGFUNC("e1000_configure_kmrn_for_1000");
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val =
- e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = E1000_READ_REG(hw, E1000_TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- E1000_WRITE_REG(hw, E1000_TIPG, tipg);
-
- do {
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- ®_data);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- ®_data2);
- if (ret_val)
- return ret_val;
- i++;
- } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-}
-
-/**
- * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquire semaphore, then read the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release the semaphore before exiting.
- **/
-STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- u32 kmrnctrlsta;
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
-
- ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(2);
-
- kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- e1000_release_mac_csr_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquire semaphore, then write the data to PHY register
- * at the offset using the kumeran interface. Release semaphore
- * before exiting.
- **/
-STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data)
-{
- u32 kmrnctrlsta;
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
-
- ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(2);
-
- e1000_release_mac_csr_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_80003es2lan - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
-
- /* If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- return ret_val;
-
- return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(hw->mac.ops.check_mng_mode(hw) ||
- hw->phy.ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- E1000_READ_REG(hw, E1000_ICRXPTC);
- E1000_READ_REG(hw, E1000_ICRXATC);
- E1000_READ_REG(hw, E1000_ICTXPTC);
- E1000_READ_REG(hw, E1000_ICTXATC);
- E1000_READ_REG(hw, E1000_ICTXQEC);
- E1000_READ_REG(hw, E1000_ICTXQMTC);
- E1000_READ_REG(hw, E1000_ICRXDMTC);
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_80003ES2LAN_H_
-#define _E1000_80003ES2LAN_H_
-
-#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
-#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
-#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
-#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
-
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
-#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
-
-#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
-#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
-#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
-
-#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
-#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
-
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */
-#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
-
-#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
-#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Dis */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Neg */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26)
- * 0 = <50M
- * 1 = 50-80M
- * 2 = 80-100M
- * 3 = 110-140M
- * 4 = >140M
- */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Max number of times Kumeran read/write should be validated */
-#define GG82563_MAX_KMRN_RETRY 0x5
-
-/* Power Management Control Register (Page 193, Register 20) */
-/* 1=Enable SERDES Electrical Idle */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82540EM Gigabit Ethernet Controller
- * 82540EP Gigabit Ethernet Controller
- * 82545EM Gigabit Ethernet Controller (Copper)
- * 82545EM Gigabit Ethernet Controller (Fiber)
- * 82545GM Gigabit Ethernet Controller
- * 82546EB Gigabit Ethernet Controller (Copper)
- * 82546EB Gigabit Ethernet Controller (Fiber)
- * 82546GB Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw);
-STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw);
-STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw);
-STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw);
-STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
-STATIC s32 e1000_read_mac_addr_82540(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_82540 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 10000;
- phy->type = e1000_phy_m88;
-
- /* Function Pointers */
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.read_reg = e1000_read_phy_reg_m88;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.write_reg = e1000_write_phy_reg_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82540;
-
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- goto out;
-
- /* Verify phy id */
- switch (hw->mac.type) {
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- if (phy->id == M88E1011_I_PHY_ID)
- break;
- /* Fall Through */
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- break;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82540 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
- DEBUGFUNC("e1000_init_nvm_params_82540");
-
- nvm->type = e1000_nvm_eeprom_microwire;
- nvm->delay_usec = 50;
- nvm->opcode_bits = 3;
- switch (nvm->override) {
- case e1000_nvm_override_microwire_large:
- nvm->address_bits = 8;
- nvm->word_size = 256;
- break;
- case e1000_nvm_override_microwire_small:
- nvm->address_bits = 6;
- nvm->word_size = 64;
- break;
- default:
- nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
- nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
- break;
- }
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_generic;
- nvm->ops.read = e1000_read_nvm_microwire;
- nvm->ops.release = e1000_release_nvm_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_microwire;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82540 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_init_mac_params_82540");
-
- /* Set media type */
- switch (hw->device_id) {
- case E1000_DEV_ID_82545EM_FIBER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546GB_FIBER:
- hw->phy.media_type = e1000_media_type_fiber;
- break;
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
- /* function id */
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_82540;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82540;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* physical interface setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82540
- : e1000_setup_fiber_serdes_link_82540;
- /* check for link */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- mac->ops.check_for_link = e1000_check_for_copper_link_generic;
- break;
- case e1000_media_type_fiber:
- mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
- break;
- case e1000_media_type_internal_serdes:
- mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
- break;
- default:
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- break;
- }
- /* link info */
- mac->ops.get_link_up_info =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_get_speed_and_duplex_copper_generic
- : e1000_get_speed_and_duplex_fiber_serdes_generic;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_function_pointers_82540 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82540(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82540");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82540;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
- hw->phy.ops.init_params = e1000_init_phy_params_82540;
-}
-
-/**
- * e1000_reset_hw_82540 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
-{
- u32 ctrl, manc;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_reset_hw_82540");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /*
- * Delay to allow any outstanding PCI transactions to complete
- * before resetting the device.
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
- switch (hw->mac.type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
- break;
- default:
- /*
- * These controllers can't ack the 64-bit write when
- * issuing the reset, so we use IO-mapping as a
- * workaround to issue the reset.
- */
- E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- break;
- }
-
- /* Wait for EEPROM reload */
- msec_delay(5);
-
- /* Disable HW ARPs on ASF enabled adapters */
- manc = E1000_READ_REG(hw, E1000_MANC);
- manc &= ~E1000_MANC_ARP_EN;
- E1000_WRITE_REG(hw, E1000_MANC, manc);
-
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82540 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txdctl, ctrl_ext;
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_init_hw_82540");
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
- }
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- if (mac->type < e1000_82545_rev_3)
- E1000_WRITE_REG(hw, E1000_VET, 0);
-
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
- /*
- * Avoid back to back register writes by adding the register
- * read (flush). This is to protect against some strange
- * bridge configurations that may issue Memory Write Block
- * (MWB) to our register space. The *_rev_3 hardware at
- * least doesn't respond correctly to every other dword in an
- * MWB to our register space.
- */
- E1000_WRITE_FLUSH(hw);
- }
-
- if (mac->type < e1000_82545_rev_3)
- e1000_pcix_mmrbc_workaround_generic(hw);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82540(hw);
-
- if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
- (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- /*
- * Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot.
- */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82540 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_setup_copper_link_82540");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- ret_val = e1000_set_phy_mode_82540(hw);
- if (ret_val)
- goto out;
-
- if (hw->mac.type == e1000_82545_rev_3 ||
- hw->mac.type == e1000_82546_rev_3) {
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
- &data);
- if (ret_val)
- goto out;
- data |= 0x00000008;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
- data);
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000_copper_link_setup_m88(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_setup_copper_link_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Set the output amplitude to the value in the EEPROM and adjust the VCO
- * speed to improve Bit Error Rate (BER) performance. Configures collision
- * distance and flow control for fiber and serdes links. Upon successful
- * setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
-
- switch (mac->type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- if (hw->phy.media_type == e1000_media_type_internal_serdes) {
- /*
- * If we're on serdes media, adjust the output
- * amplitude to value set in the EEPROM.
- */
- ret_val = e1000_adjust_serdes_amplitude_82540(hw);
- if (ret_val)
- goto out;
- }
- /* Adjust VCO speed to improve BER performance */
- ret_val = e1000_set_vco_speed_82540(hw);
- if (ret_val)
- goto out;
- default:
- break;
- }
-
- ret_val = e1000_setup_fiber_serdes_link_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
- * @hw: pointer to the HW structure
- *
- * Adjust the SERDES output amplitude based on the EEPROM settings.
- **/
-STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
-
- ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
- if (ret_val)
- goto out;
-
- if (nvm_data != NVM_RESERVED_WORD) {
- /* Adjust serdes output amplitude only. */
- nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
- nvm_data);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_vco_speed_82540 - Set VCO speed for better performance
- * @hw: pointer to the HW structure
- *
- * Set the VCO speed to improve Bit Error Rate (BER) performance.
- **/
-STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 default_page = 0;
- u16 phy_data;
-
- DEBUGFUNC("e1000_set_vco_speed_82540");
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
- &default_page);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
- default_page);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_phy_mode_82540 - Set PHY to class A mode
- * @hw: pointer to the HW structure
- *
- * Sets the PHY to class A mode and assumes the following operations will
- * follow to enable the new class mode:
- * 1. Do a PHY soft reset.
- * 2. Restart auto-negotiation or force link.
- **/
-STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_set_phy_mode_82540");
-
- if (hw->mac.type != e1000_82545_rev_3)
- goto out;
-
- ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
- if (ret_val) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
- 0x000B);
- if (ret_val) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
- 0x8104);
- if (ret_val) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82540");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-}
-
-/**
- * e1000_read_mac_addr_82540 - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- *
- * This version is being used over generic because of customer issues
- * with VmWare and Virtual Box when using generic. It seems in
- * the emulated 82545, RAR[0] does NOT have a valid address after a
- * reset, this older method works and using this breaks nothing for
- * these legacy adapters.
- **/
-s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 offset, nvm_data, i;
-
- DEBUGFUNC("e1000_read_mac_addr");
-
- for (i = 0; i < ETH_ADDR_LEN; i += 2) {
- offset = i >> 1;
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
- hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
- }
-
- /* Flip last bit of mac address if we're on second port */
- if (hw->bus.func == E1000_FUNC_1)
- hw->mac.perm_addr[5] ^= 1;
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-out:
- return ret_val;
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82541EI Gigabit Ethernet Controller
- * 82541ER Gigabit Ethernet Controller
- * 82541GI Gigabit Ethernet Controller
- * 82541PI Gigabit Ethernet Controller
- * 82547EI Gigabit Ethernet Controller
- * 82547GI Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw);
-STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
-STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw);
-STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
-STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
- bool link_up);
-STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
-
-STATIC const u16 e1000_igp_cable_length_table[] = {
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
- 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30,
- 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60,
- 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80,
- 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120,
- 120, 120, 120, 120, 120, 120, 120, 120};
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
- (sizeof(e1000_igp_cable_length_table) / \
- sizeof(e1000_igp_cable_length_table[0]))
-
-/**
- * e1000_init_phy_params_82541 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_phy_params_82541");
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 10000;
- phy->type = e1000_phy_igp;
-
- /* Function Pointers */
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.reset = e1000_phy_hw_reset_82541;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82541;
-
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- goto out;
-
- /* Verify phy id */
- if (phy->id != IGP01E1000_I_PHY_ID) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82541 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val = E1000_SUCCESS;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_82541");
-
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->type = e1000_nvm_eeprom_spi;
- eecd |= E1000_EECD_ADDR_BITS;
- break;
- case e1000_nvm_override_spi_small:
- nvm->type = e1000_nvm_eeprom_spi;
- eecd &= ~E1000_EECD_ADDR_BITS;
- break;
- case e1000_nvm_override_microwire_large:
- nvm->type = e1000_nvm_eeprom_microwire;
- eecd |= E1000_EECD_SIZE;
- break;
- case e1000_nvm_override_microwire_small:
- nvm->type = e1000_nvm_eeprom_microwire;
- eecd &= ~E1000_EECD_SIZE;
- break;
- default:
- nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi
- : e1000_nvm_eeprom_microwire;
- break;
- }
-
- if (nvm->type == e1000_nvm_eeprom_spi) {
- nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8;
- nvm->delay_usec = 1;
- nvm->opcode_bits = 8;
- nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8;
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_generic;
- nvm->ops.read = e1000_read_nvm_spi;
- nvm->ops.release = e1000_release_nvm_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_spi;
-
- /*
- * nvm->word_size must be discovered after the pointers
- * are set so we can verify the size from the nvm image
- * itself. Temporarily set it to a dummy value so the
- * read will work.
- */
- nvm->word_size = 64;
- ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
- if (ret_val)
- goto out;
- size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
- /*
- * if size != 0, it can be added to a constant and become
- * the left-shift value to set the word_size. Otherwise,
- * word_size stays at 64.
- */
- if (size) {
- size += NVM_WORD_SIZE_BASE_SHIFT_82541;
- nvm->word_size = 1 << size;
- }
- } else {
- nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6;
- nvm->delay_usec = 50;
- nvm->opcode_bits = 3;
- nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64;
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_generic;
- nvm->ops.read = e1000_read_nvm_microwire;
- nvm->ops.release = e1000_release_nvm_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_microwire;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_mac_params_82541 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_82541");
-
- /* Set media type */
- hw->phy.media_type = e1000_media_type_copper;
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
-
- /* Function Pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
- /* function id */
- mac->ops.set_lan_id = e1000_set_lan_id_single_port;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_82541;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82541;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* physical interface link setup */
- mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_82541;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_82541;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_82541;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82541 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82541(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82541");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82541;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
- hw->phy.ops.init_params = e1000_init_phy_params_82541;
-}
-
-/**
- * e1000_reset_hw_82541 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
-{
- u32 ledctl, ctrl, manc;
-
- DEBUGFUNC("e1000_reset_hw_82541");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /*
- * Delay to allow any outstanding PCI transactions to complete
- * before resetting the device.
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Must reset the Phy before resetting the MAC */
- if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
- switch (hw->mac.type) {
- case e1000_82541:
- case e1000_82541_rev_2:
- /*
- * These controllers can't ack the 64-bit write when
- * issuing the reset, so we use IO-mapping as a
- * workaround to issue the reset.
- */
- E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- break;
- default:
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- break;
- }
-
- /* Wait for NVM reload */
- msec_delay(20);
-
- /* Disable HW ARPs on ASF enabled adapters */
- manc = E1000_READ_REG(hw, E1000_MANC);
- manc &= ~E1000_MANC_ARP_EN;
- E1000_WRITE_REG(hw, E1000_MANC, manc);
-
- if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
- e1000_phy_init_script_82541(hw);
-
- /* Configure activity LED after Phy reset */
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- ledctl &= IGP_ACTIVITY_LED_MASK;
- ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
- }
-
- /* Once again, mask the interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
- /* Clear any pending interrupt events. */
- E1000_READ_REG(hw, E1000_ICR);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_hw_82541 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- u32 i, txdctl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_hw_82541");
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
- }
-
- /* Storing the Speed Power Down value for later use */
- ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
- &dev_spec->spd_default);
- if (ret_val)
- goto out;
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
- /*
- * Avoid back to back register writes by adding the register
- * read (flush). This is to protect against some strange
- * bridge configurations that may issue Memory Write Block
- * (MWB) to our register space.
- */
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82541(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_82541 - Report speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to speed buffer
- * @duplex: pointer to duplex buffer
- *
- * Retrieve the current speed and duplex configuration.
- **/
-STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_get_link_up_info_82541");
-
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
- if (ret_val)
- goto out;
-
- if (!phy->speed_downgraded)
- goto out;
-
- /*
- * IGP01 PHY may advertise full duplex operation after speed
- * downgrade even if it is operating at half duplex.
- * Here we set the duplex settings to match the duplex in the
- * link partner's capabilities.
- */
- ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
- if (ret_val)
- goto out;
-
- if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
- *duplex = HALF_DUPLEX;
- } else {
- ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
- if (ret_val)
- goto out;
-
- if (*speed == SPEED_100) {
- if (!(data & NWAY_LPAR_100TX_FD_CAPS))
- *duplex = HALF_DUPLEX;
- } else if (*speed == SPEED_10) {
- if (!(data & NWAY_LPAR_10T_FD_CAPS))
- *duplex = HALF_DUPLEX;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_82541 - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
-{
- s32 ret_val;
- u32 ledctl;
-
- DEBUGFUNC("e1000_phy_hw_reset_82541");
-
- ret_val = e1000_phy_hw_reset_generic(hw);
- if (ret_val)
- goto out;
-
- e1000_phy_init_script_82541(hw);
-
- if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
- /* Configure activity LED after PHY reset */
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- ledctl &= IGP_ACTIVITY_LED_MASK;
- ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82541 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- s32 ret_val;
- u32 ctrl, ledctl;
-
- DEBUGFUNC("e1000_setup_copper_link_82541");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-
- /* Earlier revs of the IGP phy require us to force MDI. */
- if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
- dev_spec->dsp_config = e1000_dsp_config_disabled;
- phy->mdix = 1;
- } else {
- dev_spec->dsp_config = e1000_dsp_config_enabled;
- }
-
- ret_val = e1000_copper_link_setup_igp(hw);
- if (ret_val)
- goto out;
-
- if (hw->mac.autoneg) {
- if (dev_spec->ffe_config == e1000_ffe_config_active)
- dev_spec->ffe_config = e1000_ffe_config_enabled;
- }
-
- /* Configure activity LED after Phy reset */
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- ledctl &= IGP_ACTIVITY_LED_MASK;
- ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
-
- ret_val = e1000_setup_copper_link_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_82541 - Check/Store link connection
- * @hw: pointer to the HW structure
- *
- * This checks the link condition of the adapter and stores the
- * results in the hw->mac structure.
- **/
-STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_check_for_link_82541");
-
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /*
- * First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
- goto out; /* No link detected */
- }
-
- mac->get_link_status = false;
-
- /*
- * Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift_generic(hw);
-
- /*
- * If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
-
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- mac->ops.config_collision_dist(hw);
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_dsp_after_link_change_82541 - Config DSP after link
- * @hw: pointer to the HW structure
- * @link_up: boolean flag for link up status
- *
- * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
- * at any other case.
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- **/
-STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
- bool link_up)
-{
- struct e1000_phy_info *phy = &hw->phy;
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- s32 ret_val;
- u32 idle_errs = 0;
- u16 phy_data, phy_saved_data, speed, duplex, i;
- u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
- IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
-
- DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
-
- if (link_up) {
- ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- goto out;
- }
-
- if (speed != SPEED_1000) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- ret_val = phy->ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
- phy->min_cable_length >= 50) {
-
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = phy->ops.read_reg(hw,
- dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = phy->ops.write_reg(hw,
- dsp_reg_array[i],
- phy_data);
- if (ret_val)
- goto out;
- }
- dev_spec->dsp_config = e1000_dsp_config_activated;
- }
-
- if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
- (phy->min_cable_length >= 50)) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /* clear previous idle error counts */
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- usec_delay(1000);
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- goto out;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- dev_spec->ffe_config = e1000_ffe_config_active;
-
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- goto out;
- break;
- }
-
- if (idle_errs)
- ffe_idle_err_timeout =
- FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- } else {
- if (dev_spec->dsp_config == e1000_dsp_config_activated) {
- /*
- * Save off the current value of register 0x2F5B
- * to be restored at the end of the routines.
- */
- ret_val = phy->ops.read_reg(hw, 0x2F5B,
- &phy_saved_data);
- if (ret_val)
- goto out;
-
- /* Disable the PHY transmitter */
- ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
- goto out;
-
- msec_delay_irq(20);
-
- ret_val = phy->ops.write_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIG);
- if (ret_val)
- goto out;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = phy->ops.read_reg(hw,
- dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = phy->ops.write_reg(hw,
- dsp_reg_array[i],
- phy_data);
- if (ret_val)
- goto out;
- }
-
- ret_val = phy->ops.write_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- goto out;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = phy->ops.write_reg(hw, 0x2F5B,
- phy_saved_data);
- if (ret_val)
- goto out;
-
- dev_spec->dsp_config = e1000_dsp_config_enabled;
- }
-
- if (dev_spec->ffe_config != e1000_ffe_config_active) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /*
- * Save off the current value of register 0x2F5B
- * to be restored at the end of the routines.
- */
- ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
- if (ret_val)
- goto out;
-
- /* Disable the PHY transmitter */
- ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
- goto out;
-
- msec_delay_irq(20);
-
- ret_val = phy->ops.write_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIG);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- goto out;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- goto out;
-
- dev_spec->ffe_config = e1000_ffe_config_enabled;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of coarse and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 i, data;
- u16 cur_agc_value, agc_value = 0;
- u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
-
- DEBUGFUNC("e1000_get_cable_length_igp_82541");
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
- if (ret_val)
- goto out;
-
- cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Bounds checking */
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0)) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- agc_value += cur_agc_value;
-
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
- agc_value -= min_agc_value;
- /* Average the three remaining channels for the length. */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Average the channels for the length. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
- IGP01E1000_AGC_RANGE)
- ? (e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE)
- : 0;
- phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_82541");
-
- switch (hw->mac.type) {
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- break;
- default:
- ret_val = e1000_set_d3_lplu_state_generic(hw, active);
- goto out;
- break;
- }
-
- ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
- if (ret_val)
- goto out;
-
- if (!active) {
- data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
- if (ret_val)
- goto out;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
- if (ret_val)
- goto out;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_led_82541 - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
-STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_led_82541");
-
- ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
- &dev_spec->spd_default);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
- (u16)(dev_spec->spd_default &
- ~IGP01E1000_GMII_SPD));
- if (ret_val)
- goto out;
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_cleanup_led_82541 - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- s32 ret_val;
-
- DEBUGFUNC("e1000_cleanup_led_82541");
-
- ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
- dev_spec->spd_default);
- if (ret_val)
- goto out;
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_init_script_82541 - Initialize GbE PHY
- * @hw: pointer to the HW structure
- *
- * Initializes the IGP PHY.
- **/
-STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
- u32 ret_val;
- u16 phy_saved_data;
-
- DEBUGFUNC("e1000_phy_init_script_82541");
-
- if (!dev_spec->phy_init_script) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /* Delay after phy reset to enable NVM configuration to load */
- msec_delay(20);
-
- /*
- * Save off the current value of register 0x2F5B to be restored at
- * the end of this routine.
- */
- ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
-
- msec_delay(20);
-
- hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
-
- msec_delay(5);
-
- switch (hw->mac.type) {
- case e1000_82541:
- case e1000_82547:
- hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
-
- hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
-
- hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
-
- hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
-
- hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
-
- hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
-
- hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
-
- hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
-
- hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
- break;
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
-
- msec_delay(20);
-
- /* Now enable the transmitter */
- hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac.type == e1000_82547) {
- u16 fused, fine, coarse;
-
- /* Move to analog registers page */
- hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
- &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS,
- &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse ==
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- hw->phy.ops.write_reg(hw,
- IGP01E1000_ANALOG_FUSE_CONTROL,
- fused);
- hw->phy.ops.write_reg(hw,
- IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_script_state_82541 - Enable/Disable PHY init script
- * @hw: pointer to the HW structure
- * @state: boolean value used to enable/disable PHY init script
- *
- * Allows the driver to enable/disable the PHY init script, if the PHY is an
- * IGP PHY.
- **/
-void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
-{
- struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-
- DEBUGFUNC("e1000_init_script_state_82541");
-
- if (hw->phy.type != e1000_phy_igp) {
- DEBUGOUT("Initialization script not necessary.\n");
- goto out;
- }
-
- dev_spec->phy_init_script = state;
-
-out:
- return;
-}
-
-/**
- * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82541");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82541_H_
-#define _E1000_82541_H_
-
-#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
-
-#define IGP01E1000_PHY_CHANNEL_NUM 4
-
-#define IGP01E1000_PHY_AGC_A 0x1172
-#define IGP01E1000_PHY_AGC_B 0x1272
-#define IGP01E1000_PHY_AGC_C 0x1472
-#define IGP01E1000_PHY_AGC_D 0x1872
-
-#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_DSP_RESET 0x1F33
-
-#define IGP01E1000_PHY_DSP_FFE 0x1F35
-#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
-
-#define IGP01E1000_IEEE_FORCE_GIG 0x0140
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7
-#define IGP01E1000_AGC_RANGE 10
-
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
-
-#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
-#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
-
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_MSE_CHANNEL_D 0x000F
-#define IGP01E1000_MSE_CHANNEL_C 0x00F0
-#define IGP01E1000_MSE_CHANNEL_B 0x0F00
-#define IGP01E1000_MSE_CHANNEL_A 0xF000
-
-
-void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82542 Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw);
-STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_82542(struct e1000_hw *hw);
-STATIC s32 e1000_led_off_82542(struct e1000_hw *hw);
-STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
-STATIC s32 e1000_read_mac_addr_82542(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_82542 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_init_phy_params_82542");
-
- phy->type = e1000_phy_none;
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82542 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
-
- DEBUGFUNC("e1000_init_nvm_params_82542");
-
- nvm->address_bits = 6;
- nvm->delay_usec = 50;
- nvm->opcode_bits = 3;
- nvm->type = e1000_nvm_eeprom_microwire;
- nvm->word_size = 64;
-
- /* Function Pointers */
- nvm->ops.read = e1000_read_nvm_microwire;
- nvm->ops.release = e1000_stop_nvm;
- nvm->ops.write = e1000_write_nvm_microwire;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82542 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_82542");
-
- /* Set media type */
- hw->phy.media_type = e1000_media_type_fiber;
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_82542;
- /* function id */
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_82542;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82542;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_82542;
- /* phy/fiber/serdes setup */
- mac->ops.setup_physical_interface =
- e1000_setup_fiber_serdes_link_generic;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
- /* set RAR */
- mac->ops.rar_set = e1000_rar_set_82542;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_82542;
- mac->ops.led_off = e1000_led_off_82542;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
- /* link info */
- mac->ops.get_link_up_info =
- e1000_get_speed_and_duplex_fiber_serdes_generic;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82542 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82542(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82542");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82542;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
- hw->phy.ops.init_params = e1000_init_phy_params_82542;
-}
-
-/**
- * e1000_get_bus_info_82542 - Obtain bus information for adapter
- * @hw: pointer to the HW structure
- *
- * This will obtain information about the HW bus for which the
- * adapter is attached and stores it in the hw structure.
- **/
-STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_get_bus_info_82542");
-
- hw->bus.type = e1000_bus_type_pci;
- hw->bus.speed = e1000_bus_speed_unknown;
- hw->bus.width = e1000_bus_width_unknown;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_hw_82542 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl;
-
- DEBUGFUNC("e1000_reset_hw_82542");
-
- if (hw->revision_id == E1000_REVISION_2) {
- DEBUGOUT("Disabling MWI on 82542 rev 2\n");
- e1000_pci_clear_mwi(hw);
- }
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /*
- * Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- hw->nvm.ops.reload(hw);
- msec_delay(2);
-
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- if (hw->revision_id == E1000_REVISION_2) {
- if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82542 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl;
- u16 i;
-
- DEBUGFUNC("e1000_init_hw_82542");
-
- /* Disabling VLAN filtering */
- E1000_WRITE_REG(hw, E1000_VET, 0);
- mac->ops.clear_vfta(hw);
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->revision_id == E1000_REVISION_2) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->revision_id == E1000_REVISION_2) {
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /*
- * Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives.
- */
- if (dev_spec->dma_fairness) {
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- /* Setup link and flow control */
- ret_val = e1000_setup_link_82542(hw);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82542(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_link_82542 - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_link_82542");
-
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- goto out;
-
- hw->fc.requested_mode &= ~e1000_fc_tx_pause;
-
- if (mac->report_tx_early)
- hw->fc.requested_mode &= ~e1000_fc_rx_pause;
-
- /*
- * Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = mac->ops.setup_physical_interface(hw);
- if (ret_val)
- goto out;
-
- /*
- * Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
-
- E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
- E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
-
- E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
- ret_val = e1000_set_fc_watermarks_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_led_on_82542 - Turn on SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED on.
- **/
-STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
-{
- u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGFUNC("e1000_led_on_82542");
-
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_82542 - Turn off SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED off.
- **/
-STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
-{
- u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGFUNC("e1000_led_off_82542");
-
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_rar_set_82542 - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- DEBUGFUNC("e1000_rar_set_82542");
-
- /*
- * HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
-}
-
-/**
- * e1000_translate_register_82542 - Translate the proper register offset
- * @reg: e1000 register to be read
- *
- * Registers in 82542 are located in different offsets than other adapters
- * even though they function in the same manner. This function takes in
- * the name of the register to read and returns the correct offset for
- * 82542 silicon.
- **/
-u32 e1000_translate_register_82542(u32 reg)
-{
- /*
- * Some of the 82542 registers are located at different
- * offsets than they are in newer adapters.
- * Despite the difference in location, the registers
- * function in the same manner.
- */
- switch (reg) {
- case E1000_RA:
- reg = 0x00040;
- break;
- case E1000_RDTR:
- reg = 0x00108;
- break;
- case E1000_RDBAL(0):
- reg = 0x00110;
- break;
- case E1000_RDBAH(0):
- reg = 0x00114;
- break;
- case E1000_RDLEN(0):
- reg = 0x00118;
- break;
- case E1000_RDH(0):
- reg = 0x00120;
- break;
- case E1000_RDT(0):
- reg = 0x00128;
- break;
- case E1000_RDBAL(1):
- reg = 0x00138;
- break;
- case E1000_RDBAH(1):
- reg = 0x0013C;
- break;
- case E1000_RDLEN(1):
- reg = 0x00140;
- break;
- case E1000_RDH(1):
- reg = 0x00148;
- break;
- case E1000_RDT(1):
- reg = 0x00150;
- break;
- case E1000_FCRTH:
- reg = 0x00160;
- break;
- case E1000_FCRTL:
- reg = 0x00168;
- break;
- case E1000_MTA:
- reg = 0x00200;
- break;
- case E1000_TDBAL(0):
- reg = 0x00420;
- break;
- case E1000_TDBAH(0):
- reg = 0x00424;
- break;
- case E1000_TDLEN(0):
- reg = 0x00428;
- break;
- case E1000_TDH(0):
- reg = 0x00430;
- break;
- case E1000_TDT(0):
- reg = 0x00438;
- break;
- case E1000_TIDV:
- reg = 0x00440;
- break;
- case E1000_VFTA:
- reg = 0x00600;
- break;
- case E1000_TDFH:
- reg = 0x08010;
- break;
- case E1000_TDFT:
- reg = 0x08018;
- break;
- default:
- break;
- }
-
- return reg;
-}
-
-/**
- * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82542");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-}
-
-/**
- * e1000_read_mac_addr_82542 - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- **/
-s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 offset, nvm_data, i;
-
- DEBUGFUNC("e1000_read_mac_addr");
-
- for (i = 0; i < ETH_ADDR_LEN; i += 2) {
- offset = i >> 1;
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
- hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
- }
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-out:
- return ret_val;
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82543GC Gigabit Ethernet Controller (Fiber)
- * 82543GC Gigabit Ethernet Controller (Copper)
- * 82544EI Gigabit Ethernet Controller (Copper)
- * 82544EI Gigabit Ethernet Controller (Fiber)
- * 82544GC Gigabit Ethernet Controller (Copper)
- * 82544GC Gigabit Ethernet Controller (LOM)
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
-STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
- u16 *data);
-STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
- u16 data);
-STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
-STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
-STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_82543(struct e1000_hw *hw);
-STATIC s32 e1000_led_off_82543(struct e1000_hw *hw);
-STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
- u32 value);
-STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
-STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
-STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
-STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
-STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
-STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
-STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
-STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
- u16 count);
-STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
-STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
-
-/**
- * e1000_init_phy_params_82543 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_init_phy_params_82543");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- goto out;
- } else {
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 10000;
- phy->type = e1000_phy_m88;
-
- /* Function Pointers */
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.read_reg = (hw->mac.type == e1000_82543)
- ? e1000_read_phy_reg_82543
- : e1000_read_phy_reg_m88;
- phy->ops.reset = (hw->mac.type == e1000_82543)
- ? e1000_phy_hw_reset_82543
- : e1000_phy_hw_reset_generic;
- phy->ops.write_reg = (hw->mac.type == e1000_82543)
- ? e1000_write_phy_reg_82543
- : e1000_write_phy_reg_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
-
- /*
- * The external PHY of the 82543 can be in a funky state.
- * Resetting helps us read the PHY registers for acquiring
- * the PHY ID.
- */
- if (!e1000_init_phy_disabled_82543(hw)) {
- ret_val = phy->ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Resetting PHY during init failed.\n");
- goto out;
- }
- msec_delay(20);
- }
-
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- goto out;
-
- /* Verify phy id */
- switch (hw->mac.type) {
- case e1000_82543:
- if (phy->id != M88E1000_E_PHY_ID) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- break;
- case e1000_82544:
- if (phy->id != M88E1000_I_PHY_ID) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- break;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82543 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
-
- DEBUGFUNC("e1000_init_nvm_params_82543");
-
- nvm->type = e1000_nvm_eeprom_microwire;
- nvm->word_size = 64;
- nvm->delay_usec = 50;
- nvm->address_bits = 6;
- nvm->opcode_bits = 3;
-
- /* Function Pointers */
- nvm->ops.read = e1000_read_nvm_microwire;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_microwire;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82543 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_82543");
-
- /* Set media type */
- switch (hw->device_id) {
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82544EI_FIBER:
- hw->phy.media_type = e1000_media_type_fiber;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
- /* function id */
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_82543;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82543;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_82543;
- /* physical interface setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
- /* check for link */
- mac->ops.check_for_link =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_check_for_copper_link_82543
- : e1000_check_for_fiber_link_82543;
- /* link info */
- mac->ops.get_link_up_info =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_get_speed_and_duplex_copper_generic
- : e1000_get_speed_and_duplex_fiber_serdes_generic;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_82543;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_82543;
- mac->ops.led_off = e1000_led_off_82543;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
-
- /* Set tbi compatibility */
- if ((hw->mac.type != e1000_82543) ||
- (hw->phy.media_type == e1000_media_type_fiber))
- e1000_set_tbi_compatibility_82543(hw, false);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82543 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82543(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82543");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82543;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
- hw->phy.ops.init_params = e1000_init_phy_params_82543;
-}
-
-/**
- * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
- * @hw: pointer to the HW structure
- *
- * Returns the current status of 10-bit Interface (TBI) compatibility
- * (enabled/disabled).
- **/
-STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
- bool state = false;
-
- DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
-
- if (hw->mac.type != e1000_82543) {
- DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
- goto out;
- }
-
- state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
-
-out:
- return state;
-}
-
-/**
- * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
- * @hw: pointer to the HW structure
- * @state: enable/disable TBI compatibility
- *
- * Enables or disabled 10-bit Interface (TBI) compatibility.
- **/
-void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
-{
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-
- DEBUGFUNC("e1000_set_tbi_compatibility_82543");
-
- if (hw->mac.type != e1000_82543) {
- DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
- goto out;
- }
-
- if (state)
- dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
- else
- dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
-
-out:
- return;
-}
-
-/**
- * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
- * @hw: pointer to the HW structure
- *
- * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
- * (enabled/disabled).
- **/
-bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
- bool state = false;
-
- DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
-
- if (hw->mac.type != e1000_82543) {
- DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
- goto out;
- }
-
- state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
-
-out:
- return state;
-}
-
-/**
- * e1000_set_tbi_sbp_82543 - Set TBI SBP
- * @hw: pointer to the HW structure
- * @state: enable/disable TBI store bad packet
- *
- * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
- **/
-STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
-{
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-
- DEBUGFUNC("e1000_set_tbi_sbp_82543");
-
- if (state && e1000_tbi_compatibility_enabled_82543(hw))
- dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
- else
- dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
-
- return;
-}
-
-/**
- * e1000_init_phy_disabled_82543 - Returns init PHY status
- * @hw: pointer to the HW structure
- *
- * Returns the current status of whether PHY initialization is disabled.
- * True if PHY initialization is disabled else false.
- **/
-STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
- bool ret_val;
-
- DEBUGFUNC("e1000_init_phy_disabled_82543");
-
- if (hw->mac.type != e1000_82543) {
- ret_val = false;
- goto out;
- }
-
- ret_val = dev_spec->init_phy_disabled;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
- * @hw: pointer to the HW structure
- * @stats: Struct containing statistic register values
- * @frame_len: The length of the frame in question
- * @mac_addr: The Ethernet destination address of the frame in question
- * @max_frame_size: The maximum frame size
- *
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- **/
-void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
- struct e1000_hw_stats *stats, u32 frame_len,
- u8 *mac_addr, u32 max_frame_size)
-{
- if (!(e1000_tbi_sbp_enabled_82543(hw)))
- goto out;
-
- /* First adjust the frame length. */
- frame_len--;
- /*
- * We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- stats->gorc += frame_len;
-
- /*
- * Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if (*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- /*
- * In this case, the hardware has over counted the number of
- * oversize frames.
- */
- if ((frame_len == max_frame_size) && (stats->roc > 0))
- stats->roc--;
-
- /*
- * Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if (frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if (frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if (frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if (frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if (frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if (frame_len == 1522) {
- stats->prc1522++;
- }
-
-out:
- return;
-}
-
-/**
- * e1000_read_phy_reg_82543 - Read PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY at offset and stores the information read to data.
- **/
-STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- u32 mdic;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_phy_reg_82543");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- ret_val = -E1000_ERR_PARAM;
- goto out;
- }
-
- /*
- * We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /*
- * Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine five different times. The format
- * of an MII read instruction consists of a shift out of 14 bits and
- * is defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Offset>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = (offset | (hw->phy.addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
-
- /*
- * Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *data = e1000_shift_in_mdi_bits_82543(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_82543 - Write PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be written
- * @data: pointer to the data to be written at offset
- *
- * Writes data to the PHY at offset.
- **/
-STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
-{
- u32 mdic;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_phy_reg_82543");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- ret_val = -E1000_ERR_PARAM;
- goto out;
- }
-
- /*
- * We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /*
- * Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (u32)data;
-
- e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
- * @hw: pointer to the HW structure
- * @ctrl: pointer to the control register
- *
- * Raise the management data input clock by setting the MDC bit in the control
- * register.
- **/
-STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
-{
- /*
- * Raise the clock input to the Management Data Clock (by setting the
- * MDC bit), and then delay a sufficient amount of time.
- */
- E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/**
- * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
- * @hw: pointer to the HW structure
- * @ctrl: pointer to the control register
- *
- * Lower the management data input clock by clearing the MDC bit in the
- * control register.
- **/
-STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
-{
- /*
- * Lower the clock input to the Management Data Clock (by clearing the
- * MDC bit), and then delay a sufficient amount of time.
- */
- E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/**
- * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
- * @hw: pointer to the HW structure
- * @data: data to send to the PHY
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the PHY. So, the value in the
- * "data" parameter will be shifted out to the PHY one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
-STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
- u16 count)
-{
- u32 ctrl, mask;
-
- /*
- * We need to shift "count" number of bits out to the PHY. So, the
- * value in the "data" parameter will be shifted out to the PHY one
- * bit at a time. In order to do this, "data" must be broken down
- * into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /*
- * A "1" is shifted out to the PHY by setting the MDIO bit to
- * "1" and then raising and lowering the Management Data Clock.
- * A "0" is shifted out to the PHY by setting the MDIO bit to
- * "0" and then raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(10);
-
- e1000_raise_mdi_clk_82543(hw, &ctrl);
- e1000_lower_mdi_clk_82543(hw, &ctrl);
-
- mask >>= 1;
- }
-}
-
-/**
- * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
- * @hw: pointer to the HW structure
- *
- * In order to read a register from the PHY, we need to shift 18 bits
- * in from the PHY. Bits are "shifted in" by raising the clock input to
- * the PHY (setting the MDC bit), and then reading the value of the data out
- * MDIO bit.
- **/
-STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
-{
- u32 ctrl;
- u16 data = 0;
- u8 i;
-
- /*
- * In order to read a register from the PHY, we need to shift in a
- * total of 18 bits from the PHY. The first two bit (turnaround)
- * times are used to avoid contention on the MDIO pin when a read
- * operation is performed. These two bits are ignored by us and
- * thrown away. Bits are "shifted in" by raising the input to the
- * Management Data Clock (setting the MDC bit) and then reading the
- * value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /*
- * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
- * input.
- */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /*
- * Raise and lower the clock before reading in the data. This accounts
- * for the turnaround bits. The first clock occurred when we clocked
- * out the last bit of the Register Address.
- */
- e1000_raise_mdi_clk_82543(hw, &ctrl);
- e1000_lower_mdi_clk_82543(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data <<= 1;
- e1000_raise_mdi_clk_82543(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- e1000_lower_mdi_clk_82543(hw, &ctrl);
- }
-
- e1000_raise_mdi_clk_82543(hw, &ctrl);
- e1000_lower_mdi_clk_82543(hw, &ctrl);
-
- return data;
-}
-
-/**
- * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
- * @hw: pointer to the HW structure
- *
- * Calls the function to force speed and duplex for the m88 PHY, and
- * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
- * then call the function for polarity reversal workaround.
- **/
-STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
-
- ret_val = e1000_phy_force_speed_duplex_m88(hw);
- if (ret_val)
- goto out;
-
- if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
- E1000_ALL_10_SPEED))
- ret_val = e1000_polarity_reversal_workaround_82543(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
- * @hw: pointer to the HW structure
- *
- * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
- * inadvertently. To workaround the issue, we disable the transmitter on
- * the PHY until we have established the link partner's link parameters.
- **/
-STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 mii_status_reg;
- u16 i;
- bool link;
-
- if (!(hw->phy.ops.write_reg))
- goto out;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- goto out;
-
- /*
- * This loop will early-out if the NO link condition has been met.
- * In other words, DO NOT use e1000_phy_has_link_generic() here.
- */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /*
- * Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- goto out;
-
- if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
- break;
- msec_delay_irq(100);
- }
-
- /* Recommended delay time after link has been lost */
- msec_delay_irq(1000);
-
- /* Now we will re-enable the transmitter on the PHY */
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- goto out;
- msec_delay_irq(50);
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- goto out;
- msec_delay_irq(50);
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- goto out;
- msec_delay_irq(50);
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- goto out;
-
- /*
- * Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
- if (ret_val)
- goto out;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_82543 - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Sets the PHY_RESET_DIR bit in the extended device control register
- * to put the PHY into a reset and waits for completion. Once the reset
- * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
- * of reset.
- **/
-STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
- s32 ret_val;
-
- DEBUGFUNC("e1000_phy_hw_reset_82543");
-
- /*
- * Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset...
- */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* ...then take it out of reset. */
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(150);
-
- if (!(hw->phy.ops.get_cfg_done))
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.get_cfg_done(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_82543 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_reset_hw_82543");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- e1000_set_tbi_sbp_82543(hw, false);
-
- /*
- * Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
- if (hw->mac.type == e1000_82543) {
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- } else {
- /*
- * The 82544 can't ACK the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround.
- */
- E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- }
-
- /*
- * After MAC reset, force reload of NVM to restore power-on
- * settings to device.
- */
- hw->nvm.ops.reload(hw);
- msec_delay(2);
-
- /* Masking off and clearing any pending interrupts */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82543 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
- u32 ctrl;
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_init_hw_82543");
-
- /* Disabling VLAN filtering */
- E1000_WRITE_REG(hw, E1000_VET, 0);
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /*
- * Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives.
- */
- if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- e1000_pcix_mmrbc_workaround_generic(hw);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82543(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_link_82543 - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM to determine the initial polarity value and write the
- * extended device control register with the information before calling
- * the generic setup link function, which does the following:
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_setup_link_82543");
-
- /*
- * Take the 4 bits from NVM word 0xF that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before phy setup.
- */
- if (hw->mac.type == e1000_82543) {
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
- ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
- NVM_SWDPIO_EXT_SHIFT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- }
-
- ret_val = e1000_setup_link_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82543 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_setup_copper_link_82543");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
- /*
- * With 82543, we need to force speed and duplex on the MAC
- * equal to what the PHY speed and duplex configuration is.
- * In addition, we need to perform a hardware reset on the
- * PHY to take it out of reset.
- */
- if (hw->mac.type == e1000_82543) {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val)
- goto out;
- } else {
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- }
-
- /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
- ret_val = e1000_copper_link_setup_m88(hw);
- if (ret_val)
- goto out;
-
- if (hw->mac.autoneg) {
- /*
- * Setup autoneg and flow control advertisement and perform
- * autonegotiation.
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- goto out;
- } else {
- /*
- * PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings.
- */
- DEBUGOUT("Forcing Speed and Duplex\n");
- ret_val = e1000_phy_force_speed_duplex_82543(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- goto out;
- }
- }
-
- /*
- * Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
- &link);
- if (ret_val)
- goto out;
-
-
- if (link) {
- DEBUGOUT("Valid link established!!!\n");
- /* Config the MAC and PHY after link is up */
- if (hw->mac.type == e1000_82544) {
- hw->mac.ops.config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy_82543(hw);
- if (ret_val)
- goto out;
- }
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- } else {
- DEBUGOUT("Unable to establish link!!!\n");
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_link_82543 - Setup link for fiber
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber links. Upon
- * successful setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_fiber_link_82543");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- hw->mac.ops.config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- goto out;
-
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-
- /*
- * For these adapters, the SW definable pin 1 is cleared when the
- * optics detect a signal. If we have a signal, then poll for a
- * "Link-Up" indication.
- */
- if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- else
- DEBUGOUT("No signal detected\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_copper_link_82543 - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks the phy for link, if link exists, do the following:
- * - check for downshift
- * - do polarity workaround (if necessary)
- * - configure collision distance
- * - configure flow control after link up
- * - configure tbi compatibility
- **/
-STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 icr, rctl;
- s32 ret_val;
- u16 speed, duplex;
- bool link;
-
- DEBUGFUNC("e1000_check_for_copper_link_82543");
-
- if (!mac->get_link_status) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link)
- goto out; /* No link detected */
-
- mac->get_link_status = false;
-
- e1000_check_downshift_generic(hw);
-
- /*
- * If we are forcing speed/duplex, then we can return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- /*
- * If speed and duplex are forced to 10H or 10F, then we will
- * implement the polarity reversal workaround. We disable
- * interrupts first, and upon returning, place the devices
- * interrupt state to its previous value except for the link
- * status change interrupt which will happened due to the
- * execution of this workaround.
- */
- if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
- E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
- ret_val = e1000_polarity_reversal_workaround_82543(hw);
- icr = E1000_READ_REG(hw, E1000_ICR);
- E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
- E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
- }
-
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- /*
- * We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if (mac->type == e1000_82544)
- hw->mac.ops.config_collision_dist(hw);
- else {
- ret_val = e1000_config_mac_to_phy_82543(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- goto out;
- }
- }
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
- /*
- * At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if (e1000_tbi_compatibility_enabled_82543(hw)) {
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /*
- * If link speed is not set to gigabit speed,
- * we do not need to enable TBI compatibility.
- */
- if (e1000_tbi_sbp_enabled_82543(hw)) {
- /*
- * If we previously were in the mode,
- * turn it off.
- */
- e1000_set_tbi_sbp_82543(hw, false);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= ~E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- }
- } else {
- /*
- * If TBI compatibility is was previously off,
- * turn it on. For compatibility with a TBI link
- * partner, we will store bad packets. Some
- * frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if (!e1000_tbi_sbp_enabled_82543(hw)) {
- e1000_set_tbi_sbp_82543(hw, true);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- }
- }
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw, ctrl, status;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_check_for_fiber_link_82543");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
- if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (!mac->autoneg_failed) {
- mac->autoneg_failed = true;
- ret_val = 0;
- goto out;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- goto out;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
- * @hw: pointer to the HW structure
- *
- * For the 82543 silicon, we need to set the MAC to match the settings
- * of the PHY, even if the PHY is auto-negotiating.
- **/
-STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_config_mac_to_phy_82543");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- /* Set the bits to force speed and duplex */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /*
- * Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- ctrl &= ~E1000_CTRL_FD;
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
-
- hw->mac.ops.config_collision_dist(hw);
-
- /*
- * Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_vfta_82543 - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: the 32-bit offset in which to write the value to.
- * @value: the 32-bit value to write at location offset.
- *
- * This writes a 32-bit value to a 32-bit offset in the VLAN filter
- * table.
- **/
-STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
-{
- u32 temp;
-
- DEBUGFUNC("e1000_write_vfta_82543");
-
- if ((hw->mac.type == e1000_82544) && (offset & 1)) {
- temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
- E1000_WRITE_FLUSH(hw);
- } else {
- e1000_write_vfta_generic(hw, offset, value);
- }
-}
-
-/**
- * e1000_led_on_82543 - Turn on SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED on.
- **/
-STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
-{
- u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGFUNC("e1000_led_on_82543");
-
- if (hw->mac.type == e1000_82544 &&
- hw->phy.media_type == e1000_media_type_copper) {
- /* Clear SW-definable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Fiber 82544 and all 82543 use this method */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_82543 - Turn off SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED off.
- **/
-STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
-{
- u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGFUNC("e1000_led_off_82543");
-
- if (hw->mac.type == e1000_82544 &&
- hw->phy.media_type == e1000_media_type_copper) {
- /* Set SW-definable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82543");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82543_H_
-#define _E1000_82543_H_
-
-#define PHY_PREAMBLE 0xFFFFFFFF
-#define PHY_PREAMBLE_SIZE 32
-#define PHY_SOF 0x1
-#define PHY_OP_READ 0x2
-#define PHY_OP_WRITE 0x1
-#define PHY_TURNAROUND 0x2
-
-#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */
-/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
-#define TBI_SBP_ENABLED 0x2
-
-void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
- struct e1000_hw_stats *stats,
- u32 frame_len, u8 *mac_addr,
- u32 max_frame_size);
-void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
- bool state);
-bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 82571EB Gigabit Ethernet Controller
- * 82571EB Gigabit Ethernet Controller (Copper)
- * 82571EB Gigabit Ethernet Controller (Fiber)
- * 82571EB Dual Port Gigabit Mezzanine Adapter
- * 82571EB Quad Port Gigabit Mezzanine Adapter
- * 82571PT Gigabit PT Quad Port Server ExpressModule
- * 82572EI Gigabit Ethernet Controller (Copper)
- * 82572EI Gigabit Ethernet Controller (Fiber)
- * 82572EI Gigabit Ethernet Controller
- * 82573V Gigabit Ethernet Controller (Copper)
- * 82573E Gigabit Ethernet Controller (Copper)
- * 82573L Gigabit Ethernet Controller
- * 82574L Gigabit Network Connection
- * 82583V Gigabit Network Connection
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
-STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
-STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw);
-STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
-STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
-STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
-STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
-STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
-STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
-STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
-STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
- bool active);
-STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
-STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_82571 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_phy_params_82571");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return E1000_SUCCESS;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82571;
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- phy->type = e1000_phy_igp_2;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- phy->ops.acquire = e1000_get_hw_semaphore_82571;
- phy->ops.release = e1000_put_hw_semaphore_82571;
- break;
- case e1000_82573:
- phy->type = e1000_phy_m88;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.read_reg = e1000_read_phy_reg_m88;
- phy->ops.write_reg = e1000_write_phy_reg_m88;
- phy->ops.acquire = e1000_get_hw_semaphore_82571;
- phy->ops.release = e1000_put_hw_semaphore_82571;
- break;
- case e1000_82574:
- case e1000_82583:
- E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
-
- phy->type = e1000_phy_bm;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.read_reg = e1000_read_phy_reg_bm2;
- phy->ops.write_reg = e1000_write_phy_reg_bm2;
- phy->ops.acquire = e1000_get_hw_semaphore_82574;
- phy->ops.release = e1000_put_hw_semaphore_82574;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000_get_phy_id_82571(hw);
- if (ret_val) {
- DEBUGOUT("Error getting PHY ID\n");
- return ret_val;
- }
-
- /* Verify phy id */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- if (phy->id != IGP01E1000_I_PHY_ID)
- ret_val = -E1000_ERR_PHY;
- break;
- case e1000_82573:
- if (phy->id != M88E1111_I_PHY_ID)
- ret_val = -E1000_ERR_PHY;
- break;
- case e1000_82574:
- case e1000_82583:
- if (phy->id != BME1000_E_PHY_ID_R2)
- ret_val = -E1000_ERR_PHY;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82571 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_82571");
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (((eecd >> 15) & 0x3) == 0x3) {
- nvm->type = e1000_nvm_flash_hw;
- nvm->word_size = 2048;
- /* Autonomous Flash update bit must be cleared due
- * to Flash update issue.
- */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- break;
- }
- /* Fall Through */
- default:
- nvm->type = e1000_nvm_eeprom_spi;
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /* Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* EEPROM access above 16k is unsupported */
- if (size > 14)
- size = 14;
- nvm->word_size = 1 << size;
- break;
- }
-
- /* Function Pointers */
- switch (hw->mac.type) {
- case e1000_82574:
- case e1000_82583:
- nvm->ops.acquire = e1000_get_hw_semaphore_82574;
- nvm->ops.release = e1000_put_hw_semaphore_82574;
- break;
- default:
- nvm->ops.acquire = e1000_acquire_nvm_82571;
- nvm->ops.release = e1000_release_nvm_82571;
- break;
- }
- nvm->ops.read = e1000_read_nvm_eerd;
- nvm->ops.update = e1000_update_nvm_checksum_82571;
- nvm->ops.validate = e1000_validate_nvm_checksum_82571;
- nvm->ops.valid_led_default = e1000_valid_led_default_82571;
- nvm->ops.write = e1000_write_nvm_82571;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82571 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 swsm = 0;
- u32 swsm2 = 0;
- bool force_clear_smbi = false;
-
- DEBUGFUNC("e1000_init_mac_params_82571");
-
- /* Set media type and media-dependent function pointers */
- switch (hw->device_id) {
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- hw->phy.media_type = e1000_media_type_fiber;
- mac->ops.setup_physical_interface =
- e1000_setup_fiber_serdes_link_82571;
- mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
- mac->ops.get_link_up_info =
- e1000_get_speed_and_duplex_fiber_serdes_generic;
- break;
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82572EI_SERDES:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- mac->ops.setup_physical_interface =
- e1000_setup_fiber_serdes_link_82571;
- mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
- mac->ops.get_link_up_info =
- e1000_get_speed_and_duplex_fiber_serdes_generic;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- mac->ops.setup_physical_interface =
- e1000_setup_copper_link_82571;
- mac->ops.check_for_link = e1000_check_for_copper_link_generic;
- mac->ops.get_link_up_info =
- e1000_get_speed_and_duplex_copper_generic;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* Adaptive IFS supported */
- mac->adaptive_ifs = true;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_82571;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82571;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_82571;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_82571;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn off LED */
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
-
- /* MAC-specific function pointers */
- switch (hw->mac.type) {
- case e1000_82573:
- mac->ops.set_lan_id = e1000_set_lan_id_single_port;
- mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.blink_led = e1000_blink_led_generic;
-
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC supported; valid only if manageability features are
- * enabled.
- */
- mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
- E1000_FWSM_MODE_MASK);
- break;
- case e1000_82574:
- case e1000_82583:
- mac->ops.set_lan_id = e1000_set_lan_id_single_port;
- mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
- mac->ops.led_on = e1000_led_on_82574;
- break;
- default:
- mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.blink_led = e1000_blink_led_generic;
-
- /* FWSM register */
- mac->has_fwsm = true;
- break;
- }
-
- /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
- * first NVM or PHY access. This should be done for single-port
- * devices, and for one port only on dual-port devices so that
- * for those devices we can still use the SMBI lock to synchronize
- * inter-port accesses to the PHY & NVM.
- */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
-
- if (!(swsm2 & E1000_SWSM2_LOCK)) {
- /* Only do this for the first interface on this card */
- E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
- E1000_SWSM2_LOCK);
- force_clear_smbi = true;
- } else {
- force_clear_smbi = false;
- }
- break;
- default:
- force_clear_smbi = true;
- break;
- }
-
- if (force_clear_smbi) {
- /* Make sure SWSM.SMBI is clear */
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (swsm & E1000_SWSM_SMBI) {
- /* This bit should not be set on a first interface, and
- * indicates that the bootagent or EFI code has
- * improperly left this bit enabled
- */
- DEBUGOUT("Please update your 82571 Bootagent\n");
- }
- E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
- }
-
- /* Initialze device specific counter of SMBI acquisition timeouts. */
- hw->dev_spec._82571.smb_counter = 0;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82571 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82571");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82571;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
- hw->phy.ops.init_params = e1000_init_phy_params_82571;
-}
-
-/**
- * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_id = 0;
-
- DEBUGFUNC("e1000_get_phy_id_82571");
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /* The 82571 firmware may still be configuring the PHY.
- * In this case, we cannot access the PHY until the
- * configuration is done. So we explicitly set the
- * PHY ID.
- */
- phy->id = IGP01E1000_I_PHY_ID;
- break;
- case e1000_82573:
- return e1000_get_phy_id(hw);
- break;
- case e1000_82574:
- case e1000_82583:
- ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id = (u32)(phy_id << 16);
- usec_delay(20);
- ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id |= (u32)(phy_id);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 sw_timeout = hw->nvm.word_size + 1;
- s32 fw_timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_82571");
-
- /* If we have timedout 3 times on trying to acquire
- * the inter-port SMBI semaphore, there is old code
- * operating on the other port, and it is not
- * releasing SMBI. Modify the number of times that
- * we try for the semaphore to interwork with this
- * older code.
- */
- if (hw->dev_spec._82571.smb_counter > 2)
- sw_timeout = 1;
-
- /* Get the SW semaphore */
- while (i < sw_timeout) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- i++;
- }
-
- if (i == sw_timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- hw->dev_spec._82571.smb_counter++;
- }
- /* Get the FW semaphore. */
- for (i = 0; i < fw_timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- }
-
- if (i == fw_timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_82571(hw);
- DEBUGOUT("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_put_hw_semaphore_82571 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
- swsm = E1000_READ_REG(hw, E1000_SWSM);
-
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
- E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore during reset.
- *
- **/
-STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_82573");
-
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- do {
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
-
- msec_delay(2);
- i++;
- } while (i < MDIO_OWNERSHIP_TIMEOUT);
-
- if (i == MDIO_OWNERSHIP_TIMEOUT) {
- /* Release semaphores */
- e1000_put_hw_semaphore_82573(hw);
- DEBUGOUT("Driver can't access the PHY\n");
- return -E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_put_hw_semaphore_82573 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used during reset.
- *
- **/
-STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- DEBUGFUNC("e1000_put_hw_semaphore_82573");
-
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-}
-
-/**
- * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM.
- *
- **/
-STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_hw_semaphore_82574");
-
- E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
- ret_val = e1000_get_hw_semaphore_82573(hw);
- if (ret_val)
- E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
- return ret_val;
-}
-
-/**
- * e1000_put_hw_semaphore_82574 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- *
- **/
-STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_put_hw_semaphore_82574");
-
- e1000_put_hw_semaphore_82573(hw);
- E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
-}
-
-/**
- * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag.
- * LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
- u32 data = E1000_READ_REG(hw, E1000_POEMB);
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82574");
-
- if (active)
- data |= E1000_PHY_CTRL_D0A_LPLU;
- else
- data &= ~E1000_PHY_CTRL_D0A_LPLU;
-
- E1000_WRITE_REG(hw, E1000_POEMB, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * The low power link up (lplu) state is set to the power management level D3
- * when active is true, else clear lplu for D3. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
- u32 data = E1000_READ_REG(hw, E1000_POEMB);
-
- DEBUGFUNC("e1000_set_d3_lplu_state_82574");
-
- if (!active) {
- data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= E1000_PHY_CTRL_NOND0A_LPLU;
- }
-
- E1000_WRITE_REG(hw, E1000_POEMB, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_acquire_nvm_82571 - Request for access to the EEPROM
- * @hw: pointer to the HW structure
- *
- * To gain access to the EEPROM, first we must obtain a hardware semaphore.
- * Then for non-82573 hardware, set the EEPROM access request bit and wait
- * for EEPROM access grant bit. If the access grant bit is not set, release
- * hardware semaphore.
- **/
-STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_82571");
-
- ret_val = e1000_get_hw_semaphore_82571(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac.type) {
- case e1000_82573:
- break;
- default:
- ret_val = e1000_acquire_nvm_generic(hw);
- break;
- }
-
- if (ret_val)
- e1000_put_hw_semaphore_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82571 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_82571");
-
- e1000_release_nvm_generic(hw);
- e1000_put_hw_semaphore_82571(hw);
-}
-
-/**
- * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
- *
- * If e1000_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_nvm_82571");
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
- break;
- case e1000_82571:
- case e1000_82572:
- ret_val = e1000_write_nvm_spi(hw, offset, words, data);
- break;
- default:
- ret_val = -E1000_ERR_NVM;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
-{
- u32 eecd;
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_update_nvm_checksum_82571");
-
- ret_val = e1000_update_nvm_checksum_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* If our nvm is an EEPROM, then we're done
- * otherwise, commit the checksum to the flash NVM.
- */
- if (hw->nvm.type != e1000_nvm_flash_hw)
- return E1000_SUCCESS;
-
- /* Check for pending operations. */
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- msec_delay(1);
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- /* Reset the firmware if using STM opcode. */
- if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
- /* The enabling of and the actual reset must be done
- * in two write cycles.
- */
- E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
- }
-
- /* Commit the write to flash */
- eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
-
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- msec_delay(1);
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_validate_nvm_checksum_82571");
-
- if (hw->nvm.type == e1000_nvm_flash_hw)
- e1000_fix_nvm_checksum_82571(hw);
-
- return e1000_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * After checking for invalid values, poll the EEPROM to ensure the previous
- * command has completed before trying to write the next word. After write
- * poll for completion.
- *
- * If e1000_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eewr = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_nvm_eewr_82571");
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
- ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
- E1000_NVM_RW_REG_START);
-
- ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
-
- E1000_WRITE_REG(hw, E1000_EEWR, eewr);
-
- ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_cfg_done_82571 - Poll for configuration done
- * @hw: pointer to the HW structure
- *
- * Reads the management control register for the config done bit to be set.
- **/
-STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
-
- DEBUGFUNC("e1000_get_cfg_done_82571");
-
- while (timeout) {
- if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
- E1000_NVM_CFG_DONE_PORT_0)
- break;
- msec_delay(1);
- timeout--;
- }
- if (!timeout) {
- DEBUGOUT("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When activating LPLU
- * this function also disables smart speed and vice versa. LPLU will not be
- * activated unless the device autonegotiation advertisement meets standards
- * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
- * pointer entry point only called by PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82571");
-
- if (!(phy->ops.read_reg))
- return E1000_SUCCESS;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_hw_82571 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
-{
- u32 ctrl, ctrl_ext, eecd, tctl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw_82571");
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- tctl &= ~E1000_TCTL_EN;
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset.
- */
- switch (hw->mac.type) {
- case e1000_82573:
- ret_val = e1000_get_hw_semaphore_82573(hw);
- break;
- case e1000_82574:
- case e1000_82583:
- ret_val = e1000_get_hw_semaphore_82574(hw);
- break;
- default:
- break;
- }
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- /* Must release MDIO ownership and mutex after MAC reset. */
- switch (hw->mac.type) {
- case e1000_82573:
- /* Release mutex only if the hw semaphore is acquired */
- if (!ret_val)
- e1000_put_hw_semaphore_82573(hw);
- break;
- case e1000_82574:
- case e1000_82583:
- /* Release mutex only if the hw semaphore is acquired */
- if (!ret_val)
- e1000_put_hw_semaphore_82574(hw);
- break;
- default:
- break;
- }
-
- if (hw->nvm.type == e1000_nvm_flash_hw) {
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
- * Need to wait for Phy configuration completion before accessing
- * NVM and Phy.
- */
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /* REQ and GNT bits need to be cleared when using AUTO_RD
- * to access the EEPROM.
- */
- eecd = E1000_READ_REG(hw, E1000_EECD);
- eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- break;
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- msec_delay(25);
- break;
- default:
- break;
- }
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- if (hw->mac.type == e1000_82571) {
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- return ret_val;
-
- e1000_set_laa_state_82571(hw, true);
- }
-
- /* Reinitialize the 82571 serdes link state machine */
- if (hw->phy.media_type == e1000_media_type_internal_serdes)
- hw->mac.serdes_link_state = e1000_serdes_link_down;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_hw_82571 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 i, rar_count = mac->rar_entry_count;
-
- DEBUGFUNC("e1000_init_hw_82571");
-
- e1000_initialize_hw_bits_82571(hw);
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- /* An error is not fatal and we should not stop init due to this */
- if (ret_val)
- DEBUGOUT("Error initializing identification LED\n");
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address.
- * If, however, a locally administered address was assigned to the
- * 82571, we must reserve a RAR for it to work around an issue where
- * resetting one port will reload the MAC on the other port.
- */
- if (e1000_get_laa_state_82571(hw))
- rar_count--;
- e1000_init_rx_addrs_generic(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
-
- /* ...for both queues. */
- switch (mac->type) {
- case e1000_82573:
- e1000_enable_tx_pkt_filtering_generic(hw);
- /* fall through */
- case e1000_82574:
- case e1000_82583:
- reg_data = E1000_READ_REG(hw, E1000_GCR);
- reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- E1000_WRITE_REG(hw, E1000_GCR, reg_data);
- break;
- default:
- reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
- break;
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_initialize_hw_bits_82571");
-
- /* Transmit Descriptor Control 0 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = E1000_READ_REG(hw, E1000_TARC(0));
- reg &= ~(0xF << 27); /* 30:27 */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
- break;
- case e1000_82574:
- case e1000_82583:
- reg |= (1 << 26);
- break;
- default:
- break;
- }
- E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = E1000_READ_REG(hw, E1000_TARC(1));
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg &= ~((1 << 29) | (1 << 30));
- reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
- if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- E1000_WRITE_REG(hw, E1000_TARC(1), reg);
- break;
- default:
- break;
- }
-
- /* Device Control */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg &= ~(1 << 29);
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
- break;
- default:
- break;
- }
-
- /* Extended Device Control */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~(1 << 23);
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
- break;
- default:
- break;
- }
-
- if (hw->mac.type == e1000_82571) {
- reg = E1000_READ_REG(hw, E1000_PBA_ECC);
- reg |= E1000_PBA_ECC_CORR_EN;
- E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
- }
-
- /* Workaround for hardware errata.
- * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
- */
- if ((hw->mac.type == e1000_82571) ||
- (hw->mac.type == e1000_82572)) {
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
- }
-
- /* Disable IPv6 extension header parsing because some malformed
- * IPv6 headers can hang the Rx.
- */
- if (hw->mac.type <= e1000_82573) {
- reg = E1000_READ_REG(hw, E1000_RFCTL);
- reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
- E1000_WRITE_REG(hw, E1000_RFCTL, reg);
- }
-
- /* PCI-Ex Control Registers */
- switch (hw->mac.type) {
- case e1000_82574:
- case e1000_82583:
- reg = E1000_READ_REG(hw, E1000_GCR);
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_GCR, reg);
-
- /* Workaround for hardware errata.
- * apply workaround for hardware errata documented in errata
- * docs Fixes issue where some error prone or unreliable PCIe
- * completions are occurring, particularly with ASPM enabled.
- * Without fix, issue can cause Tx timeouts.
- */
- reg = E1000_READ_REG(hw, E1000_GCR2);
- reg |= 1;
- E1000_WRITE_REG(hw, E1000_GCR2, reg);
- break;
- default:
- break;
- }
-
- return;
-}
-
-/**
- * e1000_clear_vfta_82571 - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
-{
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
-
- DEBUGFUNC("e1000_clear_vfta_82571");
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying
- * a single VLAN ID. The following operations
- * determine which 32b entry (i.e. offset) into the
- * array we want to set the VLAN ID (i.e. bit) of
- * the manageability unit.
- */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg =
- 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- break;
- default:
- break;
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of
- * the manageability unit.
- */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_check_mng_mode_82574 - Check manageability is enabled
- * @hw: pointer to the HW structure
- *
- * Reads the NVM Initialization Control Word 2 and returns true
- * (>0) if any manageability is enabled, else false (0).
- **/
-STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
-{
- u16 data;
-
- DEBUGFUNC("e1000_check_mng_mode_82574");
-
- hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
- return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
-}
-
-/**
- * e1000_led_on_82574 - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 i;
-
- DEBUGFUNC("e1000_led_on_82574");
-
- ctrl = hw->mac.ledctl_mode2;
- if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
- /* If no link, then turn LED on by setting the invert bit
- * for each LED that's "on" (0x0E) in ledctl_mode2.
- */
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
- }
- E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_phy_82574 - check 82574 phy hung state
- * @hw: pointer to the HW structure
- *
- * Returns whether phy is hung or not
- **/
-bool e1000_check_phy_82574(struct e1000_hw *hw)
-{
- u16 status_1kbt = 0;
- u16 receive_errors = 0;
- s32 ret_val;
-
- DEBUGFUNC("e1000_check_phy_82574");
-
- /* Read PHY Receive Error counter first, if its is max - all F's then
- * read the Base1000T status register If both are max then PHY is hung.
- */
- ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
- &receive_errors);
- if (ret_val)
- return false;
- if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
- ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
- &status_1kbt);
- if (ret_val)
- return false;
- if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
- E1000_IDLE_ERROR_COUNT_MASK)
- return true;
- }
-
- return false;
-}
-
-
-/**
- * e1000_setup_link_82571 - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_setup_link_82571");
-
- /* 82573 does not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (hw->fc.requested_mode == e1000_fc_default)
- hw->fc.requested_mode = e1000_fc_full;
- break;
- default:
- break;
- }
-
- return e1000_setup_link_generic(hw);
-}
-
-/**
- * e1000_setup_copper_link_82571 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_copper_link_82571");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- switch (hw->phy.type) {
- case e1000_phy_m88:
- case e1000_phy_bm:
- ret_val = e1000_copper_link_setup_m88(hw);
- break;
- case e1000_phy_igp_2:
- ret_val = e1000_copper_link_setup_igp(hw);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- return ret_val;
-
- return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes links.
- * Upon successful setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /* If SerDes loopback mode is entered, there is no form
- * of reset to take the adapter out of that mode. So we
- * have to explicitly take the adapter out of loopback
- * mode. This prevents drivers from twiddling their thumbs
- * if another tool failed to take it out of loopback mode.
- */
- E1000_WRITE_REG(hw, E1000_SCTL,
- E1000_SCTL_DISABLE_SERDES_LOOPBACK);
- break;
- default:
- break;
- }
-
- return e1000_setup_fiber_serdes_link_generic(hw);
-}
-
-/**
- * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Reports the link state as up or down.
- *
- * If autonegotiation is supported by the link partner, the link state is
- * determined by the result of autonegotiation. This is the most likely case.
- * If autonegotiation is not supported by the link partner, and the link
- * has a valid signal, force the link up.
- *
- * The link state is represented internally here by 4 states:
- *
- * 1) down
- * 2) autoneg_progress
- * 3) autoneg_complete (the link successfully autonegotiated)
- * 4) forced_up (the link has been forced up, it did not autonegotiate)
- *
- **/
-STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- u32 txcw;
- u32 i;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_check_for_serdes_link_82571");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- E1000_READ_REG(hw, E1000_RXCW);
- /* SYNCH bit and IV bit are sticky */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
- /* Receiver is synchronized with no invalid bits. */
- switch (mac->serdes_link_state) {
- case e1000_serdes_link_autoneg_complete:
- if (!(status & E1000_STATUS_LU)) {
- /* We have lost link, retry autoneg before
- * reporting link failure
- */
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- DEBUGOUT("AN_UP -> AN_PROG\n");
- } else {
- mac->serdes_has_link = true;
- }
- break;
-
- case e1000_serdes_link_forced_up:
- /* If we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable
- * forced link in the Device Control register in an
- * attempt to auto-negotiate with our link partner.
- */
- if (rxcw & E1000_RXCW_C) {
- /* Enable autoneg, and unforce link up */
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL,
- (ctrl & ~E1000_CTRL_SLU));
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- DEBUGOUT("FORCED_UP -> AN_PROG\n");
- } else {
- mac->serdes_has_link = true;
- }
- break;
-
- case e1000_serdes_link_autoneg_progress:
- if (rxcw & E1000_RXCW_C) {
- /* We received /C/ ordered sets, meaning the
- * link partner has autonegotiated, and we can
- * trust the Link Up (LU) status bit.
- */
- if (status & E1000_STATUS_LU) {
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_complete;
- DEBUGOUT("AN_PROG -> AN_UP\n");
- mac->serdes_has_link = true;
- } else {
- /* Autoneg completed, but failed. */
- mac->serdes_link_state =
- e1000_serdes_link_down;
- DEBUGOUT("AN_PROG -> DOWN\n");
- }
- } else {
- /* The link partner did not autoneg.
- * Force link up and full duplex, and change
- * state to forced.
- */
- E1000_WRITE_REG(hw, E1000_TXCW,
- (mac->txcw & ~E1000_TXCW_ANE));
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after link up. */
- ret_val =
- e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error config flow control\n");
- break;
- }
- mac->serdes_link_state =
- e1000_serdes_link_forced_up;
- mac->serdes_has_link = true;
- DEBUGOUT("AN_PROG -> FORCED_UP\n");
- }
- break;
-
- case e1000_serdes_link_down:
- default:
- /* The link was down but the receiver has now gained
- * valid sync, so lets see if we can bring the link
- * up.
- */
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
- ~E1000_CTRL_SLU));
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- DEBUGOUT("DOWN -> AN_PROG\n");
- break;
- }
- } else {
- if (!(rxcw & E1000_RXCW_SYNCH)) {
- mac->serdes_has_link = false;
- mac->serdes_link_state = e1000_serdes_link_down;
- DEBUGOUT("ANYSTATE -> DOWN\n");
- } else {
- /* Check several times, if SYNCH bit and CONFIG
- * bit both are consistently 1 then simply ignore
- * the IV bit and restart Autoneg
- */
- for (i = 0; i < AN_RETRY_COUNT; i++) {
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if ((rxcw & E1000_RXCW_SYNCH) &&
- (rxcw & E1000_RXCW_C))
- continue;
-
- if (rxcw & E1000_RXCW_IV) {
- mac->serdes_has_link = false;
- mac->serdes_link_state =
- e1000_serdes_link_down;
- DEBUGOUT("ANYSTATE -> DOWN\n");
- break;
- }
- }
-
- if (i == AN_RETRY_COUNT) {
- txcw = E1000_READ_REG(hw, E1000_TXCW);
- txcw |= E1000_TXCW_ANE;
- E1000_WRITE_REG(hw, E1000_TXCW, txcw);
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- DEBUGOUT("ANYSTATE -> AN_PROG\n");
- }
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_valid_led_default_82571 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_82571");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (*data == ID_LED_RESERVED_F746)
- *data = ID_LED_DEFAULT_82573;
- break;
- default:
- if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_laa_state_82571 - Get locally administered address state
- * @hw: pointer to the HW structure
- *
- * Retrieve and return the current locally administered address state.
- **/
-bool e1000_get_laa_state_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_get_laa_state_82571");
-
- if (hw->mac.type != e1000_82571)
- return false;
-
- return hw->dev_spec._82571.laa_is_present;
-}
-
-/**
- * e1000_set_laa_state_82571 - Set locally administered address state
- * @hw: pointer to the HW structure
- * @state: enable/disable locally administered address
- *
- * Enable/Disable the current locally administered address state.
- **/
-void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
-{
- DEBUGFUNC("e1000_set_laa_state_82571");
-
- if (hw->mac.type != e1000_82571)
- return;
-
- hw->dev_spec._82571.laa_is_present = state;
-
- /* If workaround is activated... */
- if (state)
- /* Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed, the actual LAA is in one of the RARs and no
- * incoming packets directed to this port are dropped.
- * Eventually the LAA will be in RAR[0] and RAR[14].
- */
- hw->mac.ops.rar_set(hw, hw->mac.addr,
- hw->mac.rar_entry_count - 1);
- return;
-}
-
-/**
- * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Verifies that the EEPROM has completed the update. After updating the
- * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
- * the checksum fix is not implemented, we need to set the bit and update
- * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
- * we need to return bad checksum.
- **/
-STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_fix_nvm_checksum_82571");
-
- if (nvm->type != e1000_nvm_flash_hw)
- return E1000_SUCCESS;
-
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed.
- */
- ret_val = nvm->ops.read(hw, 0x10, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x10)) {
- /* Read 0x23 and check bit 15. This bit is a 1
- * when the checksum has already been fixed. If
- * the checksum is still wrong and this bit is a
- * 1, we need to return bad checksum. Otherwise,
- * we need to set this bit to a 1 and update the
- * checksum.
- */
- ret_val = nvm->ops.read(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x8000)) {
- data |= 0x8000;
- ret_val = nvm->ops.write(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = nvm->ops.update(hw);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-
-/**
- * e1000_read_mac_addr_82571 - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_read_mac_addr_82571");
-
- if (hw->mac.type == e1000_82571) {
- s32 ret_val;
-
- /* If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- struct e1000_mac_info *mac = &hw->mac;
-
- if (!phy->ops.check_reset_block)
- return;
-
- /* If the management interface is not enabled, then power down */
- if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82571");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- E1000_READ_REG(hw, E1000_ICRXPTC);
- E1000_READ_REG(hw, E1000_ICRXATC);
- E1000_READ_REG(hw, E1000_ICTXPTC);
- E1000_READ_REG(hw, E1000_ICTXATC);
- E1000_READ_REG(hw, E1000_ICTXQEC);
- E1000_READ_REG(hw, E1000_ICTXQMTC);
- E1000_READ_REG(hw, E1000_ICRXDMTC);
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82571_H_
-#define _E1000_82571_H_
-
-#define ID_LED_RESERVED_F746 0xF746
-#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_OFF1_ON2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
-
-/* Intr Throttling - RW */
-#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n)))
-
-#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAC_MASK_82574 0x01F00000
-
-#define E1000_IVAR_INT_ALLOC_VALID 0x8
-
-/* Manageability Operation Mode mask */
-#define E1000_NVM_INIT_CTRL2_MNGM 0x6000
-
-#define E1000_BASE1000T_STATUS 10
-#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
-#define E1000_RECEIVE_ERROR_COUNTER 21
-#define E1000_RECEIVE_ERROR_MAX 0xFFFF
-bool e1000_check_phy_82574(struct e1000_hw *hw);
-bool e1000_get_laa_state_82571(struct e1000_hw *hw);
-void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82575EB Gigabit Network Connection
- * 82575EB Gigabit Backplane Connection
- * 82575GB Gigabit Network Connection
- * 82576 Gigabit Network Connection
- * 82576 Quad Port Gigabit Mezzanine Adapter
- * 82580 Gigabit Network Connection
- * I350 Gigabit Network Connection
- */
-
-#include "e1000_api.h"
-#include "e1000_i210.h"
-
-STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
-STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw);
-STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
-STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data);
-STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw);
-STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 *data);
-STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 data);
-STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
-STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
-STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw);
-STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
-STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
-STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
- u32 offset, u16 data);
-STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
-STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw);
-STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
-STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
-STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
-STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
-STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
-STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
-STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
-STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
-STATIC void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
-STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw);
-
-STATIC void e1000_i2c_start(struct e1000_hw *hw);
-STATIC void e1000_i2c_stop(struct e1000_hw *hw);
-STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
-STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
-STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw);
-STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
-STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
-STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
-STATIC bool e1000_get_i2c_data(u32 *i2cctl);
-
-STATIC const u16 e1000_82580_rxpbs_table[] = {
- 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
-#define E1000_82580_RXPBS_TABLE_SIZE \
- (sizeof(e1000_82580_rxpbs_table) / \
- sizeof(e1000_82580_rxpbs_table[0]))
-
-
-/**
- * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
- * @hw: pointer to the HW structure
- *
- * Called to determine if the I2C pins are being used for I2C or as an
- * external MDIO interface since the two options are mutually exclusive.
- **/
-STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
-{
- u32 reg = 0;
- bool ext_mdio = false;
-
- DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
-
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- reg = E1000_READ_REG(hw, E1000_MDIC);
- ext_mdio = !!(reg & E1000_MDIC_DEST);
- break;
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- case e1000_i210:
- case e1000_i211:
- reg = E1000_READ_REG(hw, E1000_MDICNFG);
- ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
- break;
- default:
- break;
- }
- return ext_mdio;
-}
-
-/**
- * e1000_init_phy_params_82575 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_init_phy_params_82575");
-
- phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
- phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- goto out;
- }
-
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82575;
-
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_phy_82575;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
- phy->ops.release = e1000_release_phy_82575;
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
- if (e1000_sgmii_active_82575(hw)) {
- phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- } else {
- phy->ops.reset = e1000_phy_hw_reset_generic;
- ctrl_ext &= ~E1000_CTRL_I2C_ENA;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- e1000_reset_mdicnfg_82580(hw);
-
- if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
- phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
- phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
- } else {
- switch (hw->mac.type) {
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- phy->ops.read_reg = e1000_read_phy_reg_82580;
- phy->ops.write_reg = e1000_write_phy_reg_82580;
- break;
- case e1000_i210:
- case e1000_i211:
- phy->ops.read_reg = e1000_read_phy_reg_gs40g;
- phy->ops.write_reg = e1000_write_phy_reg_gs40g;
- break;
- default:
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- }
- }
-
- /* Set phy->phy_addr and phy->id. */
- ret_val = e1000_get_phy_id_82575(hw);
-
- /* Verify phy id and set remaining function pointers */
- switch (phy->id) {
- case M88E1543_E_PHY_ID:
- case M88E1512_E_PHY_ID:
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- phy->type = e1000_phy_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- if (phy->id == I347AT4_E_PHY_ID ||
- phy->id == M88E1112_E_PHY_ID ||
- phy->id == M88E1340M_E_PHY_ID)
- phy->ops.get_cable_length =
- e1000_get_cable_length_m88_gen2;
- else if (phy->id == M88E1543_E_PHY_ID ||
- phy->id == M88E1512_E_PHY_ID)
- phy->ops.get_cable_length =
- e1000_get_cable_length_m88_gen2;
- else
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- /* Check if this PHY is confgured for media swap. */
- if (phy->id == M88E1112_E_PHY_ID) {
- u16 data;
-
- ret_val = phy->ops.write_reg(hw,
- E1000_M88E1112_PAGE_ADDR,
- 2);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw,
- E1000_M88E1112_MAC_CTRL_1,
- &data);
- if (ret_val)
- goto out;
-
- data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
- E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
- if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
- data == E1000_M88E1112_AUTO_COPPER_BASEX)
- hw->mac.ops.check_for_link =
- e1000_check_for_link_media_swap;
- }
- if (phy->id == M88E1512_E_PHY_ID) {
- ret_val = e1000_initialize_M88E1512_phy(hw);
- if (ret_val)
- goto out;
- }
- break;
- case IGP03E1000_E_PHY_ID:
- case IGP04E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
- break;
- case I82580_I_PHY_ID:
- case I350_I_PHY_ID:
- phy->type = e1000_phy_82580;
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex =
- e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
- break;
- case I210_I_PHY_ID:
- phy->type = e1000_phy_i210;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82575 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_82575");
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /*
- * Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* Just in case size is out of range, cap it to the largest
- * EEPROM size supported
- */
- if (size > 15)
- size = 15;
-
- nvm->word_size = 1 << size;
- if (hw->mac.type < e1000_i210) {
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
-
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
- 16 : 8;
- break;
- }
- if (nvm->word_size == (1 << 15))
- nvm->page_size = 128;
-
- nvm->type = e1000_nvm_eeprom_spi;
- } else {
- nvm->type = e1000_nvm_flash_hw;
- }
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_82575;
- nvm->ops.release = e1000_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = e1000_read_nvm_eerd;
- else
- nvm->ops.read = e1000_read_nvm_spi;
-
- nvm->ops.write = e1000_write_nvm_spi;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_82575;
-
- /* override generic family function pointers for specific descendants */
- switch (hw->mac.type) {
- case e1000_82580:
- nvm->ops.validate = e1000_validate_nvm_checksum_82580;
- nvm->ops.update = e1000_update_nvm_checksum_82580;
- break;
- case e1000_i350:
- case e1000_i354:
- nvm->ops.validate = e1000_validate_nvm_checksum_i350;
- nvm->ops.update = e1000_update_nvm_checksum_i350;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82575 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-
- DEBUGFUNC("e1000_init_mac_params_82575");
-
- /* Derives media type */
- e1000_get_media_type_82575(hw);
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set uta register count */
- mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
- if (mac->type == e1000_82576)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
- if (mac->type == e1000_82580)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
- if (mac->type == e1000_i350 || mac->type == e1000_i354)
- mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
-
- /* Enable EEE default settings for EEE supported devices */
- if (mac->type >= e1000_i350)
- dev_spec->eee_disable = false;
-
- /* Allow a single clear of the SW semaphore on I210 and newer */
- if (mac->type >= e1000_i210)
- dev_spec->clear_semaphore_once = true;
-
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid =
- !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
- /* reset */
- if (mac->type >= e1000_82580)
- mac->ops.reset_hw = e1000_reset_hw_82580;
- else
- mac->ops.reset_hw = e1000_reset_hw_82575;
- /* hw initialization */
- if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
- mac->ops.init_hw = e1000_init_hw_i210;
- else
- mac->ops.init_hw = e1000_init_hw_82575;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* physical interface link setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
- /* physical interface shutdown */
- mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
- /* physical interface power up */
- mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_82575;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
- /* configure collision distance */
- mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_i350;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_i350;
- } else {
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- }
- if (hw->mac.type >= e1000_82580)
- mac->ops.validate_mdi_setting =
- e1000_validate_mdi_setting_crossover_generic;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
- /* acquire SW_FW sync */
- mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
- mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
- if (mac->type >= e1000_i210) {
- mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
- mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
- }
-
- /* set lan id for port to determine which phy lock to use */
- hw->mac.ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82575 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82575");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82575;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
- hw->phy.ops.init_params = e1000_init_phy_params_82575;
- hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
-}
-
-/**
- * e1000_acquire_phy_82575 - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * Acquire access rights to the correct PHY.
- **/
-STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_acquire_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- return hw->mac.ops.acquire_swfw_sync(hw, mask);
-}
-
-/**
- * e1000_release_phy_82575 - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY.
- **/
-STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_release_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- hw->mac.ops.release_swfw_sync(hw, mask);
-}
-
-/**
- * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the serial gigabit media independent
- * interface and stores the retrieved information in data.
- **/
-STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %u is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset using the serial gigabit
- * media independent interface.
- **/
-STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_id_82575 - Retrieve PHY addr and id
- * @hw: pointer to the HW structure
- *
- * Retrieves the PHY address and ID for both PHY's which do and do not use
- * sgmi interface.
- **/
-STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_id;
- u32 ctrl_ext;
- u32 mdic;
-
- DEBUGFUNC("e1000_get_phy_id_82575");
-
- /* some i354 devices need an extra read for phy id */
- if (hw->mac.type == e1000_i354)
- e1000_get_phy_id(hw);
-
- /*
- * For SGMII PHYs, we try the list of possible addresses until
- * we find one that works. For non-SGMII PHYs
- * (e.g. integrated copper PHYs), an address of 1 should
- * work. The result of this function should mean phy->phy_addr
- * and phy->id are set correctly.
- */
- if (!e1000_sgmii_active_82575(hw)) {
- phy->addr = 1;
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- if (e1000_sgmii_uses_mdio_82575(hw)) {
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- mdic &= E1000_MDIC_PHY_MASK;
- phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
- break;
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- case e1000_i210:
- case e1000_i211:
- mdic = E1000_READ_REG(hw, E1000_MDICNFG);
- mdic &= E1000_MDICNFG_PHY_MASK;
- phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- break;
- }
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- /* Power on sgmii phy if it is disabled */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
- E1000_WRITE_FLUSH(hw);
- msec_delay(300);
-
- /*
- * The address field in the I2CCMD register is 3 bits and 0 is invalid.
- * Therefore, we need to test 1-7
- */
- for (phy->addr = 1; phy->addr < 8; phy->addr++) {
- ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
- if (ret_val == E1000_SUCCESS) {
- DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
- phy_id, phy->addr);
- /*
- * At the time of this writing, The M88 part is
- * the only supported SGMII PHY product.
- */
- if (phy_id == M88_VENDOR)
- break;
- } else {
- DEBUGOUT1("PHY address %u was unreadable\n",
- phy->addr);
- }
- }
-
- /* A valid PHY type couldn't be found. */
- if (phy->addr == 8) {
- phy->addr = 0;
- ret_val = -E1000_ERR_PHY;
- } else {
- ret_val = e1000_get_phy_id(hw);
- }
-
- /* restore previous sfp cage power state */
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY using the serial gigabit media independent interface.
- **/
-STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- struct e1000_phy_info *phy = &hw->phy;
-
- DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
-
- /*
- * This isn't a true "hard" reset, but is the only reset
- * available to us at this time.
- */
-
- DEBUGOUT("Soft resetting SGMII attached PHY...\n");
-
- if (!(hw->phy.ops.write_reg))
- goto out;
-
- /*
- * SFP documentation requires the following to configure the SPF module
- * to work on SGMII. No further documentation is given.
- */
- ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.commit(hw);
- if (ret_val)
- goto out;
-
- if (phy->id == M88E1512_E_PHY_ID)
- ret_val = e1000_initialize_M88E1512_phy(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82575");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- goto out;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- goto out;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (active) {
- data |= E1000_82580_PM_D0_LPLU;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- } else {
- data &= ~E1000_82580_PM_D0_LPLU;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on)
- data |= E1000_82580_PM_SPD;
- else if (phy->smart_speed == e1000_smart_speed_off)
- data &= ~E1000_82580_PM_SPD;
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (!active) {
- data &= ~E1000_82580_PM_D3_LPLU;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on)
- data |= E1000_82580_PM_SPD;
- else if (phy->smart_speed == e1000_smart_speed_off)
- data &= ~E1000_82580_PM_SPD;
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= E1000_82580_PM_D3_LPLU;
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_acquire_nvm_82575 - Request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_82575");
-
- ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- goto out;
-
- /*
- * Check if there is some access
- * error this access may hook on
- */
- if (hw->mac.type == e1000_i350) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
- E1000_EECD_TIMEOUT)) {
- /* Clear all access error flags */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_ERROR_CLR);
- DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
- }
- }
- if (hw->mac.type == e1000_82580) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & E1000_EECD_BLOCKED) {
- /* Clear access error flag */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_BLOCKED);
- DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
- }
- }
-
-
- ret_val = e1000_acquire_nvm_generic(hw);
- if (ret_val)
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82575 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- **/
-STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_82575");
-
- e1000_release_nvm_generic(hw);
-
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 ret_val = E1000_SUCCESS;
- s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
- DEBUGFUNC("e1000_acquire_swfw_sync_82575");
-
- while (i < timeout) {
- if (e1000_get_hw_semaphore_generic(hw)) {
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /*
- * Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000_put_hw_semaphore_generic(hw);
- msec_delay_irq(5);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- DEBUGFUNC("e1000_release_swfw_sync_82575");
-
- while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
- ; /* Empty */
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- * e1000_get_cfg_done_82575 - Read config done bit
- * @hw: pointer to the HW structure
- *
- * Read the management control register for the config done bit for
- * completion status. NOTE: silicon which is EEPROM-less will fail trying
- * to read the config done bit, so an error is *ONLY* logged and returns
- * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
- * would not be able to be reset or change link.
- **/
-STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- DEBUGFUNC("e1000_get_cfg_done_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_NVM_CFG_DONE_PORT_2;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_NVM_CFG_DONE_PORT_3;
- while (timeout) {
- if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
- break;
- msec_delay(1);
- timeout--;
- }
- if (!timeout)
- DEBUGOUT("MNG configuration cycle has not completed.\n");
-
- /* If EEPROM is not marked present, init the PHY manually */
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
- (hw->phy.type == e1000_phy_igp_3))
- e1000_phy_init_script_igp3(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_82575 - Get link speed/duplex info
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * This is a wrapper function, if using the serial gigabit media independent
- * interface, use PCS to retrieve the link speed and duplex information.
- * Otherwise, use the generic function to get the link speed and duplex info.
- **/
-STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_link_up_info_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper)
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
- duplex);
- else
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
- duplex);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_82575 - Check for link
- * @hw: pointer to the HW structure
- *
- * If sgmii is enabled, then use the pcs register to determine link, otherwise
- * use the generic interface for determining link.
- **/
-STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_check_for_link_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
- &duplex);
- /*
- * Use this flag to determine if link needs to be checked or
- * not. If we have link clear the flag so that we do not
- * continue to check for link.
- */
- hw->mac.get_link_status = !hw->mac.serdes_has_link;
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
- } else {
- ret_val = e1000_check_for_copper_link_generic(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_media_swap - Check which M88E1112 interface linked
- * @hw: pointer to the HW structure
- *
- * Poll the M88E1112 interfaces to see which interface achieved link.
- */
-STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- u8 port = 0;
-
- DEBUGFUNC("e1000_check_for_link_media_swap");
-
- /* Check the copper medium. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if (data & E1000_M88E1112_STATUS_LINK)
- port = E1000_MEDIA_PORT_COPPER;
-
- /* Check the other medium. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- /* reset page to 0 */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
- if (ret_val)
- return ret_val;
-
- if (data & E1000_M88E1112_STATUS_LINK)
- port = E1000_MEDIA_PORT_OTHER;
-
- /* Determine if a swap needs to happen. */
- if (port && (hw->dev_spec._82575.media_port != port)) {
- hw->dev_spec._82575.media_port = port;
- hw->dev_spec._82575.media_changed = true;
- } else {
- ret_val = e1000_check_for_link_82575(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
- * @hw: pointer to the HW structure
- **/
-STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_power_up_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- /* Enable PCS to turn on link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg |= E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* Power up the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-}
-
-/**
- * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Using the physical coding sub-layer (PCS), retrieve the current speed and
- * duplex, then store the values in the pointers provided.
- **/
-STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 pcs;
- u32 status;
-
- DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
-
- /*
- * Read the PCS Status register for link state. For non-copper mode,
- * the status register is not accurate. The PCS status register is
- * used instead.
- */
- pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
- /*
- * The link up bit determines when link is up on autoneg.
- */
- if (pcs & E1000_PCS_LSTS_LINK_OK) {
- mac->serdes_has_link = true;
-
- /* Detect and store PCS speed */
- if (pcs & E1000_PCS_LSTS_SPEED_1000)
- *speed = SPEED_1000;
- else if (pcs & E1000_PCS_LSTS_SPEED_100)
- *speed = SPEED_100;
- else
- *speed = SPEED_10;
-
- /* Detect and store PCS duplex */
- if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
- *duplex = FULL_DUPLEX;
- else
- *duplex = HALF_DUPLEX;
-
- /* Check if it is an I354 2.5Gb backplane connection. */
- if (mac->type == e1000_i354) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- if ((status & E1000_STATUS_2P5_SKU) &&
- !(status & E1000_STATUS_2P5_SKU_OVER)) {
- *speed = SPEED_2500;
- *duplex = FULL_DUPLEX;
- DEBUGOUT("2500 Mbs, ");
- DEBUGOUT("Full Duplex\n");
- }
- }
-
- } else {
- mac->serdes_has_link = false;
- *speed = 0;
- *duplex = 0;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_shutdown_serdes_link_82575 - Remove link during power down
- * @hw: pointer to the HW structure
- *
- * In the case of serdes shut down sfp and PCS on driver unload
- * when management pass thru is not enabled.
- **/
-void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_shutdown_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- if (!e1000_enable_mng_pass_thru(hw)) {
- /* Disable PCS to turn off link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg &= ~E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* shutdown the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg |= E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- }
-
- return;
-}
-
-/**
- * e1000_reset_hw_82575 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw_82575");
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- /* set the completion timeout for interface */
- ret_val = e1000_set_pcie_completion_timeout(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Set completion timeout has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* If EEPROM is not present, run manual init scripts */
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
- e1000_reset_init_script_82575(hw);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82575 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-s32 e1000_init_hw_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- u16 i, rar_count = mac->rar_entry_count;
-
- DEBUGFUNC("e1000_init_hw_82575");
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
- }
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address */
- e1000_init_rx_addrs_generic(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Zero out the Unicast HASH table */
- DEBUGOUT("Zeroing the UTA\n");
- for (i = 0; i < mac->uta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /* Set the default MTU size */
- hw->dev_spec._82575.mtu = 1500;
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82575(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82575 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u32 phpm_reg;
-
- DEBUGFUNC("e1000_setup_copper_link_82575");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Clear Go Link Disconnect bit on supported devices */
- switch (hw->mac.type) {
- case e1000_82580:
- case e1000_i350:
- case e1000_i210:
- case e1000_i211:
- phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
- phpm_reg &= ~E1000_82580_PM_GO_LINKD;
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
- break;
- default:
- break;
- }
-
- ret_val = e1000_setup_serdes_link_82575(hw);
- if (ret_val)
- goto out;
-
- if (e1000_sgmii_active_82575(hw)) {
- /* allow time for SFP cage time to power up phy */
- msec_delay(300);
-
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- goto out;
- }
- }
- switch (hw->phy.type) {
- case e1000_phy_i210:
- case e1000_phy_m88:
- switch (hw->phy.id) {
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1543_E_PHY_ID:
- case M88E1512_E_PHY_ID:
- case I210_I_PHY_ID:
- ret_val = e1000_copper_link_setup_m88_gen2(hw);
- break;
- default:
- ret_val = e1000_copper_link_setup_m88(hw);
- break;
- }
- break;
- case e1000_phy_igp_3:
- ret_val = e1000_copper_link_setup_igp(hw);
- break;
- case e1000_phy_82580:
- ret_val = e1000_copper_link_setup_82577(hw);
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- goto out;
-
- ret_val = e1000_setup_copper_link_generic(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_serdes_link_82575 - Setup link for serdes
- * @hw: pointer to the HW structure
- *
- * Configure the physical coding sub-layer (PCS) link. The PCS link is
- * used on copper connections where the serialized gigabit media independent
- * interface (sgmii), or serdes fiber is being used. Configures the link
- * for auto-negotiation or forces speed/duplex.
- **/
-STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
- bool pcs_autoneg;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_setup_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return ret_val;
-
- /*
- * On the 82575, SerDes loopback mode persists until it is
- * explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
-
- /* power on the sfp cage if present */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
- ctrl_reg |= E1000_CTRL_SLU;
-
- /* set both sw defined pins on 82575/82576*/
- if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
- ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
-
- reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
-
- /* default pcs_autoneg to the same setting as mac autoneg */
- pcs_autoneg = hw->mac.autoneg;
-
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- /* sgmii mode lets the phy handle forcing speed/duplex */
- pcs_autoneg = true;
- /* autoneg time out should be disabled for SGMII mode */
- reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- /* disable PCS autoneg and support parallel detect only */
- pcs_autoneg = false;
- /* fall through to default case */
- default:
- if (hw->mac.type == e1000_82575 ||
- hw->mac.type == e1000_82576) {
- ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
- pcs_autoneg = false;
- }
-
- /*
- * non-SGMII modes only supports a speed of 1000/Full for the
- * link so it is best to just force the MAC and let the pcs
- * link either autoneg or be forced to 1000/Full
- */
- ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
- E1000_CTRL_FD | E1000_CTRL_FRCDPX;
-
- /* set speed of 1000/Full if speed/duplex is forced */
- reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
-
- /*
- * New SerDes mode allows for forcing speed or autonegotiating speed
- * at 1gb. Autoneg should be default set by most drivers. This is the
- * mode that will be compatible with older link partners and switches.
- * However, both are supported by the hardware and some drivers/tools.
- */
- reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
- E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
- if (pcs_autoneg) {
- /* Set PCS register for autoneg */
- reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
- E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
-
- /* Disable force flow control for autoneg */
- reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
-
- /* Configure flow control advertisement for autoneg */
- anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
- anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
-
- switch (hw->fc.requested_mode) {
- case e1000_fc_full:
- case e1000_fc_rx_pause:
- anadv_reg |= E1000_TXCW_ASM_DIR;
- anadv_reg |= E1000_TXCW_PAUSE;
- break;
- case e1000_fc_tx_pause:
- anadv_reg |= E1000_TXCW_ASM_DIR;
- break;
- default:
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
-
- DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
- } else {
- /* Set PCS register for forced link */
- reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
-
- /* Force flow control for forced link */
- reg |= E1000_PCS_LCTL_FORCE_FCTRL;
-
- DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
- }
-
- E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
-
- if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
- e1000_force_mac_fc_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_media_type_82575 - derives current media type.
- * @hw: pointer to the HW structure
- *
- * The media type is chosen reflecting few settings.
- * The following are taken into account:
- * - link mode set in the current port Init Control Word #3
- * - current link mode settings in CSR register
- * - MDIO vs. I2C PHY control interface chosen
- * - SFP module media type
- **/
-STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext = 0;
- u32 link_mode = 0;
-
- /* Set internal phy as default */
- dev_spec->sgmii_active = false;
- dev_spec->module_plugged = false;
-
- /* Get CSR setting */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
- /* extract link mode setting */
- link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
-
- switch (link_mode) {
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- case E1000_CTRL_EXT_LINK_MODE_GMII:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- /* Get phy control interface type set (MDIO vs. I2C)*/
- if (e1000_sgmii_uses_mdio_82575(hw)) {
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = true;
- break;
- }
- /* fall through for I2C based SGMII */
- case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
- /* read media type from SFP EEPROM */
- ret_val = e1000_set_sfp_media_type_82575(hw);
- if ((ret_val != E1000_SUCCESS) ||
- (hw->phy.media_type == e1000_media_type_unknown)) {
- /*
- * If media type was not identified then return media
- * type defined by the CTRL_EXT settings.
- */
- hw->phy.media_type = e1000_media_type_internal_serdes;
-
- if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = true;
- }
-
- break;
- }
-
- /* do not change link mode for 100BaseFX */
- if (dev_spec->eth_flags.e100_base_fx)
- break;
-
- /* change current link mode setting */
- ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
-
- if (hw->phy.media_type == e1000_media_type_copper)
- ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
- else
- ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_set_sfp_media_type_82575 - derives SFP module media type.
- * @hw: pointer to the HW structure
- *
- * The media type is chosen based on SFP module.
- * compatibility flags retrieved from SFP ID EEPROM.
- **/
-STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_ERR_CONFIG;
- u32 ctrl_ext = 0;
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
- u8 tranceiver_type = 0;
- s32 timeout = 3;
-
- /* Turn I2C interface ON and power on sfp cage */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
-
- E1000_WRITE_FLUSH(hw);
-
- /* Read SFP module data */
- while (timeout) {
- ret_val = e1000_read_sfp_data_byte(hw,
- E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
- &tranceiver_type);
- if (ret_val == E1000_SUCCESS)
- break;
- msec_delay(100);
- timeout--;
- }
- if (ret_val != E1000_SUCCESS)
- goto out;
-
- ret_val = e1000_read_sfp_data_byte(hw,
- E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
- (u8 *)eth_flags);
- if (ret_val != E1000_SUCCESS)
- goto out;
-
- /* Check if there is some SFP module plugged and powered */
- if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
- (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
- dev_spec->module_plugged = true;
- if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
- hw->phy.media_type = e1000_media_type_internal_serdes;
- } else if (eth_flags->e100_base_fx) {
- dev_spec->sgmii_active = true;
- hw->phy.media_type = e1000_media_type_internal_serdes;
- } else if (eth_flags->e1000_base_t) {
- dev_spec->sgmii_active = true;
- hw->phy.media_type = e1000_media_type_copper;
- } else {
- hw->phy.media_type = e1000_media_type_unknown;
- DEBUGOUT("PHY module has not been recognized\n");
- goto out;
- }
- } else {
- hw->phy.media_type = e1000_media_type_unknown;
- }
- ret_val = E1000_SUCCESS;
-out:
- /* Restore I2C interface setting */
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- return ret_val;
-}
-
-/**
- * e1000_valid_led_default_82575 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_82575");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch (hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_82575_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT;
- break;
- }
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000_sgmii_active_82575 - Return sgmii state
- * @hw: pointer to the HW structure
- *
- * 82575 silicon has a serialized gigabit media independent interface (sgmii)
- * which can be enabled for use in the embedded applications. Simply
- * return the current state of the sgmii interface.
- **/
-STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- return dev_spec->sgmii_active;
-}
-
-/**
- * e1000_reset_init_script_82575 - Inits HW defaults after reset
- * @hw: pointer to the HW structure
- *
- * Inits recommended HW defaults after a reset when there is no EEPROM
- * detected. This is only for the 82575.
- **/
-STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_reset_init_script_82575");
-
- if (hw->mac.type == e1000_82575) {
- DEBUGOUT("Running reset init script for 82575\n");
- /* SerDes configuration via SERDESCTRL */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
-
- /* CCM configuration via CCMCTL register */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
-
- /* PCIe lanes configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
-
- /* PCIe PLL Configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr_82575 - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_mac_addr_82575");
-
- /*
- * If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_82575 - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw)
-{
- u32 tctl_ext;
-
- DEBUGFUNC("e1000_config_collision_dist_82575");
-
- tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
-
- tctl_ext &= ~E1000_TCTL_EXT_COLD;
- tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
-
- if (!(phy->ops.check_reset_block))
- return;
-
- /* If the management interface is not enabled, then power down */
- if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82575");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- E1000_READ_REG(hw, E1000_ICRXPTC);
- E1000_READ_REG(hw, E1000_ICRXATC);
- E1000_READ_REG(hw, E1000_ICTXPTC);
- E1000_READ_REG(hw, E1000_ICTXATC);
- E1000_READ_REG(hw, E1000_ICTXQEC);
- E1000_READ_REG(hw, E1000_ICTXQMTC);
- E1000_READ_REG(hw, E1000_ICRXDMTC);
-
- E1000_READ_REG(hw, E1000_CBTMPC);
- E1000_READ_REG(hw, E1000_HTDPMC);
- E1000_READ_REG(hw, E1000_CBRMPC);
- E1000_READ_REG(hw, E1000_RPTHC);
- E1000_READ_REG(hw, E1000_HGPTC);
- E1000_READ_REG(hw, E1000_HTCBDPC);
- E1000_READ_REG(hw, E1000_HGORCL);
- E1000_READ_REG(hw, E1000_HGORCH);
- E1000_READ_REG(hw, E1000_HGOTCL);
- E1000_READ_REG(hw, E1000_HGOTCH);
- E1000_READ_REG(hw, E1000_LENERRS);
-
- /* This register should not be read in copper configurations */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
- e1000_sgmii_active_82575(hw))
- E1000_READ_REG(hw, E1000_SCVPC);
-}
-
-/**
- * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
- * @hw: pointer to the HW structure
- *
- * After rx enable if managability is enabled then there is likely some
- * bad data at the start of the fifo and possibly in the DMA fifo. This
- * function clears the fifos and flushes any packets that came in as rx was
- * being enabled.
- **/
-void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
-{
- u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
- int i, ms_wait;
-
- DEBUGFUNC("e1000_rx_fifo_workaround_82575");
- if (hw->mac.type != e1000_82575 ||
- !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
- return;
-
- /* Disable all Rx queues */
- for (i = 0; i < 4; i++) {
- rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
- E1000_WRITE_REG(hw, E1000_RXDCTL(i),
- rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
- }
- /* Poll all queues to verify they have shut down */
- for (ms_wait = 0; ms_wait < 10; ms_wait++) {
- msec_delay(1);
- rx_enabled = 0;
- for (i = 0; i < 4; i++)
- rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
- if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
- break;
- }
-
- if (ms_wait == 10)
- DEBUGOUT("Queue disable timed out after 10ms\n");
-
- /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
- * incoming packets are rejected. Set enable and wait 2ms so that
- * any packet that was coming in as RCTL.EN was set is flushed
- */
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
-
- rlpml = E1000_READ_REG(hw, E1000_RLPML);
- E1000_WRITE_REG(hw, E1000_RLPML, 0);
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
- temp_rctl |= E1000_RCTL_LPE;
-
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
- E1000_WRITE_FLUSH(hw);
- msec_delay(2);
-
- /* Enable Rx queues that were previously enabled and restore our
- * previous state
- */
- for (i = 0; i < 4; i++)
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
- /* Flush receive errors generated by workaround */
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_MPC);
-}
-
-/**
- * e1000_set_pcie_completion_timeout - set pci-e completion timeout
- * @hw: pointer to the HW structure
- *
- * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
- * however the hardware default for these parts is 500us to 1ms which is less
- * than the 10ms recommended by the pci-e spec. To address this we need to
- * increase the value to either 10ms to 200ms for capability version 1 config,
- * or 16ms to 55ms for version 2.
- **/
-STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
-{
- u32 gcr = E1000_READ_REG(hw, E1000_GCR);
- s32 ret_val = E1000_SUCCESS;
- u16 pcie_devctl2;
-
- /* only take action if timeout value is defaulted to 0 */
- if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
- goto out;
-
- /*
- * if capababilities version is type 1 we can write the
- * timeout of 10ms to 200ms through the GCR register
- */
- if (!(gcr & E1000_GCR_CAP_VER2)) {
- gcr |= E1000_GCR_CMPL_TMOUT_10ms;
- goto out;
- }
-
- /*
- * for version 2 capabilities we need to write the config space
- * directly in order to set the completion timeout value for
- * 16ms to 55ms
- */
- ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
- if (ret_val)
- goto out;
-
- pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
-
- ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
-out:
- /* disable completion timeout resend */
- gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
-
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- return ret_val;
-}
-
-/**
- * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- * @pf: Physical Function pool - do not set anti-spoofing for the PF
- *
- * enables/disables L2 switch anti-spoofing functionality.
- **/
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
-{
- u32 reg_val, reg_offset;
-
- switch (hw->mac.type) {
- case e1000_82576:
- reg_offset = E1000_DTXSWC;
- break;
- case e1000_i350:
- case e1000_i354:
- reg_offset = E1000_TXSWC;
- break;
- default:
- return;
- }
-
- reg_val = E1000_READ_REG(hw, reg_offset);
- if (enable) {
- reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- /* The PF can spoof - it has to in order to
- * support emulation mode NICs
- */
- reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
- } else {
- reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- }
- E1000_WRITE_REG(hw, reg_offset, reg_val);
-}
-
-/**
- * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables L2 switch loopback functionality.
- **/
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
-{
- u32 dtxswc;
-
- switch (hw->mac.type) {
- case e1000_82576:
- dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
- break;
- case e1000_i350:
- case e1000_i354:
- dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
- break;
- default:
- /* Currently no other hardware supports loopback */
- break;
- }
-
-
-}
-
-/**
- * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables replication of packets across multiple pools.
- **/
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
-{
- u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
-
- if (enable)
- vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
- else
- vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
-
- E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-}
-
-/**
- * e1000_read_phy_reg_82580 - Read 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_82580 - Write 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
- * @hw: pointer to the HW structure
- *
- * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
- * the values found in the EEPROM. This addresses an issue in which these
- * bits are not restored from EEPROM after reset.
- **/
-STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 mdicnfg;
- u16 nvm_data = 0;
-
- DEBUGFUNC("e1000_reset_mdicnfg_82580");
-
- if (hw->mac.type != e1000_82580)
- goto out;
- if (!e1000_sgmii_active_82575(hw))
- goto out;
-
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
- NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
- if (nvm_data & NVM_WORD24_EXT_MDIO)
- mdicnfg |= E1000_MDICNFG_EXT_MDIO;
- if (nvm_data & NVM_WORD24_COM_MDIO)
- mdicnfg |= E1000_MDICNFG_COM_MDIO;
- E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_82580 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets function or entire device (all ports, etc.)
- * to a known state.
- **/
-STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- /* BH SW mailbox bit in SW_FW_SYNC */
- u16 swmbsw_mask = E1000_SW_SYNCH_MB;
- u32 ctrl;
- bool global_device_reset = hw->dev_spec._82575.global_device_reset;
-
- DEBUGFUNC("e1000_reset_hw_82580");
-
- hw->dev_spec._82575.global_device_reset = false;
-
- /* 82580 does not reliably do global_device_reset due to hw errata */
- if (hw->mac.type == e1000_82580)
- global_device_reset = false;
-
- /* Get current control state. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* Determine whether or not a global dev reset is requested */
- if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
- swmbsw_mask))
- global_device_reset = false;
-
- if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STAT_DEV_RST_SET))
- ctrl |= E1000_CTRL_DEV_RST;
- else
- ctrl |= E1000_CTRL_RST;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Add delay to insure DEV_RST has time to complete */
- if (global_device_reset)
- msec_delay(5);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* clear global device reset status bit */
- E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- ret_val = e1000_reset_mdicnfg_82580(hw);
- if (ret_val)
- DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- /* Release semaphore */
- if (global_device_reset)
- hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
-
- return ret_val;
-}
-
-/**
- * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
- * @data: data received by reading RXPBS register
- *
- * The 82580 uses a table based approach for packet buffer allocation sizes.
- * This function converts the retrieved value into the correct table value
- * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
- * 0x0 36 72 144 1 2 4 8 16
- * 0x8 35 70 140 rsv rsv rsv rsv rsv
- */
-u16 e1000_rxpbs_adjust_82580(u32 data)
-{
- u16 ret_val = 0;
-
- if (data < E1000_82580_RXPBS_TABLE_SIZE)
- ret_val = e1000_82580_rxpbs_table[data];
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
-
- for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_with_offset - Update EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
-
- for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
- &checksum);
- if (ret_val)
- DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 eeprom_regions_count = 1;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
- /* if chekcsums compatibility bit is set validate checksums
- * for all 4 ports. */
- eeprom_regions_count = 4;
- }
-
- for (j = 0; j < eeprom_regions_count; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
- goto out;
- }
-
- if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
- /* set compatibility bit to validate checksums appropriately */
- nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
- ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
- goto out;
- }
- }
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * __e1000_access_emi_reg - Read/write EMI register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: pointer to value to read/write from/to the EMI address
- * @read: boolean flag to indicate read or write
- **/
-STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
- u16 *data, bool read)
-{
- s32 ret_val;
-
- DEBUGFUNC("__e1000_access_emi_reg");
-
- ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
- if (ret_val)
- return ret_val;
-
- if (read)
- ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
- else
- ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
-
- return ret_val;
-}
-
-/**
- * e1000_read_emi_reg - Read Extended Management Interface register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: value to be read from the EMI address
- **/
-s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
-{
- DEBUGFUNC("e1000_read_emi_reg");
-
- return __e1000_access_emi_reg(hw, addr, data, true);
-}
-
-/**
- * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
- * @hw: pointer to the HW structure
- *
- * Initialize Marverl 1512 to work correctly with Avoton.
- **/
-s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_initialize_M88E1512_phy");
-
- /* Check if this is correct PHY. */
- if (phy->id != M88E1512_E_PHY_ID)
- goto out;
-
- /* Switch to PHY page 0xFF. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
- if (ret_val)
- goto out;
-
- /* Switch to PHY page 0xFB. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
- if (ret_val)
- goto out;
-
- /* Switch to PHY page 0x12. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
- if (ret_val)
- goto out;
-
- /* Change mode to SGMII-to-Copper */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
- if (ret_val)
- goto out;
-
- /* Return the PHY to page 0. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- return ret_val;
- }
-
- msec_delay(1000);
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_eee_i350 - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 ipcnfg, eeer;
-
- DEBUGFUNC("e1000_set_eee_i350");
-
- if ((hw->mac.type < e1000_i350) ||
- (hw->phy.media_type != e1000_media_type_copper))
- goto out;
- ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
- eeer = E1000_READ_REG(hw, E1000_EEER);
-
- /* enable or disable per user setting */
- if (!(hw->dev_spec._82575.eee_disable)) {
- u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
-
- ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
- eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
-
- /* This bit should not be set in normal operation. */
- if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
- DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
- } else {
- ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
- eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
- }
- E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
- E1000_WRITE_REG(hw, E1000_EEER, eeer);
- E1000_READ_REG(hw, E1000_IPCNFG);
- E1000_READ_REG(hw, E1000_EEER);
-out:
-
- return ret_val;
-}
-
-/**
- * e1000_set_eee_i354 - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE legacy mode based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i354(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_set_eee_i354");
-
- if ((hw->phy.media_type != e1000_media_type_copper) ||
- ((phy->id != M88E1543_E_PHY_ID) &&
- (phy->id != M88E1512_E_PHY_ID)))
- goto out;
-
- if (!hw->dev_spec._82575.eee_disable) {
- /* Switch to PHY page 18. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
- phy_data);
- if (ret_val)
- goto out;
-
- /* Return the PHY to page 0. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
- if (ret_val)
- goto out;
-
- /* Turn on EEE advertisement. */
- ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= E1000_EEE_ADV_100_SUPPORTED |
- E1000_EEE_ADV_1000_SUPPORTED;
- ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- phy_data);
- } else {
- /* Turn off EEE advertisement. */
- ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
- E1000_EEE_ADV_1000_SUPPORTED);
- ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- phy_data);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_eee_status_i354 - Get EEE status
- * @hw: pointer to the HW structure
- * @status: EEE status
- *
- * Get EEE status by guessing based on whether Tx or Rx LPI indications have
- * been received.
- **/
-s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_get_eee_status_i354");
-
- /* Check if EEE is supported on this device. */
- if ((hw->phy.media_type != e1000_media_type_copper) ||
- ((phy->id != M88E1543_E_PHY_ID) &&
- (phy->id != M88E1512_E_PHY_ID)))
- goto out;
-
- ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
- E1000_PCS_STATUS_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
- E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
-
-out:
- return ret_val;
-}
-
-/* Due to a hw errata, if the host tries to configure the VFTA register
- * while performing queries from the BMC or DMA, then the VFTA in some
- * cases won't be written.
- */
-
-/**
- * e1000_clear_vfta_i350 - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_i350(struct e1000_hw *hw)
-{
- u32 offset;
- int i;
-
- DEBUGFUNC("e1000_clear_vfta_350");
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- for (i = 0; i < 10; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
-
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_write_vfta_i350 - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
-{
- int i;
-
- DEBUGFUNC("e1000_write_vfta_350");
-
- for (i = 0; i < 10; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
-
- E1000_WRITE_FLUSH(hw);
-}
-
-
-/**
- * e1000_set_i2c_bb - Enable I2C bit-bang
- * @hw: pointer to the HW structure
- *
- * Enable I2C bit-bang interface
- *
- **/
-s32 e1000_set_i2c_bb(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext, i2cparams;
-
- DEBUGFUNC("e1000_set_i2c_bb");
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
- i2cparams |= E1000_I2CBB_EN;
- i2cparams |= E1000_I2C_DATA_OE_N;
- i2cparams |= E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
- E1000_WRITE_FLUSH(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to read
- * @dev_addr: device address
- * @data: value read
- *
- * Performs byte read operation over I2C interface at
- * a specified device address.
- **/
-s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 *data)
-{
- s32 status = E1000_SUCCESS;
- u32 max_retry = 10;
- u32 retry = 1;
- u16 swfw_mask = 0;
-
- bool nack = true;
-
- DEBUGFUNC("e1000_read_i2c_byte_generic");
-
- swfw_mask = E1000_SWFW_PHY0_SM;
-
- do {
- if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
- != E1000_SUCCESS) {
- status = E1000_ERR_SWFW_SYNC;
- goto read_byte_out;
- }
-
- e1000_i2c_start(hw);
-
- /* Device Address and write indication */
- status = e1000_clock_out_i2c_byte(hw, dev_addr);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, byte_offset);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_start(hw);
-
- /* Device Address and read indication */
- status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_in_i2c_byte(hw, data);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_bit(hw, nack);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_stop(hw);
- break;
-
-fail:
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
- msec_delay(100);
- e1000_i2c_bus_clear(hw);
- retry++;
- if (retry < max_retry)
- DEBUGOUT("I2C byte read error - Retrying.\n");
- else
- DEBUGOUT("I2C byte read error.\n");
-
- } while (retry < max_retry);
-
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-read_byte_out:
-
- return status;
-}
-
-/**
- * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to write
- * @dev_addr: device address
- * @data: value to write
- *
- * Performs byte write operation over I2C interface at
- * a specified device address.
- **/
-s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 data)
-{
- s32 status = E1000_SUCCESS;
- u32 max_retry = 1;
- u32 retry = 0;
- u16 swfw_mask = 0;
-
- DEBUGFUNC("e1000_write_i2c_byte_generic");
-
- swfw_mask = E1000_SWFW_PHY0_SM;
-
- if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
- status = E1000_ERR_SWFW_SYNC;
- goto write_byte_out;
- }
-
- do {
- e1000_i2c_start(hw);
-
- status = e1000_clock_out_i2c_byte(hw, dev_addr);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, byte_offset);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, data);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_stop(hw);
- break;
-
-fail:
- e1000_i2c_bus_clear(hw);
- retry++;
- if (retry < max_retry)
- DEBUGOUT("I2C byte write error - Retrying.\n");
- else
- DEBUGOUT("I2C byte write error.\n");
- } while (retry < max_retry);
-
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-write_byte_out:
-
- return status;
-}
-
-/**
- * e1000_i2c_start - Sets I2C start condition
- * @hw: pointer to hardware structure
- *
- * Sets I2C start condition (High -> Low on SDA while SCL is High)
- **/
-STATIC void e1000_i2c_start(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_i2c_start");
-
- /* Start condition must begin with data and clock high */
- e1000_set_i2c_data(hw, &i2cctl, 1);
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Setup time for start condition (4.7us) */
- usec_delay(E1000_I2C_T_SU_STA);
-
- e1000_set_i2c_data(hw, &i2cctl, 0);
-
- /* Hold time for start condition (4us) */
- usec_delay(E1000_I2C_T_HD_STA);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
-}
-
-/**
- * e1000_i2c_stop - Sets I2C stop condition
- * @hw: pointer to hardware structure
- *
- * Sets I2C stop condition (Low -> High on SDA while SCL is High)
- **/
-STATIC void e1000_i2c_stop(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_i2c_stop");
-
- /* Stop condition must begin with data low and clock high */
- e1000_set_i2c_data(hw, &i2cctl, 0);
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Setup time for stop condition (4us) */
- usec_delay(E1000_I2C_T_SU_STO);
-
- e1000_set_i2c_data(hw, &i2cctl, 1);
-
- /* bus free time between stop and start (4.7us)*/
- usec_delay(E1000_I2C_T_BUF);
-}
-
-/**
- * e1000_clock_in_i2c_byte - Clocks in one byte via I2C
- * @hw: pointer to hardware structure
- * @data: data byte to clock in
- *
- * Clocks in one byte data via I2C data/clock
- **/
-STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
-{
- s32 i;
- bool bit = 0;
-
- DEBUGFUNC("e1000_clock_in_i2c_byte");
-
- *data = 0;
- for (i = 7; i >= 0; i--) {
- e1000_clock_in_i2c_bit(hw, &bit);
- *data |= bit << i;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clock_out_i2c_byte - Clocks out one byte via I2C
- * @hw: pointer to hardware structure
- * @data: data byte clocked out
- *
- * Clocks out one byte data via I2C data/clock
- **/
-STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
-{
- s32 status = E1000_SUCCESS;
- s32 i;
- u32 i2cctl;
- bool bit = 0;
-
- DEBUGFUNC("e1000_clock_out_i2c_byte");
-
- for (i = 7; i >= 0; i--) {
- bit = (data >> i) & 0x1;
- status = e1000_clock_out_i2c_bit(hw, bit);
-
- if (status != E1000_SUCCESS)
- break;
- }
-
- /* Release SDA line (set high) */
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- i2cctl |= E1000_I2C_DATA_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- return status;
-}
-
-/**
- * e1000_get_i2c_ack - Polls for I2C ACK
- * @hw: pointer to hardware structure
- *
- * Clocks in/out one bit via I2C data/clock
- **/
-STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw)
-{
- s32 status = E1000_SUCCESS;
- u32 i = 0;
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- u32 timeout = 10;
- bool ack = true;
-
- DEBUGFUNC("e1000_get_i2c_ack");
-
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- /* Wait until SCL returns high */
- for (i = 0; i < timeout; i++) {
- usec_delay(1);
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- if (i2cctl & E1000_I2C_CLK_IN)
- break;
- }
- if (!(i2cctl & E1000_I2C_CLK_IN))
- return E1000_ERR_I2C;
-
- ack = e1000_get_i2c_data(&i2cctl);
- if (ack) {
- DEBUGOUT("I2C ack was not received.\n");
- status = E1000_ERR_I2C;
- }
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
- return status;
-}
-
-/**
- * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
- * @hw: pointer to hardware structure
- * @data: read data value
- *
- * Clocks in one bit via I2C data/clock
- **/
-STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_clock_in_i2c_bit");
-
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- *data = e1000_get_i2c_data(&i2cctl);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
- * @hw: pointer to hardware structure
- * @data: data value to write
- *
- * Clocks out one bit via I2C data/clock
- **/
-STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
-{
- s32 status;
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_clock_out_i2c_bit");
-
- status = e1000_set_i2c_data(hw, &i2cctl, data);
- if (status == E1000_SUCCESS) {
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us.
- * This also takes care of the data hold time.
- */
- usec_delay(E1000_I2C_T_LOW);
- } else {
- status = E1000_ERR_I2C;
- DEBUGOUT1("I2C data was not set to %X\n", data);
- }
-
- return status;
-}
-/**
- * e1000_raise_i2c_clk - Raises the I2C SCL clock
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Raises the I2C clock line '0'->'1'
- **/
-STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
- DEBUGFUNC("e1000_raise_i2c_clk");
-
- *i2cctl |= E1000_I2C_CLK_OUT;
- *i2cctl &= ~E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* SCL rise time (1000ns) */
- usec_delay(E1000_I2C_T_RISE);
-}
-
-/**
- * e1000_lower_i2c_clk - Lowers the I2C SCL clock
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Lowers the I2C clock line '1'->'0'
- **/
-STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
-
- DEBUGFUNC("e1000_lower_i2c_clk");
-
- *i2cctl &= ~E1000_I2C_CLK_OUT;
- *i2cctl &= ~E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* SCL fall time (300ns) */
- usec_delay(E1000_I2C_T_FALL);
-}
-
-/**
- * e1000_set_i2c_data - Sets the I2C data bit
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- * @data: I2C data value (0 or 1) to set
- *
- * Sets the I2C data bit
- **/
-STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
-{
- s32 status = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_set_i2c_data");
-
- if (data)
- *i2cctl |= E1000_I2C_DATA_OUT;
- else
- *i2cctl &= ~E1000_I2C_DATA_OUT;
-
- *i2cctl &= ~E1000_I2C_DATA_OE_N;
- *i2cctl |= E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
- usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
-
- *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- if (data != e1000_get_i2c_data(i2cctl)) {
- status = E1000_ERR_I2C;
- DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
- }
-
- return status;
-}
-
-/**
- * e1000_get_i2c_data - Reads the I2C SDA data bit
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Returns the I2C data bit value
- **/
-STATIC bool e1000_get_i2c_data(u32 *i2cctl)
-{
- bool data;
-
- DEBUGFUNC("e1000_get_i2c_data");
-
- if (*i2cctl & E1000_I2C_DATA_IN)
- data = 1;
- else
- data = 0;
-
- return data;
-}
-
-/**
- * e1000_i2c_bus_clear - Clears the I2C bus
- * @hw: pointer to hardware structure
- *
- * Clears the I2C bus by sending nine clock pulses.
- * Used when data line is stuck low.
- **/
-void e1000_i2c_bus_clear(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- u32 i;
-
- DEBUGFUNC("e1000_i2c_bus_clear");
-
- e1000_i2c_start(hw);
-
- e1000_set_i2c_data(hw, &i2cctl, 1);
-
- for (i = 0; i < 9; i++) {
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Min high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Min low period of clock is 4.7us*/
- usec_delay(E1000_I2C_T_LOW);
- }
-
- e1000_i2c_start(hw);
-
- /* Put the i2c bus back to default state */
- e1000_i2c_stop(hw);
-}
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82575_H_
-#define _E1000_82575_H_
-
-#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_DEF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_OFF1_ON2))
-/*
- * Receive Address Register Count
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * These entries are also used for MAC-based filtering.
- */
-/*
- * For 82576, there are an additional set of RARs that begin at an offset
- * separate from the first set of RARs.
- */
-#define E1000_RAR_ENTRIES_82575 16
-#define E1000_RAR_ENTRIES_82576 24
-#define E1000_RAR_ENTRIES_82580 24
-#define E1000_RAR_ENTRIES_I350 32
-#define E1000_SW_SYNCH_MB 0x00000100
-#define E1000_STAT_DEV_RST_SET 0x00100000
-#define E1000_CTRL_DEV_RST 0x20000000
-
-#ifdef E1000_BIT_FIELDS
-struct e1000_adv_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- u32 data;
- struct {
- u32 datalen:16; /* Data buffer length */
- u32 rsvd:4;
- u32 dtyp:4; /* Descriptor type */
- u32 dcmd:8; /* Descriptor command */
- } config;
- } lower;
- union {
- u32 data;
- struct {
- u32 status:4; /* Descriptor status */
- u32 idx:4;
- u32 popts:6; /* Packet Options */
- u32 paylen:18; /* Payload length */
- } options;
- } upper;
-};
-
-#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
-#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
-#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
-#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
-#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
-#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
-#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
-#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
-#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
-#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
-/* Extended Device Control */
-#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
-
-struct e1000_adv_context_desc {
- union {
- u32 ip_config;
- struct {
- u32 iplen:9;
- u32 maclen:7;
- u32 vlan_tag:16;
- } fields;
- } ip_setup;
- u32 seq_num;
- union {
- u64 l4_config;
- struct {
- u32 mkrloc:9;
- u32 tucmd:11;
- u32 dtyp:4;
- u32 adv:8;
- u32 rsvd:4;
- u32 idx:4;
- u32 l4len:8;
- u32 mss:16;
- } fields;
- } l4_setup;
-};
-#endif
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
-#define E1000_SRRCTL_TIMESTAMP 0x40000000
-#define E1000_SRRCTL_DROP_EN 0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
-
-#define E1000_TX_HEAD_WB_ENABLE 0x1
-#define E1000_TX_SEQNUM_WB_ENABLE 0x2
-
-#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
-#define E1000_MRQC_ENABLE_VMDQ 0x00000003
-#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
-#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
-#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
-
-#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
-#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \
- E1000_VMRCTL_MIRROR_PORT_SHIFT)
-#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
-#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
-#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
-
-#define E1000_EICR_TX_QUEUE ( \
- E1000_EICR_TX_QUEUE0 | \
- E1000_EICR_TX_QUEUE1 | \
- E1000_EICR_TX_QUEUE2 | \
- E1000_EICR_TX_QUEUE3)
-
-#define E1000_EICR_RX_QUEUE ( \
- E1000_EICR_RX_QUEUE0 | \
- E1000_EICR_RX_QUEUE1 | \
- E1000_EICR_RX_QUEUE2 | \
- E1000_EICR_RX_QUEUE3)
-
-#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
-#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
-
-#define EIMS_ENABLE_MASK ( \
- E1000_EIMS_RX_QUEUE | \
- E1000_EIMS_TX_QUEUE | \
- E1000_EIMS_TCP_TIMER | \
- E1000_EIMS_OTHER)
-
-/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
-#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
-#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
-#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
-#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
-#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
-#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
-#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
-#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
-#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
-#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
- struct {
- __le64 pkt_addr; /* Packet buffer address */
- __le64 hdr_addr; /* Header buffer address */
- } read;
- struct {
- struct {
- union {
- __le32 data;
- struct {
- __le16 pkt_info; /*RSS type, Pkt type*/
- /* Split Header, header buffer len */
- __le16 hdr_info;
- } hs_rss;
- } lo_dword;
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length; /* Packet length */
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
-#define E1000_RXDADV_RSSTYPE_SHIFT 12
-#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
-#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
-#define E1000_RXDADV_SPH 0x8000
-#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
-#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
-#define E1000_RXDADV_ERR_HBO 0x00800000
-
-/* RSS Hash results */
-#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
-#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
-#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
-#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
-#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
-#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
-
-/* RSS Packet Types as indicated in the receive descriptor */
-#define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0
-#define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00
-#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
-#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
-#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
-#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
-#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
-
-#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
-#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
-#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
-#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
-#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
-#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
-
-/* LinkSec results */
-/* Security Processing bit Indication */
-#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
-#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
-#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
-
-#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
-#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
- struct {
- __le64 buffer_addr; /* Address of descriptor's data buf */
- __le32 cmd_type_len;
- __le32 olinfo_status;
- } read;
- struct {
- __le64 rsvd; /* Reserved */
- __le32 nxtseq_seed;
- __le32 status;
- } wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
-#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */
-#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */
-#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */
-#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
-#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
-/* 1st & Last TSO-full iSCSI PDU*/
-#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800
-#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
-#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
- __le32 vlan_macip_lens;
- __le32 seqnum_seed;
- __le32 type_tucmd_mlhl;
- __le32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
-#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
-#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
-#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
-/* IPSec Encrypt Enable for ESP */
-#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
-/* Req requires Markers and CRC */
-#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000
-#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
-/* Adv ctxt IPSec SA IDX mask */
-#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
-/* Adv ctxt IPSec ESP len mask */
-#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
-
-/* Additional Transmit Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */
-#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */
-/* Tx Queue Arbitration Priority 0=low, 1=high */
-#define E1000_TXDCTL_PRIORITY 0x08000000
-
-/* Additional Receive Descriptor Control definitions */
-#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */
-#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */
-
-/* Direct Cache Access (DCA) definitions */
-#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
-#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
-
-#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
-#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
-
-#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
-#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
-#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */
-#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */
-#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
-#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
-#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */
-#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
-#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
-#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
-#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
-#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
-
-/* Additional interrupt register bit definitions */
-#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
-#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
-#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
-
-/* ETQF register bit definitions */
-#define E1000_ETQF_FILTER_ENABLE (1 << 26)
-#define E1000_ETQF_IMM_INT (1 << 29)
-#define E1000_ETQF_1588 (1 << 30)
-#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
-/*
- * ETQF filter list: one static filter per filter consumer. This is
- * to avoid filter collisions later. Add new filters
- * here!!
- *
- * Current filters:
- * EAPOL 802.1x (0x888e): Filter 0
- */
-#define E1000_ETQF_FILTER_EAPOL 0
-
-#define E1000_FTQF_VF_BP 0x00008000
-#define E1000_FTQF_1588_TIME_STAMP 0x08000000
-#define E1000_FTQF_MASK 0xF0000000
-#define E1000_FTQF_MASK_PROTO_BP 0x10000000
-#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
-#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
-#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
-
-#define E1000_NVM_APME_82575 0x0400
-#define MAX_NUM_VFS 7
-
-#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */
-#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */
-#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
-#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
-#define E1000_DTXSWC_LLE_SHIFT 16
-#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
-
-/* Easy defines for setting default pool, would normally be left a zero */
-#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
-#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
-
-/* Other useful VMD_CTL register defines */
-#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
-#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
-#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
-
-/* Per VM Offload register setup */
-#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
-#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
-#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
-#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
-#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
-#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
-#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
-#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
-#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
-#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
-
-#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */
-#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */
-#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */
-#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
-#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */
-
-#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */
-#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */
-
-#define E1000_VLVF_ARRAY_SIZE 32
-#define E1000_VLVF_VLANID_MASK 0x00000FFF
-#define E1000_VLVF_POOLSEL_SHIFT 12
-#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
-#define E1000_VLVF_LVLAN 0x00100000
-#define E1000_VLVF_VLANID_ENABLE 0x80000000
-
-#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
-#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
-
-#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
-
-#define E1000_IOVCTL 0x05BBC
-#define E1000_IOVCTL_REUSE_VFQ 0x00000001
-
-#define E1000_RPLOLR_STRVLAN 0x40000000
-#define E1000_RPLOLR_STRCRC 0x80000000
-
-#define E1000_TCTL_EXT_COLD 0x000FFC00
-#define E1000_TCTL_EXT_COLD_SHIFT 10
-
-#define E1000_DTXCTL_8023LL 0x0004
-#define E1000_DTXCTL_VLAN_ADDED 0x0008
-#define E1000_DTXCTL_OOS_ENABLE 0x0010
-#define E1000_DTXCTL_MDP_EN 0x0020
-#define E1000_DTXCTL_SPOOF_INT 0x0040
-
-#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14)
-
-#define ALL_QUEUES 0xFFFF
-
-/* Rx packet buffer size defines */
-#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
-s32 e1000_init_hw_82575(struct e1000_hw *hw);
-
-enum e1000_promisc_type {
- e1000_promisc_disabled = 0, /* all promisc modes disabled */
- e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
- e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
- e1000_promisc_enabled = 3, /* both uni and multicast promisc */
- e1000_num_promisc_types
-};
-
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
-u16 e1000_rxpbs_adjust_82580(u32 data);
-s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data);
-s32 e1000_set_eee_i350(struct e1000_hw *);
-s32 e1000_set_eee_i354(struct e1000_hw *);
-s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *);
-s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw);
-
-/* I2C SDA and SCL timing parameters for standard mode */
-#define E1000_I2C_T_HD_STA 4
-#define E1000_I2C_T_LOW 5
-#define E1000_I2C_T_HIGH 4
-#define E1000_I2C_T_SU_STA 5
-#define E1000_I2C_T_HD_DATA 5
-#define E1000_I2C_T_SU_DATA 1
-#define E1000_I2C_T_RISE 1
-#define E1000_I2C_T_FALL 1
-#define E1000_I2C_T_SU_STO 4
-#define E1000_I2C_T_BUF 5
-
-s32 e1000_set_i2c_bb(struct e1000_hw *hw);
-s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 *data);
-s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 data);
-void e1000_i2c_bus_clear(struct e1000_hw *hw);
-#endif /* _E1000_82575_H_ */
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-/**
- * e1000_init_mac_params - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the MAC
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mac_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->mac.ops.init_params) {
- ret_val = hw->mac.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("MAC Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("mac.init_mac_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the NVM
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_nvm_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->nvm.ops.init_params) {
- ret_val = hw->nvm.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("NVM Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("nvm.init_nvm_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_phy_params - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the PHY
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_phy_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->phy.ops.init_params) {
- ret_val = hw->phy.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("PHY Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("phy.init_phy_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params - Initialize mailbox function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the PHY
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mbx_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->mbx.ops.init_params) {
- ret_val = hw->mbx.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("Mailbox Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("mbx.init_mbx_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_mac_type - Sets MAC type
- * @hw: pointer to the HW structure
- *
- * This function sets the mac type of the adapter based on the
- * device ID stored in the hw structure.
- * MUST BE FIRST FUNCTION CALLED (explicitly or through
- * e1000_setup_init_funcs()).
- **/
-s32 e1000_set_mac_type(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- mac->type = e1000_82542;
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- mac->type = e1000_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- mac->type = e1000_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- mac->type = e1000_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- mac->type = e1000_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- mac->type = e1000_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- mac->type = e1000_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- mac->type = e1000_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- mac->type = e1000_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- mac->type = e1000_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- mac->type = e1000_82547;
- break;
- case E1000_DEV_ID_82547GI:
- mac->type = e1000_82547_rev_2;
- break;
- case E1000_DEV_ID_82571EB_COPPER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
- mac->type = e1000_82571;
- break;
- case E1000_DEV_ID_82572EI:
- case E1000_DEV_ID_82572EI_COPPER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82572EI_SERDES:
- mac->type = e1000_82572;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- case E1000_DEV_ID_82573L:
- mac->type = e1000_82573;
- break;
- case E1000_DEV_ID_82574L:
- case E1000_DEV_ID_82574LA:
- mac->type = e1000_82574;
- break;
- case E1000_DEV_ID_82583V:
- mac->type = e1000_82583;
- break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
- mac->type = e1000_80003es2lan;
- break;
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IFE_GT:
- case E1000_DEV_ID_ICH8_IFE_G:
- case E1000_DEV_ID_ICH8_IGP_M:
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_82567V_3:
- mac->type = e1000_ich8lan;
- break;
- case E1000_DEV_ID_ICH9_IFE:
- case E1000_DEV_ID_ICH9_IFE_GT:
- case E1000_DEV_ID_ICH9_IFE_G:
- case E1000_DEV_ID_ICH9_IGP_M:
- case E1000_DEV_ID_ICH9_IGP_M_AMT:
- case E1000_DEV_ID_ICH9_IGP_M_V:
- case E1000_DEV_ID_ICH9_IGP_AMT:
- case E1000_DEV_ID_ICH9_BM:
- case E1000_DEV_ID_ICH9_IGP_C:
- case E1000_DEV_ID_ICH10_R_BM_LM:
- case E1000_DEV_ID_ICH10_R_BM_LF:
- case E1000_DEV_ID_ICH10_R_BM_V:
- mac->type = e1000_ich9lan;
- break;
- case E1000_DEV_ID_ICH10_D_BM_LM:
- case E1000_DEV_ID_ICH10_D_BM_LF:
- case E1000_DEV_ID_ICH10_D_BM_V:
- mac->type = e1000_ich10lan;
- break;
- case E1000_DEV_ID_PCH_D_HV_DM:
- case E1000_DEV_ID_PCH_D_HV_DC:
- case E1000_DEV_ID_PCH_M_HV_LM:
- case E1000_DEV_ID_PCH_M_HV_LC:
- mac->type = e1000_pchlan;
- break;
- case E1000_DEV_ID_PCH2_LV_LM:
- case E1000_DEV_ID_PCH2_LV_V:
- mac->type = e1000_pch2lan;
- break;
- case E1000_DEV_ID_PCH_LPT_I217_LM:
- case E1000_DEV_ID_PCH_LPT_I217_V:
- case E1000_DEV_ID_PCH_LPTLP_I218_LM:
- case E1000_DEV_ID_PCH_LPTLP_I218_V:
- mac->type = e1000_pch_lpt;
- break;
- case E1000_DEV_ID_82575EB_COPPER:
- case E1000_DEV_ID_82575EB_FIBER_SERDES:
- case E1000_DEV_ID_82575GB_QUAD_COPPER:
- mac->type = e1000_82575;
- break;
- case E1000_DEV_ID_82576:
- case E1000_DEV_ID_82576_FIBER:
- case E1000_DEV_ID_82576_SERDES:
- case E1000_DEV_ID_82576_QUAD_COPPER:
- case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
- case E1000_DEV_ID_82576_NS:
- case E1000_DEV_ID_82576_NS_SERDES:
- case E1000_DEV_ID_82576_SERDES_QUAD:
- mac->type = e1000_82576;
- break;
- case E1000_DEV_ID_82580_COPPER:
- case E1000_DEV_ID_82580_FIBER:
- case E1000_DEV_ID_82580_SERDES:
- case E1000_DEV_ID_82580_SGMII:
- case E1000_DEV_ID_82580_COPPER_DUAL:
- case E1000_DEV_ID_82580_QUAD_FIBER:
- case E1000_DEV_ID_DH89XXCC_SGMII:
- case E1000_DEV_ID_DH89XXCC_SERDES:
- case E1000_DEV_ID_DH89XXCC_BACKPLANE:
- case E1000_DEV_ID_DH89XXCC_SFP:
- mac->type = e1000_82580;
- break;
- case E1000_DEV_ID_I350_COPPER:
- case E1000_DEV_ID_I350_FIBER:
- case E1000_DEV_ID_I350_SERDES:
- case E1000_DEV_ID_I350_SGMII:
- case E1000_DEV_ID_I350_DA4:
- mac->type = e1000_i350;
- break;
- case E1000_DEV_ID_I210_COPPER_FLASHLESS:
- case E1000_DEV_ID_I210_SERDES_FLASHLESS:
- case E1000_DEV_ID_I210_COPPER:
- case E1000_DEV_ID_I210_COPPER_OEM1:
- case E1000_DEV_ID_I210_COPPER_IT:
- case E1000_DEV_ID_I210_FIBER:
- case E1000_DEV_ID_I210_SERDES:
- case E1000_DEV_ID_I210_SGMII:
- mac->type = e1000_i210;
- break;
- case E1000_DEV_ID_I211_COPPER:
- mac->type = e1000_i211;
- break;
- case E1000_DEV_ID_82576_VF:
- case E1000_DEV_ID_82576_VF_HV:
- mac->type = e1000_vfadapt;
- break;
- case E1000_DEV_ID_I350_VF:
- case E1000_DEV_ID_I350_VF_HV:
- mac->type = e1000_vfadapt_i350;
- break;
-
- case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
- case E1000_DEV_ID_I354_SGMII:
- case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
- mac->type = e1000_i354;
- break;
- default:
- /* Should never have loaded on this device */
- ret_val = -E1000_ERR_MAC_INIT;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_setup_init_funcs - Initializes function pointers
- * @hw: pointer to the HW structure
- * @init_device: true will initialize the rest of the function pointers
- * getting the device ready for use. false will only set
- * MAC type and the function pointers for the other init
- * functions. Passing false will not generate any hardware
- * reads or writes.
- *
- * This function must be called by a driver in order to use the rest
- * of the 'shared' code files. Called by drivers only.
- **/
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
-{
- s32 ret_val;
-
- /* Can't do much good without knowing the MAC type. */
- ret_val = e1000_set_mac_type(hw);
- if (ret_val) {
- DEBUGOUT("ERROR: MAC type could not be set properly.\n");
- goto out;
- }
-
- if (!hw->hw_addr) {
- DEBUGOUT("ERROR: Registers not mapped\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- /*
- * Init function pointers to generic implementations. We do this first
- * allowing a driver module to override it afterward.
- */
- e1000_init_mac_ops_generic(hw);
- e1000_init_phy_ops_generic(hw);
- e1000_init_nvm_ops_generic(hw);
- e1000_init_mbx_ops_generic(hw);
-
- /*
- * Set up the init function pointers. These are functions within the
- * adapter family file that sets up function pointers for the rest of
- * the functions in that family.
- */
- switch (hw->mac.type) {
- case e1000_82542:
- e1000_init_function_pointers_82542(hw);
- break;
- case e1000_82543:
- case e1000_82544:
- e1000_init_function_pointers_82543(hw);
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- e1000_init_function_pointers_82540(hw);
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- e1000_init_function_pointers_82541(hw);
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- e1000_init_function_pointers_82571(hw);
- break;
- case e1000_80003es2lan:
- e1000_init_function_pointers_80003es2lan(hw);
- break;
- case e1000_ich8lan:
- case e1000_ich9lan:
- case e1000_ich10lan:
- case e1000_pchlan:
- case e1000_pch2lan:
- case e1000_pch_lpt:
- e1000_init_function_pointers_ich8lan(hw);
- break;
- case e1000_82575:
- case e1000_82576:
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- e1000_init_function_pointers_82575(hw);
- break;
- case e1000_i210:
- case e1000_i211:
- e1000_init_function_pointers_i210(hw);
- break;
- case e1000_vfadapt:
- e1000_init_function_pointers_vf(hw);
- break;
- case e1000_vfadapt_i350:
- e1000_init_function_pointers_vf(hw);
- break;
- default:
- DEBUGOUT("Hardware not supported\n");
- ret_val = -E1000_ERR_CONFIG;
- break;
- }
-
- /*
- * Initialize the rest of the function pointers. These require some
- * register reads/writes in some cases.
- */
- if (!(ret_val) && init_device) {
- ret_val = e1000_init_mac_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_nvm_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_phy_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_mbx_params(hw);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_bus_info - Obtain bus information for adapter
- * @hw: pointer to the HW structure
- *
- * This will obtain information about the HW bus for which the
- * adapter is attached and stores it in the hw structure. This is a
- * function pointer entry point called by drivers.
- **/
-s32 e1000_get_bus_info(struct e1000_hw *hw)
-{
- if (hw->mac.ops.get_bus_info)
- return hw->mac.ops.get_bus_info(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clear_vfta - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * This clears the VLAN filter table on the adapter. This is a function
- * pointer entry point called by drivers.
- **/
-void e1000_clear_vfta(struct e1000_hw *hw)
-{
- if (hw->mac.ops.clear_vfta)
- hw->mac.ops.clear_vfta(hw);
-}
-
-/**
- * e1000_write_vfta - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: the 32-bit offset in which to write the value to.
- * @value: the 32-bit value to write at location offset.
- *
- * This writes a 32-bit value to a 32-bit offset in the VLAN filter
- * table. This is a function pointer entry point called by drivers.
- **/
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
-{
- if (hw->mac.ops.write_vfta)
- hw->mac.ops.write_vfta(hw, offset, value);
-}
-
-/**
- * e1000_update_mc_addr_list - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates the Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count)
-{
- if (hw->mac.ops.update_mc_addr_list)
- hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
- mc_addr_count);
-}
-
-/**
- * e1000_force_mac_fc - Force MAC flow control
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Currently no func pointer exists
- * and all implementations are handled in the generic version of this
- * function.
- **/
-s32 e1000_force_mac_fc(struct e1000_hw *hw)
-{
- return e1000_force_mac_fc_generic(hw);
-}
-
-/**
- * e1000_check_for_link - Check/Store link connection
- * @hw: pointer to the HW structure
- *
- * This checks the link condition of the adapter and stores the
- * results in the hw->mac structure. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_check_for_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.check_for_link)
- return hw->mac.ops.check_for_link(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_check_mng_mode - Check management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has manageability enabled.
- * This is a function pointer entry point called by drivers.
- **/
-bool e1000_check_mng_mode(struct e1000_hw *hw)
-{
- if (hw->mac.ops.check_mng_mode)
- return hw->mac.ops.check_mng_mode(hw);
-
- return false;
-}
-
-/**
- * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
- return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
-}
-
-/**
- * e1000_reset_hw - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_reset_hw(struct e1000_hw *hw)
-{
- if (hw->mac.ops.reset_hw)
- return hw->mac.ops.reset_hw(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_init_hw - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation. This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_init_hw(struct e1000_hw *hw)
-{
- if (hw->mac.ops.init_hw)
- return hw->mac.ops.init_hw(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_setup_link - Configures link and flow control
- * @hw: pointer to the HW structure
- *
- * This configures link and flow control settings for the adapter. This
- * is a function pointer entry point called by drivers. While modules can
- * also call this, they probably call their own version of this function.
- **/
-s32 e1000_setup_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.setup_link)
- return hw->mac.ops.setup_link(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_get_speed_and_duplex - Returns current speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to a 16-bit value to store the speed
- * @duplex: pointer to a 16-bit value to store the duplex.
- *
- * This returns the speed and duplex of the adapter in the two 'out'
- * variables passed in. This is a function pointer entry point called
- * by drivers.
- **/
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- if (hw->mac.ops.get_link_up_info)
- return hw->mac.ops.get_link_up_info(hw, speed, duplex);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_setup_led - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_setup_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.setup_led)
- return hw->mac.ops.setup_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cleanup_led - Restores SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This restores the SW controllable LED to the value saved off by
- * e1000_setup_led. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_cleanup_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.cleanup_led)
- return hw->mac.ops.cleanup_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_blink_led - Blink SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This starts the adapter LED blinking. Request the LED to be setup first
- * and cleaned up after. This is a function pointer entry point called by
- * drivers.
- **/
-s32 e1000_blink_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.blink_led)
- return hw->mac.ops.blink_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_id_led_init - store LED configurations in SW
- * @hw: pointer to the HW structure
- *
- * Initializes the LED config in SW. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_id_led_init(struct e1000_hw *hw)
-{
- if (hw->mac.ops.id_led_init)
- return hw->mac.ops.id_led_init(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on - Turn on SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED on. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_led_on(struct e1000_hw *hw)
-{
- if (hw->mac.ops.led_on)
- return hw->mac.ops.led_on(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off - Turn off SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED off. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_led_off(struct e1000_hw *hw)
-{
- if (hw->mac.ops.led_off)
- return hw->mac.ops.led_off(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_adaptive - Reset adaptive IFS
- * @hw: pointer to the HW structure
- *
- * Resets the adaptive IFS. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000_reset_adaptive(struct e1000_hw *hw)
-{
- e1000_reset_adaptive_generic(hw);
-}
-
-/**
- * e1000_update_adaptive - Update adaptive IFS
- * @hw: pointer to the HW structure
- *
- * Updates adapter IFS. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000_update_adaptive(struct e1000_hw *hw)
-{
- e1000_update_adaptive_generic(hw);
-}
-
-/**
- * e1000_disable_pcie_master - Disable PCI-Express master access
- * @hw: pointer to the HW structure
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests. Currently no func pointer exists and all implementations are
- * handled in the generic version of this function.
- **/
-s32 e1000_disable_pcie_master(struct e1000_hw *hw)
-{
- return e1000_disable_pcie_master_generic(hw);
-}
-
-/**
- * e1000_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-void e1000_config_collision_dist(struct e1000_hw *hw)
-{
- if (hw->mac.ops.config_collision_dist)
- hw->mac.ops.config_collision_dist(hw);
-}
-
-/**
- * e1000_rar_set - Sets a receive address register
- * @hw: pointer to the HW structure
- * @addr: address to set the RAR to
- * @index: the RAR to set
- *
- * Sets a Receive Address Register (RAR) to the specified address.
- **/
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- if (hw->mac.ops.rar_set)
- hw->mac.ops.rar_set(hw, addr, index);
-}
-
-/**
- * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
- * @hw: pointer to the HW structure
- *
- * Ensures that the MDI/MDIX SW state is valid.
- **/
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
- if (hw->mac.ops.validate_mdi_setting)
- return hw->mac.ops.validate_mdi_setting(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_hash_mc_addr - Determines address location in multicast table
- * @hw: pointer to the HW structure
- * @mc_addr: Multicast address to hash.
- *
- * This hashes an address to determine its location in the multicast
- * table. Currently no func pointer exists and all implementations
- * are handled in the generic version of this function.
- **/
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
- return e1000_hash_mc_addr_generic(hw, mc_addr);
-}
-
-/**
- * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
- return e1000_enable_tx_pkt_filtering_generic(hw);
-}
-
-/**
- * e1000_mng_host_if_write - Writes to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum)
-{
- return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
-}
-
-/**
- * e1000_mng_write_cmd_header - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- return e1000_mng_write_cmd_header_generic(hw, hdr);
-}
-
-/**
- * e1000_mng_enable_host_if - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
-{
- return e1000_mng_enable_host_if_generic(hw);
-}
-
-/**
- * e1000_check_reset_block - Verifies PHY can be reset
- * @hw: pointer to the HW structure
- *
- * Checks if the PHY is in a state that can be reset or if manageability
- * has it tied up. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_check_reset_block(struct e1000_hw *hw)
-{
- if (hw->phy.ops.check_reset_block)
- return hw->phy.ops.check_reset_block(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_phy_reg - Reads PHY register
- * @hw: pointer to the HW structure
- * @offset: the register to read
- * @data: the buffer to store the 16-bit read.
- *
- * Reads the PHY register and returns the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- if (hw->phy.ops.read_reg)
- return hw->phy.ops.read_reg(hw, offset, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg - Writes PHY register
- * @hw: pointer to the HW structure
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes the PHY register at offset with the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- if (hw->phy.ops.write_reg)
- return hw->phy.ops.write_reg(hw, offset, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_release_phy - Generic release PHY
- * @hw: pointer to the HW structure
- *
- * Return if silicon family does not require a semaphore when accessing the
- * PHY.
- **/
-void e1000_release_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.release)
- hw->phy.ops.release(hw);
-}
-
-/**
- * e1000_acquire_phy - Generic acquire PHY
- * @hw: pointer to the HW structure
- *
- * Return success if silicon family does not require a semaphore when
- * accessing the PHY.
- **/
-s32 e1000_acquire_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.acquire)
- return hw->phy.ops.acquire(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cfg_on_link_up - Configure PHY upon link up
- * @hw: pointer to the HW structure
- **/
-s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
-{
- if (hw->phy.ops.cfg_on_link_up)
- return hw->phy.ops.cfg_on_link_up(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_kmrn_reg - Reads register using Kumeran interface
- * @hw: pointer to the HW structure
- * @offset: the register to read
- * @data: the location to store the 16-bit value read.
- *
- * Reads a register out of the Kumeran interface. Currently no func pointer
- * exists and all implementations are handled in the generic version of
- * this function.
- **/
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return e1000_read_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- * e1000_write_kmrn_reg - Writes register using Kumeran interface
- * @hw: pointer to the HW structure
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes a register to the Kumeran interface. Currently no func pointer
- * exists and all implementations are handled in the generic version of
- * this function.
- **/
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return e1000_write_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- * e1000_get_cable_length - Retrieves cable length estimation
- * @hw: pointer to the HW structure
- *
- * This function estimates the cable length and stores them in
- * hw->phy.min_length and hw->phy.max_length. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_get_cable_length(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_cable_length)
- return hw->phy.ops.get_cable_length(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_info - Retrieves PHY information from registers
- * @hw: pointer to the HW structure
- *
- * This function gets some information from various PHY registers and
- * populates hw->phy values with it. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_get_phy_info(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_info)
- return hw->phy.ops.get_info(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_hw_reset - Hard PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a hard PHY reset. This is a function pointer entry point called
- * by drivers.
- **/
-s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- if (hw->phy.ops.reset)
- return hw->phy.ops.reset(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_commit - Soft PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a soft PHY reset on those that apply. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_phy_commit(struct e1000_hw *hw)
-{
- if (hw->phy.ops.commit)
- return hw->phy.ops.commit(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d0_lplu_state - Sets low power link up state for D0
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D0
- * and SmartSpeed is disabled when active is true, else clear lplu for D0
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d0_lplu_state)
- return hw->phy.ops.set_d0_lplu_state(hw, active);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d3_lplu_state - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d3_lplu_state)
- return hw->phy.ops.set_d3_lplu_state(hw, active);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr - Reads MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the MAC address out of the adapter and stores it in the HW structure.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_mac_addr(struct e1000_hw *hw)
-{
- if (hw->mac.ops.read_mac_addr)
- return hw->mac.ops.read_mac_addr(hw);
-
- return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_read_pba_string - Read device part number string
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
-{
- return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
-}
-
-/**
- * e1000_read_pba_length - Read device part number string length
- * @hw: pointer to the HW structure
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number length from the EEPROM and
- * stores the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
-{
- return e1000_read_pba_length_generic(hw, pba_num_size);
-}
-
-/**
- * e1000_read_pba_num - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
-{
- return e1000_read_pba_num_generic(hw, pba_num);
-}
-
-/**
- * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
- * @hw: pointer to the HW structure
- *
- * Validates the NVM checksum is correct. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.validate)
- return hw->nvm.ops.validate(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
- * @hw: pointer to the HW structure
- *
- * Updates the NVM checksum. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.update)
- return hw->nvm.ops.update(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_reload_nvm - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-void e1000_reload_nvm(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.reload)
- hw->nvm.ops.reload(hw);
-}
-
-/**
- * e1000_read_nvm - Reads NVM (EEPROM)
- * @hw: pointer to the HW structure
- * @offset: the word offset to read
- * @words: number of 16-bit words to read
- * @data: pointer to the properly sized buffer for the data.
- *
- * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- if (hw->nvm.ops.read)
- return hw->nvm.ops.read(hw, offset, words, data);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_write_nvm - Writes to NVM (EEPROM)
- * @hw: pointer to the HW structure
- * @offset: the word offset to read
- * @words: number of 16-bit words to write
- * @data: pointer to the properly sized buffer for the data.
- *
- * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- if (hw->nvm.ops.write)
- return hw->nvm.ops.write(hw, offset, words, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes the PHY register at offset with the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
- u8 data)
-{
- return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
-}
-
-/**
- * e1000_power_up_phy - Restores link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_up_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.power_up)
- hw->phy.ops.power_up(hw);
-
- e1000_setup_link(hw);
-}
-
-/**
- * e1000_power_down_phy - Power down PHY
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_down_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.power_down)
- hw->phy.ops.power_down(hw);
-}
-
-/**
- * e1000_power_up_fiber_serdes_link - Power up serdes link
- * @hw: pointer to the HW structure
- *
- * Power on the optics and PCS.
- **/
-void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.power_up_serdes)
- hw->mac.ops.power_up_serdes(hw);
-}
-
-/**
- * e1000_shutdown_fiber_serdes_link - Remove link during power down
- * @hw: pointer to the HW structure
- *
- * Shutdown the optics and PCS on driver unload.
- **/
-void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.shutdown_serdes)
- hw->mac.ops.shutdown_serdes(hw);
-}
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_API_H_
-#define _E1000_API_H_
-
-#include "e1000_hw.h"
-
-extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
-extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
-extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_i210(struct e1000_hw *hw);
-
-s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr);
-s32 e1000_set_mac_type(struct e1000_hw *hw);
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
-s32 e1000_init_mac_params(struct e1000_hw *hw);
-s32 e1000_init_nvm_params(struct e1000_hw *hw);
-s32 e1000_init_phy_params(struct e1000_hw *hw);
-s32 e1000_init_mbx_params(struct e1000_hw *hw);
-s32 e1000_get_bus_info(struct e1000_hw *hw);
-void e1000_clear_vfta(struct e1000_hw *hw);
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-s32 e1000_force_mac_fc(struct e1000_hw *hw);
-s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_reset_hw(struct e1000_hw *hw);
-s32 e1000_init_hw(struct e1000_hw *hw);
-s32 e1000_setup_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-s32 e1000_disable_pcie_master(struct e1000_hw *hw);
-void e1000_config_collision_dist(struct e1000_hw *hw);
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
-void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count);
-s32 e1000_setup_led(struct e1000_hw *hw);
-s32 e1000_cleanup_led(struct e1000_hw *hw);
-s32 e1000_check_reset_block(struct e1000_hw *hw);
-s32 e1000_blink_led(struct e1000_hw *hw);
-s32 e1000_led_on(struct e1000_hw *hw);
-s32 e1000_led_off(struct e1000_hw *hw);
-s32 e1000_id_led_init(struct e1000_hw *hw);
-void e1000_reset_adaptive(struct e1000_hw *hw);
-void e1000_update_adaptive(struct e1000_hw *hw);
-s32 e1000_get_cable_length(struct e1000_hw *hw);
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
- u8 data);
-s32 e1000_get_phy_info(struct e1000_hw *hw);
-void e1000_release_phy(struct e1000_hw *hw);
-s32 e1000_acquire_phy(struct e1000_hw *hw);
-s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
-s32 e1000_phy_hw_reset(struct e1000_hw *hw);
-s32 e1000_phy_commit(struct e1000_hw *hw);
-void e1000_power_up_phy(struct e1000_hw *hw);
-void e1000_power_down_phy(struct e1000_hw *hw);
-s32 e1000_read_mac_addr(struct e1000_hw *hw);
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size);
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
-void e1000_reload_nvm(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-bool e1000_check_mng_mode(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
-u32 e1000_translate_register_82542(u32 reg);
-
-
-
-/*
- * TBI_ACCEPT macro definition:
- *
- * This macro requires:
- * adapter = a pointer to struct e1000_hw
- * status = the 8 bit status field of the Rx descriptor with EOP set
- * error = the 8 bit error field of the Rx descriptor with EOP set
- * length = the sum of all the length fields of the Rx descriptors that
- * make up the current frame
- * last_byte = the last byte of the frame DMAed by the hardware
- * max_frame_length = the maximum frame length we want to accept.
- * min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- * ...
- * if (TBI_ACCEPT) {
- * accept_frame = true;
- * e1000_tbi_adjust_stats(adapter, MacAddress);
- * frame_length--;
- * } else {
- * accept_frame = false;
- * }
- * ...
- */
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION 0x0F
-
-#define TBI_ACCEPT(a, status, errors, length, last_byte, \
- min_frame_size, max_frame_size) \
- (e1000_tbi_sbp_enabled_82543(a) && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= (max_frame_size + 1))) : \
- (((length) > min_frame_size) && \
- ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b))
-#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */
-#endif /* _E1000_API_H_ */
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_DEFINES_H_
-#define _E1000_DEFINES_H_
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC E1000_WUFC_LNKC
-#define E1000_WUS_MAG E1000_WUFC_MAG
-#define E1000_WUS_EX E1000_WUFC_EX
-#define E1000_WUS_MC E1000_WUFC_MC
-#define E1000_WUS_BC E1000_WUFC_BC
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */
-#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */
-/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
-#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-/* Physical Func Reset Done Indication */
-#define E1000_CTRL_EXT_PFRSTD 0x00004000
-#define E1000_CTRL_EXT_SDLPE 0X00040000 /* SerDes Low Power Enable */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-/* Offset of the link mode field in Ctrl Ext register */
-#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22
-#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
-#define E1000_CTRL_EXT_EIAME 0x01000000
-#define E1000_CTRL_EXT_IRCA 0x00000001
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */
-#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
-#define E1000_CTRL_EXT_LSECCK 0x00001000
-#define E1000_CTRL_EXT_PHYPDEN 0x00100000
-#define E1000_I2CCMD_REG_ADDR_SHIFT 16
-#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
-#define E1000_I2CCMD_OPCODE_READ 0x08000000
-#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
-#define E1000_I2CCMD_READY 0x20000000
-#define E1000_I2CCMD_ERROR 0x80000000
-#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a))
-#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a))
-#define E1000_MAX_SGMII_PHY_REG_ADDR 255
-#define E1000_I2CCMD_PHY_TIMEOUT 200
-#define E1000_IVAR_VALID 0x80
-#define E1000_GPIE_NSICR 0x00000001
-#define E1000_GPIE_MSIX_MODE 0x00000010
-#define E1000_GPIE_EIAME 0x40000000
-#define E1000_GPIE_PBA 0x80000000
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-
-#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */
-#define E1000_RXDEXT_STATERR_LB 0x00040000
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ)
-#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
-#endif /* !EXTERNAL_RELEASE || E1000E_MQ */
-#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-/* Enable MAC address filtering */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
-/* Enable MNG packets to host memory */
-#define E1000_MANC_EN_MNG2HOST 0x00200000
-
-#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
-#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
-#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
-#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-
-/* Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM 0x01
-#define E1000_SWFW_PHY0_SM 0x02
-#define E1000_SWFW_PHY1_SM 0x04
-#define E1000_SWFW_CSR_SM 0x08
-#define E1000_SWFW_PHY2_SM 0x20
-#define E1000_SWFW_PHY3_SM 0x40
-#define E1000_SWFW_SW_MNG_SM 0x400
-
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
-#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
-#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
-#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
-
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-
-#define E1000_CONNSW_ENRGSRC 0x4
-#define E1000_CONNSW_PHYSD 0x400
-#define E1000_CONNSW_PHY_PDN 0x800
-#define E1000_CONNSW_SERDESD 0x200
-#define E1000_CONNSW_AUTOSENSE_CONF 0x2
-#define E1000_CONNSW_AUTOSENSE_EN 0x1
-#define E1000_PCS_CFG_PCS_EN 8
-#define E1000_PCS_LCTL_FLV_LINK_UP 1
-#define E1000_PCS_LCTL_FSV_10 0
-#define E1000_PCS_LCTL_FSV_100 2
-#define E1000_PCS_LCTL_FSV_1000 4
-#define E1000_PCS_LCTL_FDV_FULL 8
-#define E1000_PCS_LCTL_FSD 0x10
-#define E1000_PCS_LCTL_FORCE_LINK 0x20
-#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
-#define E1000_PCS_LCTL_AN_ENABLE 0x10000
-#define E1000_PCS_LCTL_AN_RESTART 0x20000
-#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
-#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
-
-#define E1000_PCS_LSTS_LINK_OK 1
-#define E1000_PCS_LSTS_SPEED_100 2
-#define E1000_PCS_LSTS_SPEED_1000 4
-#define E1000_PCS_LSTS_DUPLEX_FULL 8
-#define E1000_PCS_LSTS_SYNK_OK 0x10
-#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */
-#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */
-#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define SPEED_2500 2500
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-#define PHY_FORCE_TIME 20
-
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL 0x0020
-
-/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX ( \
- ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
- ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG ( \
- ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
- ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
-
-/* LED Control */
-#define E1000_PHY_LED0_MODE_MASK 0x00000007
-#define E1000_PHY_LED0_IVRT 0x00000008
-#define E1000_PHY_LED0_MASK 0x0000001F
-
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */
-
-/* Transmit Control */
-#define E1000_TCTL_EN 0x00000002 /* enable Tx */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Transmit Arbitration Count */
-#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
-
-/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
-#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
-
-/* Header split receive */
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-#define E1000_RFCTL_LEF 0x00040000
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLD_SHIFT 12
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-
-#define ETHERNET_FCS_SIZE 4
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
-
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-/* Low Power IDLE Control */
-#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB */
-#define E1000_PBA_10K 0x000A /* 10KB */
-#define E1000_PBA_12K 0x000C /* 12KB */
-#define E1000_PBA_14K 0x000E /* 14KB */
-#define E1000_PBA_16K 0x0010 /* 16KB */
-#define E1000_PBA_18K 0x0012
-#define E1000_PBA_20K 0x0014
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_26K 0x001A
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_35K 0x0023
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB */
-#define E1000_PBA_64K 0x0040 /* 64KB */
-
-#define E1000_PBA_RXA_MASK 0xFFFF
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-/* Uncorrectable/correctable ECC Error counts and enable bits */
-#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF
-#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00
-#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8
-#define E1000_PBECCSTS_ECC_ENABLE 0x00010000
-
-#define IFS_MAX 80
-#define IFS_MIN 40
-#define IFS_RATIO 4
-#define IFS_STEP 10
-#define MIN_NUM_XMITS 1000
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* Rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
-#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
-#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */
-#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */
-#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
-/* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_INT_ASSERTED 0x80000000
-#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
-#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
-#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
-#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
-#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
-#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
-#define E1000_ICR_FER 0x00400000 /* Fatal Error */
-
-#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/
-#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */
-
-/* PBA ECC Register */
-#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
-#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
-#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */
-#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
-#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */
-
-/* Extended Interrupt Cause Read */
-#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
-#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
-#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
-#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
-#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
-#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
-#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
-#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
-#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
-#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
-/* TCP Timer */
-#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
-#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
-#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
-#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */
-#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */
-#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
-#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
-#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
-#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
-#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
-#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
-#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
-
-#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
-#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */
-/* Extended Interrupt Mask Set */
-#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-
-/* Extended Interrupt Cause Set */
-#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
-
-#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
-/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
-#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
-#define E1000_EITR_INTERVAL 0x00007FFC
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
-/* Enable the counting of descriptors still to be processed. */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* 802.1q VLAN Packet Size */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * Technically, we have 16 spots. However, we reserve one of these spots
- * (RAR[15]) for our directed address used by controllers with
- * manageability enabled, allowing us room for 15 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-#define E1000_RAL_MAC_ADDR_LEN 4
-#define E1000_RAH_MAC_ADDR_LEN 2
-#define E1000_RAH_QUEUE_MASK_82575 0x000C0000
-#define E1000_RAH_POOL_1 0x00040000
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_NVM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_INIT 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-#define E1000_NOT_IMPLEMENTED 14
-#define E1000_ERR_MBX 15
-#define E1000_ERR_INVALID_ARGUMENT 16
-#define E1000_ERR_NO_SPACE 17
-#define E1000_ERR_NVM_PBA_SECTION 18
-#define E1000_ERR_I2C 19
-#define E1000_ERR_INVM_VALUE_NOT_FOUND 20
-
-/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT 50
-#define COPPER_LINK_UP_LIMIT 10
-#define PHY_AUTO_NEG_LIMIT 45
-#define PHY_FORCE_LIMIT 20
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT 10
-/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT 10
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-
-#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
-#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */
-
-#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */
-#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */
-#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
-#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
-#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
-#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
-#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
-#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */
-#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */
-
-#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000
-#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000
-
-#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000
-#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000
-
-#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
-#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
-#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
-#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
-
-#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
-#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
-#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
-#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
-#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
-#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
-
-#define E1000_TIMINCA_16NS_SHIFT 24
-#define E1000_TIMINCA_INCPERIOD_SHIFT 24
-#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF
-
-#define E1000_TSICR_TXTS 0x00000002
-#define E1000_TSIM_TXTS 0x00000002
-/* TUPLE Filtering Configuration */
-#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
-#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
-#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
-/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
-#define E1000_TTQF_PROTOCOL_TCP 0x0
-/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_UDP 0x1
-/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_SCTP 0x2
-#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
-#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
-#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
-#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
-#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
-#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
-#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
-#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
-
-#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
-#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
-#define E1000_MDICNFG_PHY_MASK 0x03E00000
-#define E1000_MDICNFG_PHY_SHIFT 21
-
-#define E1000_MEDIA_PORT_COPPER 1
-#define E1000_MEDIA_PORT_OTHER 2
-#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2
-#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3
-#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */
-#define E1000_M88E1112_MAC_CTRL_1 0x10
-#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */
-#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7
-#define E1000_M88E1112_PAGE_ADDR 0x16
-#define E1000_M88E1112_STATUS 0x01
-
-#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */
-#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */
-#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */
-#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */
-#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */
-
-/* I350 EEE defines */
-#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */
-#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */
-#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */
-#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */
-#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */
-/* EEE status */
-#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */
-#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */
-#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */
-#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */
-#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */
-#define E1000_M88E1543_EEE_CTRL_1 0x0
-#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */
-#define E1000_EEE_ADV_DEV_I354 7
-#define E1000_EEE_ADV_ADDR_I354 60
-#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */
-#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */
-#define E1000_PCS_STATUS_DEV_I354 3
-#define E1000_PCS_STATUS_ADDR_I354 1
-#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400
-#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800
-#define E1000_M88E1512_CFG_REG_1 0x0010
-#define E1000_M88E1512_CFG_REG_2 0x0011
-#define E1000_M88E1512_CFG_REG_3 0x0007
-#define E1000_M88E1512_MODE 0x0014
-#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */
-#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */
-#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */
-/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
-#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
-#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
-#define E1000_GCR_CAP_VER2 0x00040000
-
-#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */
-
-/* mPHY address control and data registers */
-#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */
-#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000
-#define E1000_MPHY_DATA 0x0E10 /* Data Register */
-
-/* AFE CSR Offset for PCS CLK */
-#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004
-/* Override for near end digital loopback. */
-#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-/* 1=Repeater/switch device port 0=DTE device */
-#define CR_1000T_REPEATER_DTE 0x0400
-/* 1=Configure PHY as Master 0=Configure PHY as Slave */
-#define CR_1000T_MS_VALUE 0x0800
-/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */
-#define CR_1000T_MS_ENABLE 0x1000
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CONTROL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
-
-/* NVM Control */
-#define E1000_EECD_SK 0x00000001 /* NVM Clock */
-#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* NVM Data In */
-#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
-#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* NVM Present */
-#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
-#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */
-#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */
-#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */
-#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */
-/* NVM Addressing bits based on type 0=small, 1=large */
-#define E1000_EECD_ADDR_BITS 0x00000400
-#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_NVM_GRANT_ATTEMPTS
-#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
-#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */
-#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */
-#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */
-#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */
-#define E1000_FLUDONE_ATTEMPTS 20000
-#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */
-#define E1000_I210_FIFO_SEL_RX 0x00
-#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i))
-#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0)
-#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06
-#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01
-
-#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */
-/* Secure FLASH mode requires removing MSb */
-#define E1000_I210_FW_PTR_MASK 0x7FFF
-/* Firmware code revision field word offset*/
-#define E1000_I210_FW_VER_OFFSET 328
-
-#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
-#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START 1 /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES 2000
-
-/* NVM Word Offsets */
-#define NVM_COMPAT 0x0003
-#define NVM_ID_LED_SETTINGS 0x0004
-#define NVM_VERSION 0x0005
-#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
-#define NVM_PHY_CLASS_WORD 0x0007
-#define E1000_I210_NVM_FW_MODULE_PTR 0x0010
-#define E1000_I350_NVM_FW_MODULE_PTR 0x0051
-#define NVM_FUTURE_INIT_WORD1 0x0019
-#define NVM_ETRACK_WORD 0x0042
-#define NVM_ETRACK_HIWORD 0x0043
-#define NVM_COMB_VER_OFF 0x0083
-#define NVM_COMB_VER_PTR 0x003d
-
-/* NVM version defines */
-#define NVM_MAJOR_MASK 0xF000
-#define NVM_MINOR_MASK 0x0FF0
-#define NVM_IMAGE_ID_MASK 0x000F
-#define NVM_COMB_VER_MASK 0x00FF
-#define NVM_MAJOR_SHIFT 12
-#define NVM_MINOR_SHIFT 4
-#define NVM_COMB_VER_SHFT 8
-#define NVM_VER_INVALID 0xFFFF
-#define NVM_ETRACK_SHIFT 16
-#define NVM_ETRACK_VALID 0x8000
-#define NVM_NEW_DEC_MASK 0x0F00
-#define NVM_HEX_CONV 16
-#define NVM_HEX_TENS 10
-
-/* FW version defines */
-/* Offset of "Loader patch ptr" in Firmware Header */
-#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01
-/* Patch generation hour & minutes */
-#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04
-/* Patch generation month & day */
-#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05
-/* Patch generation year */
-#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06
-/* Patch major & minor numbers */
-#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07
-
-#define NVM_MAC_ADDR 0x0000
-#define NVM_SUB_DEV_ID 0x000B
-#define NVM_SUB_VEN_ID 0x000C
-#define NVM_DEV_ID 0x000D
-#define NVM_VEN_ID 0x000E
-#define NVM_INIT_CTRL_2 0x000F
-#define NVM_INIT_CTRL_4 0x0013
-#define NVM_LED_1_CFG 0x001C
-#define NVM_LED_0_2_CFG 0x001F
-
-#define NVM_COMPAT_VALID_CSUM 0x0001
-#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040
-
-#define NVM_INIT_CONTROL2_REG 0x000F
-#define NVM_INIT_CONTROL3_PORT_B 0x0014
-#define NVM_INIT_3GIO_3 0x001A
-#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define NVM_INIT_CONTROL3_PORT_A 0x0024
-#define NVM_CFG 0x0012
-#define NVM_ALT_MAC_ADDR_PTR 0x0037
-#define NVM_CHECKSUM_REG 0x003F
-#define NVM_COMPATIBILITY_REG_3 0x0003
-#define NVM_COMPATIBILITY_BIT_MASK 0x8000
-
-#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
-#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
-#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
-
-#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0)
-
-/* Mask bits for fields in Word 0x24 of the NVM */
-#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
-#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */
-/* Offset of Link Mode bits for 82575/82576 */
-#define NVM_WORD24_LNK_MODE_OFFSET 8
-/* Offset of Link Mode bits for 82580 up */
-#define NVM_WORD24_82580_LNK_MODE_OFFSET 4
-
-
-/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK 0x3000
-#define NVM_WORD0F_PAUSE 0x1000
-#define NVM_WORD0F_ASM_DIR 0x2000
-#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
-
-/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK 0x000C
-
-/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define NVM_COMPAT_LOM 0x0800
-
-/* length of string needed to store PBA number */
-#define E1000_PBANUM_LENGTH 11
-
-/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM 0xBABA
-
-/* PBA (printed board assembly) number words */
-#define NVM_PBA_OFFSET_0 8
-#define NVM_PBA_OFFSET_1 9
-#define NVM_PBA_PTR_GUARD 0xFAFA
-#define NVM_RESERVED_WORD 0xFFFF
-#define NVM_PHY_CLASS_A 0x8000
-#define NVM_SERDES_AMPLITUDE_MASK 0x000F
-#define NVM_SIZE_MASK 0x1C00
-#define NVM_SIZE_SHIFT 10
-#define NVM_WORD_SIZE_BASE_SHIFT 6
-#define NVM_SWDPIO_EXT_SHIFT 4
-
-/* NVM Commands - Microwire */
-#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
-#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
-#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
-#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
-
-/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
-
-/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI 0x01
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* PCI/PCI-X/PCI-EX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-#define PCI_HEADER_TYPE_REGISTER 0x0E
-#define PCIE_LINK_STATUS 0x12
-#define PCIE_DEVICE_CONTROL2 0x28
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-#define PCIX_STATUS_LO_FUNC_MASK 0x7
-#define PCI_HEADER_TYPE_MULTIFUNC 0x80
-#define PCIE_LINK_WIDTH_MASK 0x3F0
-#define PCIE_LINK_WIDTH_SHIFT 4
-#define PCIE_LINK_SPEED_MASK 0x0F
-#define PCIE_LINK_SPEED_2500 0x01
-#define PCIE_LINK_SPEED_5000 0x02
-#define PCIE_DEVICE_CONTROL2_16ms 0x0005
-
-#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN 6
-#endif
-
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF
-
-/* Bit definitions for valid PHY IDs.
- * I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define M88E1543_E_PHY_ID 0x01410EA0
-#define M88E1512_E_PHY_ID 0x01410DD0
-#define M88E1112_E_PHY_ID 0x01410C90
-#define I347AT4_E_PHY_ID 0x01410DC0
-#define M88E1340M_E_PHY_ID 0x01410DF0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-#define BME1000_E_PHY_ID 0x01410CB0
-#define BME1000_E_PHY_ID_R2 0x01410CB1
-#define I82577_E_PHY_ID 0x01540050
-#define I82578_E_PHY_ID 0x004DD040
-#define I82579_E_PHY_ID 0x01540090
-#define I217_E_PHY_ID 0x015400A0
-#define I82580_I_PHY_ID 0x015403A0
-#define I350_I_PHY_ID 0x015403B0
-#define I210_I_PHY_ID 0x01410C00
-#define IGP04E1000_E_PHY_ID 0x02A80391
-#define M88_VENDOR 0x0141
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
-/* MDI Crossover Mode bits 6:5 Manual MDI configuration */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040
-/* Auto crossover enabled all speeds */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-/* 0 = <50M
- * 1 = 50-80M
- * 2 = 80-110M
- * 3 = 110-140M
- * 4 = >140M
- */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave
- */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-
-/* Intel I347AT4 Registers */
-#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */
-#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */
-#define I347AT4_PAGE_SELECT 0x16
-
-/* I347AT4 Extended PHY Specific Control Register */
-
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
-#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000
-#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000
-#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000
-#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000
-#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000
-#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000
-#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000
-#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000
-#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000
-
-/* I347AT4 PHY Cable Diagnostics Control */
-#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */
-
-/* M88E1112 only registers */
-#define M88E1112_VCT_DSP_DISTANCE 0x001A
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-
-#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
-#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
-
-/* BME1000 PHY Specific Control Register */
-#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */
-#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */
-#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */
-
-/* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21)
-
-#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-/* Kumeran Mode Control */
-#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16)
-#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */
-
-/* MDI Control */
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_ERROR 0x40000000
-#define E1000_MDIC_DEST 0x80000000
-
-/* SerDes Control */
-#define E1000_GEN_CTL_READY 0x80000000
-#define E1000_GEN_CTL_ADDRESS_SHIFT 8
-#define E1000_GEN_POLL_TIMEOUT 640
-
-/* LinkSec register fields */
-#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECTXCAP_SUM_SHIFT 16
-#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECRXCAP_SUM_SHIFT 16
-
-#define E1000_LSECTXCTRL_EN_MASK 0x00000003
-#define E1000_LSECTXCTRL_DISABLE 0x0
-#define E1000_LSECTXCTRL_AUTH 0x1
-#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
-#define E1000_LSECTXCTRL_AISCI 0x00000020
-#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
-#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
-
-#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
-#define E1000_LSECRXCTRL_EN_SHIFT 2
-#define E1000_LSECRXCTRL_DISABLE 0x0
-#define E1000_LSECRXCTRL_CHECK 0x1
-#define E1000_LSECRXCTRL_STRICT 0x2
-#define E1000_LSECRXCTRL_DROP 0x3
-#define E1000_LSECRXCTRL_PLSH 0x00000040
-#define E1000_LSECRXCTRL_RP 0x00000080
-#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
-
-/* Tx Rate-Scheduler Config fields */
-#define E1000_RTTBCNRC_RS_ENA 0x80000000
-#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF
-#define E1000_RTTBCNRC_RF_INT_SHIFT 14
-#define E1000_RTTBCNRC_RF_INT_MASK \
- (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
-
-/* DMA Coalescing register fields */
-/* DMA Coalescing Watchdog Timer */
-#define E1000_DMACR_DMACWT_MASK 0x00003FFF
-/* DMA Coalescing Rx Threshold */
-#define E1000_DMACR_DMACTHR_MASK 0x00FF0000
-#define E1000_DMACR_DMACTHR_SHIFT 16
-/* Lx when no PCIe transactions */
-#define E1000_DMACR_DMAC_LX_MASK 0x30000000
-#define E1000_DMACR_DMAC_LX_SHIFT 28
-#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
-/* DMA Coalescing BMC-to-OS Watchdog Enable */
-#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000
-
-/* DMA Coalescing Transmit Threshold */
-#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF
-
-#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
-
-/* Rx Traffic Rate Threshold */
-#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF
-/* Rx packet rate in current window */
-#define E1000_DMCRTRH_LRPRCW 0x80000000
-
-/* DMA Coal Rx Traffic Current Count */
-#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF
-
-/* Flow ctrl Rx Threshold High val */
-#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0
-#define E1000_FCRTC_RTH_COAL_SHIFT 4
-/* Lx power decision based on DMA coal */
-#define E1000_PCIEMISC_LX_DECISION 0x00000080
-
-#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */
-#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */
-#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */
-
-/* Proxy Filter Control */
-#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */
-#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */
-#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */
-#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */
-#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */
-#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
-#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
-#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */
-#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */
-/* Proxy Status */
-#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
-
-/* Firmware Status */
-#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */
-/* VF Control */
-#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */
-
-#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */
-/* Lan ID bit field offset in status register */
-#define E1000_STATUS_LAN_ID_OFFSET 2
-#define E1000_VFTA_ENTRIES 128
-#ifndef E1000_UNUSEDARG
-#define E1000_UNUSEDARG
-#endif /* E1000_UNUSEDARG */
-#ifndef ERROR_REPORT
-#define ERROR_REPORT(fmt) do { } while (0)
-#endif /* ERROR_REPORT */
-#endif /* _E1000_DEFINES_H_ */
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-#define E1000_DEV_ID_82574L 0x10D3
-#define E1000_DEV_ID_82574LA 0x10F6
-#define E1000_DEV_ID_82583V 0x150C
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-#define E1000_DEV_ID_ICH8_82567V_3 0x1501
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
-#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
-#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
-#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
-#define E1000_DEV_ID_ICH9_BM 0x10E5
-#define E1000_DEV_ID_ICH9_IGP_C 0x294C
-#define E1000_DEV_ID_ICH9_IFE 0x10C0
-#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
-#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
-#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
-#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
-#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
-#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
-#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
-#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
-#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
-#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
-#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
-#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
-#define E1000_DEV_ID_PCH2_LV_LM 0x1502
-#define E1000_DEV_ID_PCH2_LV_V 0x1503
-#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A
-#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B
-#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A
-#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559
-#define E1000_DEV_ID_82576 0x10C9
-#define E1000_DEV_ID_82576_FIBER 0x10E6
-#define E1000_DEV_ID_82576_SERDES 0x10E7
-#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
-#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
-#define E1000_DEV_ID_82576_NS 0x150A
-#define E1000_DEV_ID_82576_NS_SERDES 0x1518
-#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
-#define E1000_DEV_ID_82576_VF 0x10CA
-#define E1000_DEV_ID_82576_VF_HV 0x152D
-#define E1000_DEV_ID_I350_VF 0x1520
-#define E1000_DEV_ID_I350_VF_HV 0x152F
-#define E1000_DEV_ID_82575EB_COPPER 0x10A7
-#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
-#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
-#define E1000_DEV_ID_82580_COPPER 0x150E
-#define E1000_DEV_ID_82580_FIBER 0x150F
-#define E1000_DEV_ID_82580_SERDES 0x1510
-#define E1000_DEV_ID_82580_SGMII 0x1511
-#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
-#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
-#define E1000_DEV_ID_I350_COPPER 0x1521
-#define E1000_DEV_ID_I350_FIBER 0x1522
-#define E1000_DEV_ID_I350_SERDES 0x1523
-#define E1000_DEV_ID_I350_SGMII 0x1524
-#define E1000_DEV_ID_I350_DA4 0x1546
-#define E1000_DEV_ID_I210_COPPER 0x1533
-#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534
-#define E1000_DEV_ID_I210_COPPER_IT 0x1535
-#define E1000_DEV_ID_I210_FIBER 0x1536
-#define E1000_DEV_ID_I210_SERDES 0x1537
-#define E1000_DEV_ID_I210_SGMII 0x1538
-#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B
-#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C
-#define E1000_DEV_ID_I211_COPPER 0x1539
-#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40
-#define E1000_DEV_ID_I354_SGMII 0x1F41
-#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45
-#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438
-#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
-#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
-#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
-
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-#define E1000_REVISION_4 4
-
-#define E1000_FUNC_0 0
-#define E1000_FUNC_1 1
-#define E1000_FUNC_2 2
-#define E1000_FUNC_3 3
-
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
-
-enum e1000_mac_type {
- e1000_undefined = 0,
- e1000_82542,
- e1000_82543,
- e1000_82544,
- e1000_82540,
- e1000_82545,
- e1000_82545_rev_3,
- e1000_82546,
- e1000_82546_rev_3,
- e1000_82541,
- e1000_82541_rev_2,
- e1000_82547,
- e1000_82547_rev_2,
- e1000_82571,
- e1000_82572,
- e1000_82573,
- e1000_82574,
- e1000_82583,
- e1000_80003es2lan,
- e1000_ich8lan,
- e1000_ich9lan,
- e1000_ich10lan,
- e1000_pchlan,
- e1000_pch2lan,
- e1000_pch_lpt,
- e1000_82575,
- e1000_82576,
- e1000_82580,
- e1000_i350,
- e1000_i354,
- e1000_i210,
- e1000_i211,
- e1000_vfadapt,
- e1000_vfadapt_i350,
- e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
-};
-
-enum e1000_media_type {
- e1000_media_type_unknown = 0,
- e1000_media_type_copper = 1,
- e1000_media_type_fiber = 2,
- e1000_media_type_internal_serdes = 3,
- e1000_num_media_types
-};
-
-enum e1000_nvm_type {
- e1000_nvm_unknown = 0,
- e1000_nvm_none,
- e1000_nvm_eeprom_spi,
- e1000_nvm_eeprom_microwire,
- e1000_nvm_flash_hw,
- e1000_nvm_invm,
- e1000_nvm_flash_sw
-};
-
-enum e1000_nvm_override {
- e1000_nvm_override_none = 0,
- e1000_nvm_override_spi_small,
- e1000_nvm_override_spi_large,
- e1000_nvm_override_microwire_small,
- e1000_nvm_override_microwire_large
-};
-
-enum e1000_phy_type {
- e1000_phy_unknown = 0,
- e1000_phy_none,
- e1000_phy_m88,
- e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
- e1000_phy_bm,
- e1000_phy_82578,
- e1000_phy_82577,
- e1000_phy_82579,
- e1000_phy_i217,
- e1000_phy_82580,
- e1000_phy_vf,
- e1000_phy_i210,
-};
-
-enum e1000_bus_type {
- e1000_bus_type_unknown = 0,
- e1000_bus_type_pci,
- e1000_bus_type_pcix,
- e1000_bus_type_pci_express,
- e1000_bus_type_reserved
-};
-
-enum e1000_bus_speed {
- e1000_bus_speed_unknown = 0,
- e1000_bus_speed_33,
- e1000_bus_speed_66,
- e1000_bus_speed_100,
- e1000_bus_speed_120,
- e1000_bus_speed_133,
- e1000_bus_speed_2500,
- e1000_bus_speed_5000,
- e1000_bus_speed_reserved
-};
-
-enum e1000_bus_width {
- e1000_bus_width_unknown = 0,
- e1000_bus_width_pcie_x1,
- e1000_bus_width_pcie_x2,
- e1000_bus_width_pcie_x4 = 4,
- e1000_bus_width_pcie_x8 = 8,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
-};
-
-enum e1000_1000t_rx_status {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
-};
-
-enum e1000_rev_polarity {
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
-};
-
-enum e1000_fc_mode {
- e1000_fc_none = 0,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full,
- e1000_fc_default = 0xFF
-};
-
-enum e1000_ffe_config {
- e1000_ffe_config_enabled = 0,
- e1000_ffe_config_active,
- e1000_ffe_config_blocked
-};
-
-enum e1000_dsp_config {
- e1000_dsp_config_disabled = 0,
- e1000_dsp_config_enabled,
- e1000_dsp_config_activated,
- e1000_dsp_config_undefined = 0xFF
-};
-
-enum e1000_ms_type {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
-};
-
-enum e1000_smart_speed {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
-};
-
-enum e1000_serdes_link_state {
- e1000_serdes_link_down = 0,
- e1000_serdes_link_autoneg_progress,
- e1000_serdes_link_autoneg_complete,
- e1000_serdes_link_forced_up
-};
-
-#define __le16 u16
-#define __le32 u32
-#define __le64 u64
-/* Receive Descriptor */
-struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-
-/* Number of packet split data buffers (not including the header buffer) */
-#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
-
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- /* length of buffers 1-3 */
- __le16 length[PS_PAGE_BUFFERS];
- } upper;
- __le64 reserved;
- } wb; /* writeback */
-};
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext;
- u8 cmd;
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 tor;
- u64 tot;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
- u64 cbtmpc;
- u64 htdpmc;
- u64 cbrdpc;
- u64 cbrmpc;
- u64 rpthc;
- u64 hgptc;
- u64 htcbdpc;
- u64 hgorc;
- u64 hgotc;
- u64 lenerrs;
- u64 scvpc;
- u64 hrmpc;
- u64 doosync;
- u64 o2bgptc;
- u64 o2bspc;
- u64 b2ospc;
- u64 b2ogprc;
-};
-
-struct e1000_vf_stats {
- u64 base_gprc;
- u64 base_gptc;
- u64 base_gorc;
- u64 base_gotc;
- u64 base_mprc;
- u64 base_gotlbc;
- u64 base_gptlbc;
- u64 base_gorlbc;
- u64 base_gprlbc;
-
- u32 last_gprc;
- u32 last_gptc;
- u32 last_gorc;
- u32 last_gotc;
- u32 last_mprc;
- u32 last_gotlbc;
- u32 last_gptlbc;
- u32 last_gorlbc;
- u32 last_gprlbc;
-
- u64 gprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 mprc;
- u64 gotlbc;
- u64 gptlbc;
- u64 gorlbc;
- u64 gprlbc;
-};
-
-struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
-};
-
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
-};
-
-/* Host Interface "Rev 1" */
-struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options;
- u8 checksum;
-};
-
-#define E1000_HI_MAX_DATA_LENGTH 252
-struct e1000_host_command_info {
- struct e1000_host_command_header command_header;
- u8 command_data[E1000_HI_MAX_DATA_LENGTH];
-};
-
-/* Host Interface "Rev 2" */
-struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
-};
-
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
-struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header;
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
-};
-
-#include "e1000_mac.h"
-#include "e1000_phy.h"
-#include "e1000_nvm.h"
-#include "e1000_manage.h"
-#include "e1000_mbx.h"
-
-/* Function pointers for the MAC. */
-struct e1000_mac_operations {
- s32 (*init_params)(struct e1000_hw *);
- s32 (*id_led_init)(struct e1000_hw *);
- s32 (*blink_led)(struct e1000_hw *);
- bool (*check_mng_mode)(struct e1000_hw *);
- s32 (*check_for_link)(struct e1000_hw *);
- s32 (*cleanup_led)(struct e1000_hw *);
- void (*clear_hw_cntrs)(struct e1000_hw *);
- void (*clear_vfta)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- void (*set_lan_id)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- s32 (*led_on)(struct e1000_hw *);
- s32 (*led_off)(struct e1000_hw *);
- void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- void (*shutdown_serdes)(struct e1000_hw *);
- void (*power_up_serdes)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- s32 (*setup_physical_interface)(struct e1000_hw *);
- s32 (*setup_led)(struct e1000_hw *);
- void (*write_vfta)(struct e1000_hw *, u32, u32);
- void (*config_collision_dist)(struct e1000_hw *);
- void (*rar_set)(struct e1000_hw *, u8*, u32);
- s32 (*read_mac_addr)(struct e1000_hw *);
- s32 (*validate_mdi_setting)(struct e1000_hw *);
- s32 (*acquire_swfw_sync)(struct e1000_hw *, u16);
- void (*release_swfw_sync)(struct e1000_hw *, u16);
-};
-
-/* When to use various PHY register access functions:
- *
- * Func Caller
- * Function Does Does When to use
- * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- * X_reg L,P,A n/a for simple PHY reg accesses
- * X_reg_locked P,A L for multiple accesses of different regs
- * on different pages
- * X_reg_page A L,P for multiple accesses of different regs
- * on the same page
- *
- * Where X=[read|write], L=locking, P=sets page, A=register access
- *
- */
-struct e1000_phy_operations {
- s32 (*init_params)(struct e1000_hw *);
- s32 (*acquire)(struct e1000_hw *);
- s32 (*cfg_on_link_up)(struct e1000_hw *);
- s32 (*check_polarity)(struct e1000_hw *);
- s32 (*check_reset_block)(struct e1000_hw *);
- s32 (*commit)(struct e1000_hw *);
- s32 (*force_speed_duplex)(struct e1000_hw *);
- s32 (*get_cfg_done)(struct e1000_hw *hw);
- s32 (*get_cable_length)(struct e1000_hw *);
- s32 (*get_info)(struct e1000_hw *);
- s32 (*set_page)(struct e1000_hw *, u16);
- s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
- s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
- s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
- void (*release)(struct e1000_hw *);
- s32 (*reset)(struct e1000_hw *);
- s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
- s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
- s32 (*write_reg)(struct e1000_hw *, u32, u16);
- s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
- s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
- void (*power_up)(struct e1000_hw *);
- void (*power_down)(struct e1000_hw *);
- s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *);
- s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
-};
-
-/* Function pointers for the NVM. */
-struct e1000_nvm_operations {
- s32 (*init_params)(struct e1000_hw *);
- s32 (*acquire)(struct e1000_hw *);
- s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
- void (*release)(struct e1000_hw *);
- void (*reload)(struct e1000_hw *);
- s32 (*update)(struct e1000_hw *);
- s32 (*valid_led_default)(struct e1000_hw *, u16 *);
- s32 (*validate)(struct e1000_hw *);
- s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
- u8 addr[ETH_ADDR_LEN];
- u8 perm_addr[ETH_ADDR_LEN];
-
- enum e1000_mac_type type;
-
- u32 collision_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- u32 mc_filter_type;
- u32 tx_packet_delta;
- u32 txcw;
-
- u16 current_ifs_val;
- u16 ifs_max_val;
- u16 ifs_min_val;
- u16 ifs_ratio;
- u16 ifs_step_size;
- u16 mta_reg_count;
- u16 uta_reg_count;
-
- /* Maximum size of the MTA register table in all supported adapters */
- #define MAX_MTA_REG 128
- u32 mta_shadow[MAX_MTA_REG];
- u16 rar_entry_count;
-
- u8 forced_speed_duplex;
-
- bool adaptive_ifs;
- bool has_fwsm;
- bool arc_subsystem_valid;
- bool asf_firmware_present;
- bool autoneg;
- bool autoneg_failed;
- bool get_link_status;
- bool in_ifs_mode;
- bool report_tx_early;
- enum e1000_serdes_link_state serdes_link_state;
- bool serdes_has_link;
- bool tx_pkt_filtering;
-};
-
-struct e1000_phy_info {
- struct e1000_phy_operations ops;
- enum e1000_phy_type type;
-
- enum e1000_1000t_rx_status local_rx;
- enum e1000_1000t_rx_status remote_rx;
- enum e1000_ms_type ms_type;
- enum e1000_ms_type original_ms_type;
- enum e1000_rev_polarity cable_polarity;
- enum e1000_smart_speed smart_speed;
-
- u32 addr;
- u32 id;
- u32 reset_delay_us; /* in usec */
- u32 revision;
-
- enum e1000_media_type media_type;
-
- u16 autoneg_advertised;
- u16 autoneg_mask;
- u16 cable_length;
- u16 max_cable_length;
- u16 min_cable_length;
-
- u8 mdix;
-
- bool disable_polarity_correction;
- bool is_mdix;
- bool polarity_correction;
- bool speed_downgraded;
- bool autoneg_wait_to_complete;
-};
-
-struct e1000_nvm_info {
- struct e1000_nvm_operations ops;
- enum e1000_nvm_type type;
- enum e1000_nvm_override override;
-
- u32 flash_bank_size;
- u32 flash_base_addr;
-
- u16 word_size;
- u16 delay_usec;
- u16 address_bits;
- u16 opcode_bits;
- u16 page_size;
-};
-
-struct e1000_bus_info {
- enum e1000_bus_type type;
- enum e1000_bus_speed speed;
- enum e1000_bus_width width;
-
- u16 func;
- u16 pci_cmd_word;
-};
-
-struct e1000_fc_info {
- u32 high_water; /* Flow control high-water mark */
- u32 low_water; /* Flow control low-water mark */
- u16 pause_time; /* Flow control pause timer */
- u16 refresh_time; /* Flow control refresh timer */
- bool send_xon; /* Flow control send XON */
- bool strict_ieee; /* Strict IEEE mode */
- enum e1000_fc_mode current_mode; /* FC mode in effect */
- enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
-};
-
-struct e1000_mbx_operations {
- s32 (*init_params)(struct e1000_hw *hw);
- s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*check_for_msg)(struct e1000_hw *, u16);
- s32 (*check_for_ack)(struct e1000_hw *, u16);
- s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
- u32 msgs_tx;
- u32 msgs_rx;
-
- u32 acks;
- u32 reqs;
- u32 rsts;
-};
-
-struct e1000_mbx_info {
- struct e1000_mbx_operations ops;
- struct e1000_mbx_stats stats;
- u32 timeout;
- u32 usec_delay;
- u16 size;
-};
-
-struct e1000_dev_spec_82541 {
- enum e1000_dsp_config dsp_config;
- enum e1000_ffe_config ffe_config;
- u16 spd_default;
- bool phy_init_script;
-};
-
-struct e1000_dev_spec_82542 {
- bool dma_fairness;
-};
-
-struct e1000_dev_spec_82543 {
- u32 tbi_compatibility;
- bool dma_fairness;
- bool init_phy_disabled;
-};
-
-struct e1000_dev_spec_82571 {
- bool laa_is_present;
- u32 smb_counter;
- E1000_MUTEX swflag_mutex;
-};
-
-struct e1000_dev_spec_80003es2lan {
- bool mdic_wa_enable;
-};
-
-struct e1000_shadow_ram {
- u16 value;
- bool modified;
-};
-
-#define E1000_SHADOW_RAM_WORDS 2048
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-/* I218 PHY Ultra Low Power (ULP) states */
-enum e1000_ulp_state {
- e1000_ulp_state_unknown,
- e1000_ulp_state_off,
- e1000_ulp_state_on,
-};
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-struct e1000_dev_spec_ich8lan {
- bool kmrn_lock_loss_workaround_enabled;
- struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
- E1000_MUTEX nvm_mutex;
- E1000_MUTEX swflag_mutex;
- bool nvm_k1_enabled;
- bool eee_disable;
- u16 eee_lp_ability;
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
- enum e1000_ulp_state ulp_state;
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
- u16 lat_enc;
- u16 max_ltr_enc;
- bool smbus_disable;
-};
-
-struct e1000_dev_spec_82575 {
- bool sgmii_active;
- bool global_device_reset;
- bool eee_disable;
- bool module_plugged;
- bool clear_semaphore_once;
- u32 mtu;
- struct sfp_e1000_flags eth_flags;
- u8 media_port;
- bool media_changed;
-};
-
-struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
-};
-
-struct e1000_hw {
- void *back;
-
- u8 *hw_addr;
- u8 *flash_address;
- unsigned long io_base;
-
- struct e1000_mac_info mac;
- struct e1000_fc_info fc;
- struct e1000_phy_info phy;
- struct e1000_nvm_info nvm;
- struct e1000_bus_info bus;
- struct e1000_mbx_info mbx;
- struct e1000_host_mng_dhcp_cookie mng_cookie;
-
- union {
- struct e1000_dev_spec_82541 _82541;
- struct e1000_dev_spec_82542 _82542;
- struct e1000_dev_spec_82543 _82543;
- struct e1000_dev_spec_82571 _82571;
- struct e1000_dev_spec_80003es2lan _80003es2lan;
- struct e1000_dev_spec_ich8lan ich8lan;
- struct e1000_dev_spec_82575 _82575;
- struct e1000_dev_spec_vf vf;
- } dev_spec;
-
- u16 device_id;
- u16 subsystem_vendor_id;
- u16 subsystem_device_id;
- u16 vendor_id;
-
- u8 revision_id;
-};
-
-#include "e1000_82541.h"
-#include "e1000_82543.h"
-#include "e1000_82571.h"
-#include "e1000_80003es2lan.h"
-#include "e1000_ich8lan.h"
-#include "e1000_82575.h"
-#include "e1000_i210.h"
-
-/* These functions must be implemented by drivers */
-void e1000_pci_clear_mwi(struct e1000_hw *hw);
-void e1000_pci_set_mwi(struct e1000_hw *hw);
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-
-STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
-STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
-STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
-STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
-
-/**
- * e1000_acquire_nvm_i210 - Request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_i210");
-
- ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_i210 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- **/
-STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_i210");
-
- e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 ret_val = E1000_SUCCESS;
- s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
- DEBUGFUNC("e1000_acquire_swfw_sync_i210");
-
- while (i < timeout) {
- if (e1000_get_hw_semaphore_i210(hw)) {
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /*
- * Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000_put_hw_semaphore_generic(hw);
- msec_delay_irq(5);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_swfw_sync_i210 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- DEBUGFUNC("e1000_release_swfw_sync_i210");
-
- while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
- ; /* Empty */
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_i210");
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- i++;
- }
-
- if (i == timeout) {
- /* In rare circumstances, the SW semaphore may already be held
- * unintentionally. Clear the semaphore once before giving up.
- */
- if (hw->dev_spec._82575.clear_semaphore_once) {
- hw->dev_spec._82575.clear_semaphore_once = false;
- e1000_put_hw_semaphore_generic(hw);
- for (i = 0; i < timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- }
- }
-
- /* If we do not have the semaphore here, we have to give up. */
- if (i == timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_generic(hw);
- DEBUGOUT("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the Shadow Ram to read
- * @words: number of words to read
- * @data: word read from the Shadow Ram
- *
- * Reads a 16 bit word from the Shadow Ram using the EERD register.
- * Uses necessary synchronization semaphores.
- **/
-s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 status = E1000_SUCCESS;
- u16 i, count;
-
- DEBUGFUNC("e1000_read_nvm_srrd_i210");
-
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to read in bursts than synchronizing access for each word. */
- for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
- E1000_EERD_EEWR_MAX_COUNT : (words - i);
- if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
- status = e1000_read_nvm_eerd(hw, offset, count,
- data + i);
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
-
- if (status != E1000_SUCCESS)
- break;
- }
-
- return status;
-}
-
-/**
- * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow RAM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow RAM
- *
- * Writes data to Shadow RAM at offset using EEWR register.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * data will not be committed to FLASH and also Shadow RAM will most likely
- * contain an invalid checksum.
- *
- * If error code is returned, data and Shadow RAM may be inconsistent - buffer
- * partially written.
- **/
-s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 status = E1000_SUCCESS;
- u16 i, count;
-
- DEBUGFUNC("e1000_write_nvm_srwr_i210");
-
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to write in bursts than synchronizing access for each word. */
- for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
- E1000_EERD_EEWR_MAX_COUNT : (words - i);
- if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
- status = e1000_write_nvm_srwr(hw, offset, count,
- data + i);
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
-
- if (status != E1000_SUCCESS)
- break;
- }
-
- return status;
-}
-
-/**
- * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow Ram to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow Ram
- *
- * Writes data to Shadow Ram at offset using EEWR register.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * Shadow Ram will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, k, eewr = 0;
- u32 attempts = 100000;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_nvm_srwr");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- for (i = 0; i < words; i++) {
- eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
- (data[i] << E1000_NVM_RW_REG_DATA) |
- E1000_NVM_RW_REG_START;
-
- E1000_WRITE_REG(hw, E1000_SRWR, eewr);
-
- for (k = 0; k < attempts; k++) {
- if (E1000_NVM_RW_REG_DONE &
- E1000_READ_REG(hw, E1000_SRWR)) {
- ret_val = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- if (ret_val != E1000_SUCCESS) {
- DEBUGOUT("Shadow RAM write EEWR timed out\n");
- break;
- }
- }
-
-out:
- return ret_val;
-}
-
-/** e1000_read_invm_word_i210 - Reads OTP
- * @hw: pointer to the HW structure
- * @address: the word address (aka eeprom offset) to read
- * @data: pointer to the data read
- *
- * Reads 16-bit words from the OTP. Return error when the word is not
- * stored in OTP.
- **/
-STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
-{
- s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
- u32 invm_dword;
- u16 i;
- u8 record_type, word_address;
-
- DEBUGFUNC("e1000_read_invm_word_i210");
-
- for (i = 0; i < E1000_INVM_SIZE; i++) {
- invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
- /* Get record type */
- record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
- if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
- break;
- if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
- i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
- if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
- i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
- if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
- word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
- if (word_address == address) {
- *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
- DEBUGOUT2("Read INVM Word 0x%02x = %x",
- address, *data);
- status = E1000_SUCCESS;
- break;
- }
- }
- }
- if (status != E1000_SUCCESS)
- DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
- return status;
-}
-
-/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
- * @hw: pointer to the HW structure
- * @address: the word address (aka eeprom offset) to read
- * @data: pointer to the data read
- *
- * Wrapper function to return data formerly found in the NVM.
- **/
-STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
- u16 E1000_UNUSEDARG words, u16 *data)
-{
- s32 ret_val = E1000_SUCCESS;
- UNREFERENCED_1PARAMETER(words);
-
- DEBUGFUNC("e1000_read_invm_i210");
-
- /* Only the MAC addr is required to be present in the iNVM */
- switch (offset) {
- case NVM_MAC_ADDR:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
- ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
- &data[1]);
- ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
- &data[2]);
- if (ret_val != E1000_SUCCESS)
- DEBUGOUT("MAC Addr not found in iNVM\n");
- break;
- case NVM_INIT_CTRL_2:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val != E1000_SUCCESS) {
- *data = NVM_INIT_CTRL_2_DEFAULT_I211;
- ret_val = E1000_SUCCESS;
- }
- break;
- case NVM_INIT_CTRL_4:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val != E1000_SUCCESS) {
- *data = NVM_INIT_CTRL_4_DEFAULT_I211;
- ret_val = E1000_SUCCESS;
- }
- break;
- case NVM_LED_1_CFG:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val != E1000_SUCCESS) {
- *data = NVM_LED_1_CFG_DEFAULT_I211;
- ret_val = E1000_SUCCESS;
- }
- break;
- case NVM_LED_0_2_CFG:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val != E1000_SUCCESS) {
- *data = NVM_LED_0_2_CFG_DEFAULT_I211;
- ret_val = E1000_SUCCESS;
- }
- break;
- case NVM_ID_LED_SETTINGS:
- ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
- if (ret_val != E1000_SUCCESS) {
- *data = ID_LED_RESERVED_FFFF;
- ret_val = E1000_SUCCESS;
- }
- break;
- case NVM_SUB_DEV_ID:
- *data = hw->subsystem_device_id;
- break;
- case NVM_SUB_VEN_ID:
- *data = hw->subsystem_vendor_id;
- break;
- case NVM_DEV_ID:
- *data = hw->device_id;
- break;
- case NVM_VEN_ID:
- *data = hw->vendor_id;
- break;
- default:
- DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
- *data = NVM_RESERVED_WORD;
- break;
- }
- return ret_val;
-}
-
-/**
- * e1000_read_invm_version - Reads iNVM version and image type
- * @hw: pointer to the HW structure
- * @invm_ver: version structure for the version read
- *
- * Reads iNVM version and image type.
- **/
-s32 e1000_read_invm_version(struct e1000_hw *hw,
- struct e1000_fw_version *invm_ver)
-{
- u32 *record = NULL;
- u32 *next_record = NULL;
- u32 i = 0;
- u32 invm_dword = 0;
- u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
- E1000_INVM_RECORD_SIZE_IN_BYTES);
- u32 buffer[E1000_INVM_SIZE];
- s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
- u16 version = 0;
-
- DEBUGFUNC("e1000_read_invm_version");
-
- /* Read iNVM memory */
- for (i = 0; i < E1000_INVM_SIZE; i++) {
- invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
- buffer[i] = invm_dword;
- }
-
- /* Read version number */
- for (i = 1; i < invm_blocks; i++) {
- record = &buffer[invm_blocks - i];
- next_record = &buffer[invm_blocks - i + 1];
-
- /* Check if we have first version location used */
- if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
- version = 0;
- status = E1000_SUCCESS;
- break;
- }
- /* Check if we have second version location used */
- else if ((i == 1) &&
- ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
- version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
- status = E1000_SUCCESS;
- break;
- }
- /*
- * Check if we have odd version location
- * used and it is the last one used
- */
- else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
- ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
- (i != 1))) {
- version = (*next_record & E1000_INVM_VER_FIELD_TWO)
- >> 13;
- status = E1000_SUCCESS;
- break;
- }
- /*
- * Check if we have even version location
- * used and it is the last one used
- */
- else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
- ((*record & 0x3) == 0)) {
- version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
- status = E1000_SUCCESS;
- break;
- }
- }
-
- if (status == E1000_SUCCESS) {
- invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
- >> E1000_INVM_MAJOR_SHIFT;
- invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
- }
- /* Read Image Type */
- for (i = 1; i < invm_blocks; i++) {
- record = &buffer[invm_blocks - i];
- next_record = &buffer[invm_blocks - i + 1];
-
- /* Check if we have image type in first location used */
- if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
- invm_ver->invm_img_type = 0;
- status = E1000_SUCCESS;
- break;
- }
- /* Check if we have image type in first location used */
- else if ((((*record & 0x3) == 0) &&
- ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
- ((((*record & 0x3) != 0) && (i != 1)))) {
- invm_ver->invm_img_type =
- (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
- status = E1000_SUCCESS;
- break;
- }
- }
- return status;
-}
-
-/**
- * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
-{
- s32 status = E1000_SUCCESS;
- s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
-
- DEBUGFUNC("e1000_validate_nvm_checksum_i210");
-
- if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
-
- /*
- * Replace the read function with semaphore grabbing with
- * the one that skips this for a while.
- * We have semaphore taken already here.
- */
- read_op_ptr = hw->nvm.ops.read;
- hw->nvm.ops.read = e1000_read_nvm_eerd;
-
- status = e1000_validate_nvm_checksum_generic(hw);
-
- /* Revert original read operation. */
- hw->nvm.ops.read = read_op_ptr;
-
- hw->nvm.ops.release(hw);
- } else {
- status = E1000_ERR_SWFW_SYNC;
- }
-
- return status;
-}
-
-
-/**
- * e1000_update_nvm_checksum_i210 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM. Next commit EEPROM data onto the Flash.
- **/
-s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum_i210");
-
- /*
- * Read the first word from the EEPROM. If this times out or fails, do
- * not continue or we could be in for a very long wait while every
- * EEPROM read fails
- */
- ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
- if (ret_val != E1000_SUCCESS) {
- DEBUGOUT("EEPROM read failed\n");
- goto out;
- }
-
- if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
- /*
- * Do not use hw->nvm.ops.write, hw->nvm.ops.read
- * because we do not want to take the synchronization
- * semaphores twice here.
- */
-
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
- if (ret_val) {
- hw->nvm.ops.release(hw);
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
- &checksum);
- if (ret_val != E1000_SUCCESS) {
- hw->nvm.ops.release(hw);
- DEBUGOUT("NVM Write Error while updating checksum.\n");
- goto out;
- }
-
- hw->nvm.ops.release(hw);
-
- ret_val = e1000_update_flash_i210(hw);
- } else {
- ret_val = E1000_ERR_SWFW_SYNC;
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_flash_presence_i210 - Check if flash device is detected.
- * @hw: pointer to the HW structure
- *
- **/
-bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
-{
- u32 eec = 0;
- bool ret_val = false;
-
- DEBUGFUNC("e1000_get_flash_presence_i210");
-
- eec = E1000_READ_REG(hw, E1000_EECD);
-
- if (eec & E1000_EECD_FLASH_DETECTED_I210)
- ret_val = true;
-
- return ret_val;
-}
-
-/**
- * e1000_update_flash_i210 - Commit EEPROM to the flash
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000_update_flash_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
- u32 flup;
-
- DEBUGFUNC("e1000_update_flash_i210");
-
- ret_val = e1000_pool_flash_update_done_i210(hw);
- if (ret_val == -E1000_ERR_NVM) {
- DEBUGOUT("Flash update time out\n");
- goto out;
- }
-
- flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
- E1000_WRITE_REG(hw, E1000_EECD, flup);
-
- ret_val = e1000_pool_flash_update_done_i210(hw);
- if (ret_val == E1000_SUCCESS)
- DEBUGOUT("Flash update complete\n");
- else
- DEBUGOUT("Flash update time out\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_NVM;
- u32 i, reg;
-
- DEBUGFUNC("e1000_pool_flash_update_done_i210");
-
- for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
- reg = E1000_READ_REG(hw, E1000_EECD);
- if (reg & E1000_EECD_FLUDONE_I210) {
- ret_val = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize the i210/i211 NVM parameters and function pointers.
- **/
-STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
- struct e1000_nvm_info *nvm = &hw->nvm;
-
- DEBUGFUNC("e1000_init_nvm_params_i210");
-
- ret_val = e1000_init_nvm_params_82575(hw);
- nvm->ops.acquire = e1000_acquire_nvm_i210;
- nvm->ops.release = e1000_release_nvm_i210;
- nvm->ops.valid_led_default = e1000_valid_led_default_i210;
- if (e1000_get_flash_presence_i210(hw)) {
- hw->nvm.type = e1000_nvm_flash_hw;
- nvm->ops.read = e1000_read_nvm_srrd_i210;
- nvm->ops.write = e1000_write_nvm_srwr_i210;
- nvm->ops.validate = e1000_validate_nvm_checksum_i210;
- nvm->ops.update = e1000_update_nvm_checksum_i210;
- } else {
- hw->nvm.type = e1000_nvm_invm;
- nvm->ops.read = e1000_read_invm_i210;
- nvm->ops.write = e1000_null_write_nvm;
- nvm->ops.validate = e1000_null_ops_generic;
- nvm->ops.update = e1000_null_ops_generic;
- }
- return ret_val;
-}
-
-/**
- * e1000_init_function_pointers_i210 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_i210(struct e1000_hw *hw)
-{
- e1000_init_function_pointers_82575(hw);
- hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
-
- return;
-}
-
-/**
- * e1000_valid_led_default_i210 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_i210");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch (hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_I210_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT_I210;
- break;
- }
- }
-out:
- return ret_val;
-}
-
-/**
- * __e1000_access_xmdio_reg - Read/write XMDIO register
- * @hw: pointer to the HW structure
- * @address: XMDIO address to program
- * @dev_addr: device address to program
- * @data: pointer to value to read/write from/to the XMDIO address
- * @read: boolean flag to indicate read or write
- **/
-STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
- u8 dev_addr, u16 *data, bool read)
-{
- s32 ret_val;
-
- DEBUGFUNC("__e1000_access_xmdio_reg");
-
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
- dev_addr);
- if (ret_val)
- return ret_val;
-
- if (read)
- ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
- else
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
- if (ret_val)
- return ret_val;
-
- /* Recalibrate the device back to 0 */
- ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
- if (ret_val)
- return ret_val;
-
- return ret_val;
-}
-
-/**
- * e1000_read_xmdio_reg - Read XMDIO register
- * @hw: pointer to the HW structure
- * @addr: XMDIO address to program
- * @dev_addr: device address to program
- * @data: value to be read from the EMI address
- **/
-s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
-{
- DEBUGFUNC("e1000_read_xmdio_reg");
-
- return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
-}
-
-/**
- * e1000_write_xmdio_reg - Write XMDIO register
- * @hw: pointer to the HW structure
- * @addr: XMDIO address to program
- * @dev_addr: device address to program
- * @data: value to be written to the XMDIO address
- **/
-s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
-{
- DEBUGFUNC("e1000_read_xmdio_reg");
-
- return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
-}
-
-/**
- * e1000_pll_workaround_i210
- * @hw: pointer to the HW structure
- *
- * Works around an errata in the PLL circuit where it occasionally
- * provides the wrong clock frequency after power up.
- **/
-STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
- u32 wuc, mdicnfg, ctrl_ext, reg_val;
- u16 nvm_word, phy_word, pci_word, tmp_nvm;
- int i;
-
- /* Get and set needed register values */
- wuc = E1000_READ_REG(hw, E1000_WUC);
- mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
- reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
- E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
-
- /* Get data from NVM, or set default */
- ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
- &nvm_word);
- if (ret_val != E1000_SUCCESS)
- nvm_word = E1000_INVM_DEFAULT_AL;
- tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
- for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
- /* check current state */
- hw->phy.ops.read_reg(hw, (E1000_PHY_PLL_FREQ_PAGE |
- E1000_PHY_PLL_FREQ_REG), &phy_word);
- if ((phy_word & E1000_PHY_PLL_UNCONF)
- != E1000_PHY_PLL_UNCONF) {
- ret_val = E1000_SUCCESS;
- break;
- } else {
- ret_val = -E1000_ERR_PHY;
- }
- hw->phy.ops.reset(hw);
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- E1000_WRITE_REG(hw, E1000_WUC, 0);
- reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
- E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
-
- e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- pci_word |= E1000_PCI_PMCSR_D3;
- e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- msec_delay(1);
- pci_word &= ~E1000_PCI_PMCSR_D3;
- e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
- reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
- E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
-
- /* restore WUC register */
- E1000_WRITE_REG(hw, E1000_WUC, wuc);
- }
- /* restore MDICNFG setting */
- E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
- return ret_val;
-}
-
-/**
- * e1000_init_hw_i210 - Init hw for I210/I211
- * @hw: pointer to the HW structure
- *
- * Called to initialize hw for i210 hw family.
- **/
-s32 e1000_init_hw_i210(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_hw_i210");
- if ((hw->mac.type >= e1000_i210) &&
- !(e1000_get_flash_presence_i210(hw))) {
- ret_val = e1000_pll_workaround_i210(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
- }
- ret_val = e1000_init_hw_82575(hw);
- return ret_val;
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_I210_H_
-#define _E1000_I210_H_
-
-bool e1000_get_flash_presence_i210(struct e1000_hw *hw);
-s32 e1000_update_flash_i210(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw);
-s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_read_invm_version(struct e1000_hw *hw,
- struct e1000_fw_version *invm_ver);
-s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
-void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
-s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
- u16 *data);
-s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
- u16 data);
-s32 e1000_init_hw_i210(struct e1000_hw *hw);
-
-#define E1000_STM_OPCODE 0xDB00
-#define E1000_EEPROM_FLASH_SIZE_WORD 0x11
-
-#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \
- (u8)((invm_dword) & 0x7)
-#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \
- (u8)(((invm_dword) & 0x0000FE00) >> 9)
-#define INVM_DWORD_TO_WORD_DATA(invm_dword) \
- (u16)(((invm_dword) & 0xFFFF0000) >> 16)
-
-enum E1000_INVM_STRUCTURE_TYPE {
- E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00,
- E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01,
- E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02,
- E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03,
- E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04,
- E1000_INVM_INVALIDATED_STRUCTURE = 0x0F,
-};
-
-#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8
-#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1
-#define E1000_INVM_ULT_BYTES_SIZE 8
-#define E1000_INVM_RECORD_SIZE_IN_BYTES 4
-#define E1000_INVM_VER_FIELD_ONE 0x1FF8
-#define E1000_INVM_VER_FIELD_TWO 0x7FE000
-#define E1000_INVM_IMGTYPE_FIELD 0x1F800000
-
-#define E1000_INVM_MAJOR_MASK 0x3F0
-#define E1000_INVM_MINOR_MASK 0xF
-#define E1000_INVM_MAJOR_SHIFT 4
-
-#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_OFF1_OFF2))
-#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_OFF1_ON2))
-
-/* NVM offset defaults for I211 devices */
-#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243
-#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1
-#define NVM_LED_1_CFG_DEFAULT_I211 0x0184
-#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C
-
-/* PLL Defines */
-#define E1000_PCI_PMCSR 0x44
-#define E1000_PCI_PMCSR_D3 0x03
-#define E1000_MAX_PLL_TRIES 5
-#define E1000_PHY_PLL_UNCONF 0xFF
-#define E1000_PHY_PLL_FREQ_PAGE 0xFC0000
-#define E1000_PHY_PLL_FREQ_REG 0x000E
-#define E1000_INVM_DEFAULT_AL 0x202F
-#define E1000_INVM_AUTOLOAD 0x0A
-#define E1000_INVM_PLL_WO_VAL 0x0010
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 82562G 10/100 Network Connection
- * 82562G-2 10/100 Network Connection
- * 82562GT 10/100 Network Connection
- * 82562GT-2 10/100 Network Connection
- * 82562V 10/100 Network Connection
- * 82562V-2 10/100 Network Connection
- * 82566DC-2 Gigabit Network Connection
- * 82566DC Gigabit Network Connection
- * 82566DM-2 Gigabit Network Connection
- * 82566DM Gigabit Network Connection
- * 82566MC Gigabit Network Connection
- * 82566MM Gigabit Network Connection
- * 82567LM Gigabit Network Connection
- * 82567LF Gigabit Network Connection
- * 82567V Gigabit Network Connection
- * 82567LM-2 Gigabit Network Connection
- * 82567LF-2 Gigabit Network Connection
- * 82567V-2 Gigabit Network Connection
- * 82567LF-3 Gigabit Network Connection
- * 82567LM-3 Gigabit Network Connection
- * 82567LM-4 Gigabit Network Connection
- * 82577LM Gigabit Network Connection
- * 82577LC Gigabit Network Connection
- * 82578DM Gigabit Network Connection
- * 82578DC Gigabit Network Connection
- * 82579LM Gigabit Network Connection
- * 82579V Gigabit Network Connection
- * Ethernet Connection I217-LM
- * Ethernet Connection I217-V
- * Ethernet Connection I218-V
- * Ethernet Connection I218-LM
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
-STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
-STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
-STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
- u8 *mc_addr_list,
- u32 mc_addr_count);
-#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
-STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
-STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
- bool active);
-STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
- u16 *data);
-STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
-STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
-STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
-STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw);
-STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 *data);
-STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data);
-STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
- u32 offset, u16 *data);
-STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte);
-STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
-STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
-STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
-
-/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
- struct ich8_hsfsts {
- u16 flcdone:1; /* bit 0 Flash Cycle Done */
- u16 flcerr:1; /* bit 1 Flash Cycle Error */
- u16 dael:1; /* bit 2 Direct Access error Log */
- u16 berasesz:2; /* bit 4:3 Sector Erase Size */
- u16 flcinprog:1; /* bit 5 flash cycle in Progress */
- u16 reserved1:2; /* bit 13:6 Reserved */
- u16 reserved2:6; /* bit 13:6 Reserved */
- u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
- u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
- } hsf_status;
- u16 regval;
-};
-
-/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
- struct ich8_hsflctl {
- u16 flcgo:1; /* 0 Flash Cycle Go */
- u16 flcycle:2; /* 2:1 Flash Cycle */
- u16 reserved:5; /* 7:3 Reserved */
- u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
- u16 flockdn:6; /* 15:10 Reserved */
- } hsf_ctrl;
- u16 regval;
-};
-
-/* ICH Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
- struct ich8_flracc {
- u32 grra:8; /* 0:7 GbE region Read Access */
- u32 grwa:8; /* 8:15 GbE region Write Access */
- u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
- u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
- } hsf_flregacc;
- u16 regval;
-};
-
-/**
- * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
- * @hw: pointer to the HW structure
- *
- * Test access to the PHY registers by reading the PHY ID registers. If
- * the PHY ID is already known (e.g. resume path) compare it with known ID,
- * otherwise assume the read PHY ID is correct if it is valid.
- *
- * Assumes the sw/fw/hw semaphore is already acquired.
- **/
-STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
-{
- u16 phy_reg = 0;
- u32 phy_id = 0;
- s32 ret_val = 0;
- u16 retry_count;
- u32 mac_reg = 0;
-
- for (retry_count = 0; retry_count < 2; retry_count++) {
- ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
- if (ret_val || (phy_reg == 0xFFFF))
- continue;
- phy_id = (u32)(phy_reg << 16);
-
- ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
- if (ret_val || (phy_reg == 0xFFFF)) {
- phy_id = 0;
- continue;
- }
- phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
- break;
- }
-
- if (hw->phy.id) {
- if (hw->phy.id == phy_id)
- goto out;
- } else if (phy_id) {
- hw->phy.id = phy_id;
- hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
- goto out;
- }
-
- /* In case the PHY needs to be in mdio slow mode,
- * set slow mode and try to get the PHY id again.
- */
- if (hw->mac.type < e1000_pch_lpt) {
- hw->phy.ops.release(hw);
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (!ret_val)
- ret_val = e1000_get_phy_id(hw);
- hw->phy.ops.acquire(hw);
- }
-
- if (ret_val)
- return false;
-out:
- if (hw->mac.type == e1000_pch_lpt) {
- /* Unforce SMBus mode in PHY */
- hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
- phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
- hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
-
- /* Unforce SMBus mode in MAC */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
- }
-
- return true;
-}
-
-/**
- * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
- * @hw: pointer to the HW structure
- *
- * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
- * used to reset the PHY to a quiescent state when necessary.
- **/
-STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
-{
- u32 mac_reg;
-
- DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
-
- /* Set Phy Config Counter to 50msec */
- mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
- mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
- mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
- E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
-
- /* Toggle LANPHYPC Value bit */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL);
- mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
- mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
- E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
- mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
- E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
- E1000_WRITE_FLUSH(hw);
-
- if (hw->mac.type < e1000_pch_lpt) {
- msec_delay(50);
- } else {
- u16 count = 20;
-
- do {
- msec_delay(5);
- } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
- E1000_CTRL_EXT_LPCD) && count--);
-
- msec_delay(30);
- }
-}
-
-/**
- * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
- * @hw: pointer to the HW structure
- *
- * Workarounds/flow necessary for PHY initialization during driver load
- * and resume paths.
- **/
-STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
-{
- u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
-
- /* Gate automatic PHY configuration by hardware on managed and
- * non-managed 82579 and newer adapters.
- */
- e1000_gate_hw_phy_config_ich8lan(hw, true);
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
- /* It is not possible to be certain of the current state of ULP
- * so forcibly disable it.
- */
- hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val) {
- DEBUGOUT("Failed to initialize PHY flow\n");
- goto out;
- }
-
- /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
- * inaccessible and resetting the PHY is not blocked, toggle the
- * LANPHYPC Value bit to force the interconnect to PCIe mode.
- */
- switch (hw->mac.type) {
- case e1000_pch_lpt:
- if (e1000_phy_is_accessible_pchlan(hw))
- break;
-
- /* Before toggling LANPHYPC, see if PHY is accessible by
- * forcing MAC to SMBus mode first.
- */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
- /* Wait 50 milliseconds for MAC to finish any retries
- * that it might be trying to perform from previous
- * attempts to acknowledge any phy read requests.
- */
- msec_delay(50);
-
- /* fall-through */
- case e1000_pch2lan:
- if (e1000_phy_is_accessible_pchlan(hw))
- break;
-
- /* fall-through */
- case e1000_pchlan:
- if ((hw->mac.type == e1000_pchlan) &&
- (fwsm & E1000_ICH_FWSM_FW_VALID))
- break;
-
- if (hw->phy.ops.check_reset_block(hw)) {
- DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- /* Toggle LANPHYPC Value bit */
- e1000_toggle_lanphypc_pch_lpt(hw);
- if (hw->mac.type >= e1000_pch_lpt) {
- if (e1000_phy_is_accessible_pchlan(hw))
- break;
-
- /* Toggling LANPHYPC brings the PHY out of SMBus mode
- * so ensure that the MAC is also out of SMBus mode
- */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
- if (e1000_phy_is_accessible_pchlan(hw))
- break;
-
- ret_val = -E1000_ERR_PHY;
- }
- break;
- default:
- break;
- }
-
- hw->phy.ops.release(hw);
- if (!ret_val) {
-
- /* Check to see if able to reset PHY. Print error if not */
- if (hw->phy.ops.check_reset_block(hw)) {
- ERROR_REPORT("Reset blocked by ME\n");
- goto out;
- }
-
- /* Reset the PHY before any access to it. Doing so, ensures
- * that the PHY is in a known good state before we read/write
- * PHY registers. The generic reset is sufficient here,
- * because we haven't determined the PHY type yet.
- */
- ret_val = e1000_phy_hw_reset_generic(hw);
- if (ret_val)
- goto out;
-
- /* On a successful reset, possibly need to wait for the PHY
- * to quiesce to an accessible state before returning control
- * to the calling function. If the PHY does not quiesce, then
- * return E1000E_BLK_PHY_RESET, as this is the condition that
- * the PHY is in.
- */
- ret_val = hw->phy.ops.check_reset_block(hw);
- if (ret_val)
- ERROR_REPORT("ME blocked access to PHY after reset\n");
- }
-
-out:
- /* Ungate automatic PHY configuration on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
- msec_delay(10);
- e1000_gate_hw_phy_config_ich8lan(hw, false);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_phy_params_pchlan - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific PHY parameters and function pointers.
- **/
-STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- DEBUGFUNC("e1000_init_phy_params_pchlan");
-
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_swflag_ich8lan;
- phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
- phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
- phy->ops.set_page = e1000_set_page_igp;
- phy->ops.read_reg = e1000_read_phy_reg_hv;
- phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
- phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
- phy->ops.release = e1000_release_swflag_ich8lan;
- phy->ops.reset = e1000_phy_hw_reset_ich8lan;
- phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.write_reg = e1000_write_phy_reg_hv;
- phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
- phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- phy->id = e1000_phy_unknown;
-
- ret_val = e1000_init_phy_workarounds_pchlan(hw);
- if (ret_val)
- return ret_val;
-
- if (phy->id == e1000_phy_unknown)
- switch (hw->mac.type) {
- default:
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- return ret_val;
- if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
- break;
- /* fall-through */
- case e1000_pch2lan:
- case e1000_pch_lpt:
- /* In case the PHY needs to be in mdio slow mode,
- * set slow mode and try to get the PHY id again.
- */
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- return ret_val;
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- return ret_val;
- break;
- }
- phy->type = e1000_get_phy_type_from_id(phy->id);
-
- switch (phy->type) {
- case e1000_phy_82577:
- case e1000_phy_82579:
- case e1000_phy_i217:
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex =
- e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- break;
- case e1000_phy_82578:
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific PHY parameters and function pointers.
- **/
-STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 i = 0;
-
- DEBUGFUNC("e1000_init_phy_params_ich8lan");
-
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_swflag_ich8lan;
- phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.release = e1000_release_swflag_ich8lan;
- phy->ops.reset = e1000_phy_hw_reset_ich8lan;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
-
- /* We may need to do this twice - once for IGP and if that fails,
- * we'll set BM func pointers and try again
- */
- ret_val = e1000_determine_phy_address(hw);
- if (ret_val) {
- phy->ops.write_reg = e1000_write_phy_reg_bm;
- phy->ops.read_reg = e1000_read_phy_reg_bm;
- ret_val = e1000_determine_phy_address(hw);
- if (ret_val) {
- DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
- return ret_val;
- }
- }
-
- phy->id = 0;
- while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
- (i++ < 100)) {
- msec_delay(1);
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Verify phy id */
- switch (phy->id) {
- case IGP03E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
- phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy->type = e1000_phy_ife;
- phy->autoneg_mask = E1000_ALL_NOT_GIG;
- phy->ops.get_info = e1000_get_phy_info_ife;
- phy->ops.check_polarity = e1000_check_polarity_ife;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
- break;
- case BME1000_E_PHY_ID:
- phy->type = e1000_phy_bm;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->ops.read_reg = e1000_read_phy_reg_bm;
- phy->ops.write_reg = e1000_write_phy_reg_bm;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific NVM parameters and function
- * pointers.
- **/
-STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 gfpreg, sector_base_addr, sector_end_addr;
- u16 i;
-
- DEBUGFUNC("e1000_init_nvm_params_ich8lan");
-
- /* Can't read flash registers if the register set isn't mapped. */
- nvm->type = e1000_nvm_flash_sw;
- if (!hw->flash_address) {
- DEBUGOUT("ERROR: Flash registers not mapped\n");
- return -E1000_ERR_CONFIG;
- }
-
- gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
- /* sector_X_addr is a "sector"-aligned address (4096 bytes)
- * Add 1 to sector_end_addr since this sector is included in
- * the overall size.
- */
- sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
- sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
-
- /* flash_base_addr is byte-aligned */
- nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
-
- /* find total size of the NVM, then cut in half since the total
- * size represents two separate NVM banks.
- */
- nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
- << FLASH_SECTOR_ADDR_SHIFT);
- nvm->flash_bank_size /= 2;
- /* Adjust to word count */
- nvm->flash_bank_size /= sizeof(u16);
-
- nvm->word_size = E1000_SHADOW_RAM_WORDS;
-
- /* Clear shadow ram */
- for (i = 0; i < nvm->word_size; i++) {
- dev_spec->shadow_ram[i].modified = false;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
- E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
- E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
- nvm->ops.release = e1000_release_nvm_ich8lan;
- nvm->ops.read = e1000_read_nvm_ich8lan;
- nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
- nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
- nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
- nvm->ops.write = e1000_write_nvm_ich8lan;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific MAC parameters and function
- * pointers.
- **/
-STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
- u16 pci_cfg;
-#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
-
- DEBUGFUNC("e1000_init_mac_params_ich8lan");
-
- /* Set media type function pointer */
- hw->phy.media_type = e1000_media_type_copper;
-
- /* Set mta register count */
- mac->mta_reg_count = 32;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
- if (mac->type == e1000_ich8lan)
- mac->rar_entry_count--;
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC subsystem not supported */
- mac->arc_subsystem_valid = false;
- /* Adaptive IFS supported */
- mac->adaptive_ifs = true;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
- /* function id */
- mac->ops.set_lan_id = e1000_set_lan_id_single_port;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_ich8lan;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_ich8lan;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_ich8lan;
- /* physical interface setup */
- mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
-
- /* LED and other operations */
- switch (mac->type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- case e1000_ich10lan:
- /* check management mode */
- mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_ich8lan;
- mac->ops.led_off = e1000_led_off_ich8lan;
- break;
- case e1000_pch2lan:
- mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
- mac->ops.rar_set = e1000_rar_set_pch2lan;
- /* fall-through */
- case e1000_pch_lpt:
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
- /* multicast address update for pch2 */
- mac->ops.update_mc_addr_list =
- e1000_update_mc_addr_list_pch2lan;
-#endif
- case e1000_pchlan:
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
- /* save PCH revision_id */
- e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
- hw->revision_id = (u8)(pci_cfg &= 0x000F);
-#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
- /* check management mode */
- mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_pchlan;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_pchlan;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_pchlan;
- mac->ops.led_off = e1000_led_off_pchlan;
- break;
- default:
- break;
- }
-
- if (mac->type == e1000_pch_lpt) {
- mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
- mac->ops.rar_set = e1000_rar_set_pch_lpt;
- mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
- }
-
- /* Enable PCS Lock-loss workaround for ICH8 */
- if (mac->type == e1000_ich8lan)
- e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
-
- return E1000_SUCCESS;
-}
-
-/**
- * __e1000_access_emi_reg_locked - Read/write EMI register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: pointer to value to read/write from/to the EMI address
- * @read: boolean flag to indicate read or write
- *
- * This helper function assumes the SW/FW/HW Semaphore is already acquired.
- **/
-STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
- u16 *data, bool read)
-{
- s32 ret_val;
-
- DEBUGFUNC("__e1000_access_emi_reg_locked");
-
- ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
- if (ret_val)
- return ret_val;
-
- if (read)
- ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
- data);
- else
- ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
- *data);
-
- return ret_val;
-}
-
-/**
- * e1000_read_emi_reg_locked - Read Extended Management Interface register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: value to be read from the EMI address
- *
- * Assumes the SW/FW/HW Semaphore is already acquired.
- **/
-s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
-{
- DEBUGFUNC("e1000_read_emi_reg_locked");
-
- return __e1000_access_emi_reg_locked(hw, addr, data, true);
-}
-
-/**
- * e1000_write_emi_reg_locked - Write Extended Management Interface register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: value to be written to the EMI address
- *
- * Assumes the SW/FW/HW Semaphore is already acquired.
- **/
-s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
-{
- DEBUGFUNC("e1000_read_emi_reg_locked");
-
- return __e1000_access_emi_reg_locked(hw, addr, &data, false);
-}
-
-/**
- * e1000_set_eee_pchlan - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE based on setting in dev_spec structure, the duplex of
- * the link and the EEE capabilities of the link partner. The LPI Control
- * register bits will remain set only if/when link is up.
- *
- * EEE LPI must not be asserted earlier than one second after link is up.
- * On 82579, EEE LPI should not be enabled until such time otherwise there
- * can be link issues with some switches. Other devices can have EEE LPI
- * enabled immediately upon link up since they have a timer in hardware which
- * prevents LPI from being asserted too early.
- **/
-s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- s32 ret_val;
- u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
-
- DEBUGFUNC("e1000_set_eee_pchlan");
-
- switch (hw->phy.type) {
- case e1000_phy_82579:
- lpa = I82579_EEE_LP_ABILITY;
- pcs_status = I82579_EEE_PCS_STATUS;
- adv_addr = I82579_EEE_ADVERTISEMENT;
- break;
- case e1000_phy_i217:
- lpa = I217_EEE_LP_ABILITY;
- pcs_status = I217_EEE_PCS_STATUS;
- adv_addr = I217_EEE_ADVERTISEMENT;
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
- if (ret_val)
- goto release;
-
- /* Clear bits that enable EEE in various speeds */
- lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
-
- /* Enable EEE if not disabled by user */
- if (!dev_spec->eee_disable) {
- /* Save off link partner's EEE ability */
- ret_val = e1000_read_emi_reg_locked(hw, lpa,
- &dev_spec->eee_lp_ability);
- if (ret_val)
- goto release;
-
- /* Read EEE advertisement */
- ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
- if (ret_val)
- goto release;
-
- /* Enable EEE only for speeds in which the link partner is
- * EEE capable and for which we advertise EEE.
- */
- if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
- lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
-
- if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
- hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
- if (data & NWAY_LPAR_100TX_FD_CAPS)
- lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
- else
- /* EEE is not supported in 100Half, so ignore
- * partner's EEE in 100 ability if full-duplex
- * is not advertised.
- */
- dev_spec->eee_lp_ability &=
- ~I82579_EEE_100_SUPPORTED;
- }
- }
-
- /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
- ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
- if (ret_val)
- goto release;
-
- ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
-release:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
- * @hw: pointer to the HW structure
- * @link: link up bool flag
- *
- * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
- * preventing further DMA write requests. Workaround the issue by disabling
- * the de-assertion of the clock request when in 1Gpbs mode.
- * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
- * speeds in order to avoid Tx hangs.
- **/
-STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
-{
- u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
- u32 status = E1000_READ_REG(hw, E1000_STATUS);
- s32 ret_val = E1000_SUCCESS;
- u16 reg;
-
- if (link && (status & E1000_STATUS_SPEED_1000)) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val =
- e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
- ®);
- if (ret_val)
- goto release;
-
- ret_val =
- e1000_write_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- reg &
- ~E1000_KMRNCTRLSTA_K1_ENABLE);
- if (ret_val)
- goto release;
-
- usec_delay(10);
-
- E1000_WRITE_REG(hw, E1000_FEXTNVM6,
- fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
-
- ret_val =
- e1000_write_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- reg);
-release:
- hw->phy.ops.release(hw);
- } else {
- /* clear FEXTNVM6 bit 8 on link down or 10/100 */
- fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
-
- if (!link || ((status & E1000_STATUS_SPEED_100) &&
- (status & E1000_STATUS_FD)))
- goto update_fextnvm6;
-
- ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®);
- if (ret_val)
- return ret_val;
-
- /* Clear link status transmit timeout */
- reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
-
- if (status & E1000_STATUS_SPEED_100) {
- /* Set inband Tx timeout to 5x10us for 100Half */
- reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
-
- /* Do not extend the K1 entry latency for 100Half */
- fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
- } else {
- /* Set inband Tx timeout to 50x10us for 10Full/Half */
- reg |= 50 <<
- I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
-
- /* Extend the K1 entry latency for 10 Mbps */
- fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
- }
-
- ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
- if (ret_val)
- return ret_val;
-
-update_fextnvm6:
- E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
- }
-
- return ret_val;
-}
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-/**
- * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
- * @hw: pointer to the HW structure
- * @to_sx: boolean indicating a system power state transition to Sx
- *
- * When link is down, configure ULP mode to significantly reduce the power
- * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
- * ME firmware to start the ULP configuration. If not on an ME enabled
- * system, configure the ULP mode by software.
- */
-s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
-{
- u32 mac_reg;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_reg;
-
- if ((hw->mac.type < e1000_pch_lpt) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
- (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
- return 0;
-
- if (!to_sx) {
- int i = 0;
-
- /* Poll up to 5 seconds for Cable Disconnected indication */
- while (!(E1000_READ_REG(hw, E1000_FEXT) &
- E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
- /* Bail if link is re-acquired */
- if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
- return -E1000_ERR_PHY;
-
- if (i++ == 100)
- break;
-
- msec_delay(50);
- }
- DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
- (E1000_READ_REG(hw, E1000_FEXT) &
- E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
- i * 50);
- }
-
- if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
- /* Request ME configure ULP mode in the PHY */
- mac_reg = E1000_READ_REG(hw, E1000_H2ME);
- mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
- E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- /* During S0 Idle keep the phy in PCI-E mode */
- if (hw->dev_spec.ich8lan.smbus_disable)
- goto skip_smbus;
-
- /* Force SMBus mode in PHY */
- ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
- if (ret_val)
- goto release;
- phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
- e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
-
- /* Force SMBus mode in MAC */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-skip_smbus:
- if (!to_sx) {
- /* Change the 'Link Status Change' interrupt to trigger
- * on 'Cable Status Change'
- */
- ret_val = e1000_read_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_OP_MODES,
- &phy_reg);
- if (ret_val)
- goto release;
- phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
- e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
- phy_reg);
- }
-
- /* Set Inband ULP Exit, Reset to SMBus mode and
- * Disable SMBus Release on PERST# in PHY
- */
- ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
- if (ret_val)
- goto release;
- phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
- I218_ULP_CONFIG1_DISABLE_SMB_PERST);
- if (to_sx) {
- if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
- phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
-
- phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
- } else {
- phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
- }
- e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
- /* Set Disable SMBus Release on PERST# in MAC */
- mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
- mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
- E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
-
- /* Commit ULP changes in PHY by starting auto ULP configuration */
- phy_reg |= I218_ULP_CONFIG1_START;
- e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
- if (!to_sx) {
- /* Disable Tx so that the MAC doesn't send any (buffered)
- * packets to the PHY.
- */
- mac_reg = E1000_READ_REG(hw, E1000_TCTL);
- mac_reg &= ~E1000_TCTL_EN;
- E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
- }
-release:
- hw->phy.ops.release(hw);
-out:
- if (ret_val)
- DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
- else
- hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
-
- return ret_val;
-}
-
-/**
- * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
- * @hw: pointer to the HW structure
- * @force: boolean indicating whether or not to force disabling ULP
- *
- * Un-configure ULP mode when link is up, the system is transitioned from
- * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
- * system, poll for an indication from ME that ULP has been un-configured.
- * If not on an ME enabled system, un-configure the ULP mode by software.
- *
- * During nominal operation, this function is called when link is acquired
- * to disable ULP mode (force=false); otherwise, for example when unloading
- * the driver or during Sx->S0 transitions, this is called with force=true
- * to forcibly disable ULP.
-
- * When the cable is plugged in while the device is in D0, a Cable Status
- * Change interrupt is generated which causes this function to be called
- * to partially disable ULP mode and restart autonegotiation. This function
- * is then called again due to the resulting Link Status Change interrupt
- * to finish cleaning up after the ULP flow.
- */
-s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 mac_reg;
- u16 phy_reg;
- int i = 0;
-
- if ((hw->mac.type < e1000_pch_lpt) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
- (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
- return 0;
-
- if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
- if (force) {
- /* Request ME un-configure ULP mode in the PHY */
- mac_reg = E1000_READ_REG(hw, E1000_H2ME);
- mac_reg &= ~E1000_H2ME_ULP;
- mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
- E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
- }
-
- /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
- while (E1000_READ_REG(hw, E1000_FWSM) &
- E1000_FWSM_ULP_CFG_DONE) {
- if (i++ == 10) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- msec_delay(10);
- }
- DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
-
- if (force) {
- mac_reg = E1000_READ_REG(hw, E1000_H2ME);
- mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
- E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
- } else {
- /* Clear H2ME.ULP after ME ULP configuration */
- mac_reg = E1000_READ_REG(hw, E1000_H2ME);
- mac_reg &= ~E1000_H2ME_ULP;
- E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-
- /* Restore link speed advertisements and restart
- * Auto-negotiation
- */
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_oem_bits_config_ich8lan(hw, true);
- }
-
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- /* Revert the change to the 'Link Status Change'
- * interrupt to trigger on 'Cable Status Change'
- */
- ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
- &phy_reg);
- if (ret_val)
- goto release;
- phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
- e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
-
- if (force)
- /* Toggle LANPHYPC Value bit */
- e1000_toggle_lanphypc_pch_lpt(hw);
-
- /* Unforce SMBus mode in PHY */
- ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
- if (ret_val) {
- /* The MAC might be in PCIe mode, so temporarily force to
- * SMBus mode in order to access the PHY.
- */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
- msec_delay(50);
-
- ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
- &phy_reg);
- if (ret_val)
- goto release;
- }
- phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
- e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
-
- /* Unforce SMBus mode in MAC */
- mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
- /* When ULP mode was previously entered, K1 was disabled by the
- * hardware. Re-Enable K1 in the PHY when exiting ULP.
- */
- ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
- if (ret_val)
- goto release;
- phy_reg |= HV_PM_CTRL_K1_ENABLE;
- e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
-
- /* Clear ULP enabled configuration */
- ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
- if (ret_val)
- goto release;
- /* CSC interrupt received due to ULP Indication */
- if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
- phy_reg &= ~(I218_ULP_CONFIG1_IND |
- I218_ULP_CONFIG1_STICKY_ULP |
- I218_ULP_CONFIG1_RESET_TO_SMBUS |
- I218_ULP_CONFIG1_WOL_HOST |
- I218_ULP_CONFIG1_INBAND_EXIT |
- I218_ULP_CONFIG1_DISABLE_SMB_PERST);
- e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
- /* Commit ULP changes by starting auto ULP configuration */
- phy_reg |= I218_ULP_CONFIG1_START;
- e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
- /* Clear Disable SMBus Release on PERST# in MAC */
- mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
- mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
- E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
-
- if (!force) {
- hw->phy.ops.release(hw);
-
- if (hw->mac.autoneg)
- e1000_phy_setup_autoneg(hw);
-
- e1000_sw_lcd_config_ich8lan(hw);
-
- e1000_oem_bits_config_ich8lan(hw, true);
-
- /* Set ULP state to unknown and return non-zero to
- * indicate no link (yet) and re-enter on the next LSC
- * to finish disabling ULP flow.
- */
- hw->dev_spec.ich8lan.ulp_state =
- e1000_ulp_state_unknown;
-
- return 1;
- }
- }
-
- /* Re-enable Tx */
- mac_reg = E1000_READ_REG(hw, E1000_TCTL);
- mac_reg |= E1000_TCTL_EN;
- E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
-
-release:
- hw->phy.ops.release(hw);
- if (force) {
- hw->phy.ops.reset(hw);
- msec_delay(50);
- }
-out:
- if (ret_val)
- DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
- else
- hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
-
- return ret_val;
-}
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-/**
- * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link = false;
- u16 phy_reg;
-
- DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
-
- /* We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return E1000_SUCCESS;
-
- if ((hw->mac.type < e1000_pch_lpt) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
- } else {
- /* Check the MAC's STATUS register to determine link state
- * since the PHY could be inaccessible while in ULP mode.
- */
- link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
- if (link)
- ret_val = e1000_disable_ulp_lpt_lp(hw, false);
- else
- ret_val = e1000_enable_ulp_lpt_lp(hw, false);
-
- if (ret_val)
- return ret_val;
- }
-
- if (hw->mac.type == e1000_pchlan) {
- ret_val = e1000_k1_gig_workaround_hv(hw, link);
- if (ret_val)
- return ret_val;
- }
-
- /* When connected at 10Mbps half-duplex, some parts are excessively
- * aggressive resulting in many collisions. To avoid this, increase
- * the IPG and reduce Rx latency in the PHY.
- */
- if (((hw->mac.type == e1000_pch2lan) ||
- (hw->mac.type == e1000_pch_lpt)) && link) {
- u32 reg;
- reg = E1000_READ_REG(hw, E1000_STATUS);
- if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
- u16 emi_addr;
-
- reg = E1000_READ_REG(hw, E1000_TIPG);
- reg &= ~E1000_TIPG_IPGT_MASK;
- reg |= 0xFF;
- E1000_WRITE_REG(hw, E1000_TIPG, reg);
-
- /* Reduce Rx latency in analog PHY */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- if (hw->mac.type == e1000_pch2lan)
- emi_addr = I82579_RX_CONFIG;
- else
- emi_addr = I217_RX_CONFIG;
- ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
-
- hw->phy.ops.release(hw);
-
- if (ret_val)
- return ret_val;
- }
- }
-
- /* Work-around I218 hang issue */
- if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
- (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
- ret_val = e1000_k1_workaround_lpt_lp(hw, link);
- if (ret_val)
- return ret_val;
- }
-
- /* Clear link partner's EEE ability */
- hw->dev_spec.ich8lan.eee_lp_ability = 0;
-
- if (!link)
- return E1000_SUCCESS; /* No link detected */
-
- mac->get_link_status = false;
-
- switch (hw->mac.type) {
- case e1000_pch2lan:
- ret_val = e1000_k1_workaround_lv(hw);
- if (ret_val)
- return ret_val;
- /* fall-thru */
- case e1000_pchlan:
- if (hw->phy.type == e1000_phy_82578) {
- ret_val = e1000_link_stall_workaround_hv(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround for PCHx parts in half-duplex:
- * Set the number of preambles removed from the packet
- * when it is passed from the PHY to the MAC to prevent
- * the MAC from misinterpreting the packet type.
- */
- hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
- phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
-
- if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
- E1000_STATUS_FD)
- phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
-
- hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
- break;
- default:
- break;
- }
-
- /* Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift_generic(hw);
-
- /* Enable/Disable EEE after link up */
- if (hw->phy.type > e1000_phy_82579) {
- ret_val = e1000_set_eee_pchlan(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg)
- return -E1000_ERR_CONFIG;
-
- /* Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- mac->ops.config_collision_dist(hw);
-
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
- return ret_val;
-}
-
-/**
- * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific function pointers for PHY, MAC, and NVM.
- **/
-void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_ich8lan");
-
- hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
- hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
- switch (hw->mac.type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- case e1000_ich10lan:
- hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
- break;
- case e1000_pchlan:
- case e1000_pch2lan:
- case e1000_pch_lpt:
- hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
- break;
- default:
- break;
- }
-}
-
-/**
- * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
- * @hw: pointer to the HW structure
- *
- * Acquires the mutex for performing NVM operations.
- **/
-STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_acquire_nvm_ich8lan");
-
- E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_release_nvm_ich8lan - Release NVM mutex
- * @hw: pointer to the HW structure
- *
- * Releases the mutex used while performing NVM operations.
- **/
-STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_ich8lan");
-
- E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
-
- return;
-}
-
-/**
- * e1000_acquire_swflag_ich8lan - Acquire software control flag
- * @hw: pointer to the HW structure
- *
- * Acquires the software control flag for performing PHY and select
- * MAC CSR accesses.
- **/
-STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_acquire_swflag_ich8lan");
-
- E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
- while (timeout) {
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
- break;
-
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("SW has already locked the resource.\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- timeout = SW_FLAG_TIMEOUT;
-
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-
- while (timeout) {
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
-
- msec_delay_irq(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
- E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
-out:
- if (ret_val)
- E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
- return ret_val;
-}
-
-/**
- * e1000_release_swflag_ich8lan - Release software control flag
- * @hw: pointer to the HW structure
- *
- * Releases the software control flag for performing PHY and select
- * MAC CSR accesses.
- **/
-STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- DEBUGFUNC("e1000_release_swflag_ich8lan");
-
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
- } else {
- DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
- }
-
- E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
- return;
-}
-
-/**
- * e1000_check_mng_mode_ich8lan - Checks management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has any manageability enabled.
- * This is a function pointer entry point only called by read/write
- * routines for the PHY and NVM parts.
- **/
-STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- DEBUGFUNC("e1000_check_mng_mode_ich8lan");
-
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
- return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- * e1000_check_mng_mode_pchlan - Checks management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has iAMT enabled.
- * This is a function pointer entry point only called by read/write
- * routines for the PHY and NVM parts.
- **/
-STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- DEBUGFUNC("e1000_check_mng_mode_pchlan");
-
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
- return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
- (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- * e1000_rar_set_pch2lan - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr. For 82579, RAR[0] is the base address register that is to
- * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
- * Use SHRA[0-3] in place of those reserved for ME.
- **/
-STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- DEBUGFUNC("e1000_rar_set_pch2lan");
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- if (index == 0) {
- E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
- E1000_WRITE_FLUSH(hw);
- return;
- }
-
- /* RAR[1-6] are owned by manageability. Skip those and program the
- * next address into the SHRA register array.
- */
- if (index < (u32) (hw->mac.rar_entry_count)) {
- s32 ret_val;
-
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- if (ret_val)
- goto out;
-
- E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
- E1000_WRITE_FLUSH(hw);
-
- e1000_release_swflag_ich8lan(hw);
-
- /* verify the register updates */
- if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
- (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
- return;
-
- DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
- (index - 1), E1000_READ_REG(hw, E1000_FWSM));
- }
-
-out:
- DEBUGOUT1("Failed to write receive address at index %d\n", index);
-}
-
-/**
- * e1000_rar_set_pch_lpt - Set receive address registers
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address register array at index to the address passed
- * in by addr. For LPT, RAR[0] is the base address register that is to
- * contain the MAC address. SHRA[0-10] are the shared receive address
- * registers that are shared between the Host and manageability engine (ME).
- **/
-STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
- u32 wlock_mac;
-
- DEBUGFUNC("e1000_rar_set_pch_lpt");
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- if (index == 0) {
- E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
- E1000_WRITE_FLUSH(hw);
- return;
- }
-
- /* The manageability engine (ME) can lock certain SHRAR registers that
- * it is using - those registers are unavailable for use.
- */
- if (index < hw->mac.rar_entry_count) {
- wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
- E1000_FWSM_WLOCK_MAC_MASK;
- wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
-
- /* Check if all SHRAR registers are locked */
- if (wlock_mac == 1)
- goto out;
-
- if ((wlock_mac == 0) || (index <= wlock_mac)) {
- s32 ret_val;
-
- ret_val = e1000_acquire_swflag_ich8lan(hw);
-
- if (ret_val)
- goto out;
-
- E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
- rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
- rar_high);
- E1000_WRITE_FLUSH(hw);
-
- e1000_release_swflag_ich8lan(hw);
-
- /* verify the register updates */
- if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
- (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
- return;
- }
- }
-
-out:
- DEBUGOUT1("Failed to write receive address at index %d\n", index);
-}
-
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
-/**
- * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
- u8 *mc_addr_list,
- u32 mc_addr_count)
-{
- u16 phy_reg = 0;
- int i;
- s32 ret_val;
-
- DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
-
- e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
-
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val)
- goto release;
-
- for (i = 0; i < hw->mac.mta_reg_count; i++) {
- hw->phy.ops.write_reg_page(hw, BM_MTA(i),
- (u16)(hw->mac.mta_shadow[i] &
- 0xFFFF));
- hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
- (u16)((hw->mac.mta_shadow[i] >> 16) &
- 0xFFFF));
- }
-
- e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-release:
- hw->phy.ops.release(hw);
-}
-
-#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
-/**
- * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Checks if firmware is blocking the reset of the PHY.
- * This is a function pointer entry point only called by
- * reset routines.
- **/
-STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
-{
- u32 fwsm;
- bool blocked = false;
- int i = 0;
-
- DEBUGFUNC("e1000_check_reset_block_ich8lan");
-
- do {
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
- if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
- blocked = true;
- msec_delay(10);
- continue;
- }
- blocked = false;
- } while (blocked && (i++ < 10));
- return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-/**
- * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
- * @hw: pointer to the HW structure
- *
- * Assumes semaphore already acquired.
- *
- **/
-STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
-{
- u16 phy_data;
- u32 strap = E1000_READ_REG(hw, E1000_STRAP);
- u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
- E1000_STRAP_SMT_FREQ_SHIFT;
- s32 ret_val;
-
- strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
-
- ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~HV_SMB_ADDR_MASK;
- phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
- phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
-
- if (hw->phy.type == e1000_phy_i217) {
- /* Restore SMBus frequency */
- if (freq--) {
- phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
- phy_data |= (freq & (1 << 0)) <<
- HV_SMB_ADDR_FREQ_LOW_SHIFT;
- phy_data |= (freq & (1 << 1)) <<
- (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
- } else {
- DEBUGOUT("Unsupported SMB frequency in PHY\n");
- }
- }
-
- return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
-}
-
-/**
- * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
- * @hw: pointer to the HW structure
- *
- * SW should configure the LCD from the NVM extended configuration region
- * as a workaround for certain parts.
- **/
-STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
- s32 ret_val = E1000_SUCCESS;
- u16 word_addr, reg_data, reg_addr, phy_page = 0;
-
- DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
-
- /* Initialize the PHY from the NVM on ICH platforms. This
- * is needed due to an issue where the NVM configuration is
- * not properly autoloaded after power transitions.
- * Therefore, after each PHY reset, we will load the
- * configuration data out of the NVM manually.
- */
- switch (hw->mac.type) {
- case e1000_ich8lan:
- if (phy->type != e1000_phy_igp_3)
- return ret_val;
-
- if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
- (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
- break;
- }
- /* Fall-thru */
- case e1000_pchlan:
- case e1000_pch2lan:
- case e1000_pch_lpt:
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
- break;
- default:
- return ret_val;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- data = E1000_READ_REG(hw, E1000_FEXTNVM);
- if (!(data & sw_cfg_mask))
- goto release;
-
- /* Make sure HW does not configure LCD from PHY
- * extended configuration before SW configuration
- */
- data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- if ((hw->mac.type < e1000_pch2lan) &&
- (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
- goto release;
-
- cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
- cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
- cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
- if (!cnf_size)
- goto release;
-
- cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
- cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
-
- if (((hw->mac.type == e1000_pchlan) &&
- !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
- (hw->mac.type > e1000_pchlan)) {
- /* HW configures the SMBus address and LEDs when the
- * OEM and LCD Write Enable bits are set in the NVM.
- * When both NVM bits are cleared, SW will configure
- * them instead.
- */
- ret_val = e1000_write_smbus_addr(hw);
- if (ret_val)
- goto release;
-
- data = E1000_READ_REG(hw, E1000_LEDCTL);
- ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
- (u16)data);
- if (ret_val)
- goto release;
- }
-
- /* Configure LCD from extended configuration region. */
-
- /* cnf_base_addr is in DWORD */
- word_addr = (u16)(cnf_base_addr << 1);
-
- for (i = 0; i < cnf_size; i++) {
- ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
- ®_data);
- if (ret_val)
- goto release;
-
- ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
- 1, ®_addr);
- if (ret_val)
- goto release;
-
- /* Save off the PHY page for future writes. */
- if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
- phy_page = reg_data;
- continue;
- }
-
- reg_addr &= PHY_REG_MASK;
- reg_addr |= phy_page;
-
- ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
- reg_data);
- if (ret_val)
- goto release;
- }
-
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_k1_gig_workaround_hv - K1 Si workaround
- * @hw: pointer to the HW structure
- * @link: link up bool flag
- *
- * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
- * from a lower speed. This workaround disables K1 whenever link is at 1Gig
- * If link is down, the function will restore the default K1 setting located
- * in the NVM.
- **/
-STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 status_reg = 0;
- bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
-
- DEBUGFUNC("e1000_k1_gig_workaround_hv");
-
- if (hw->mac.type != e1000_pchlan)
- return E1000_SUCCESS;
-
- /* Wrap the whole flow with the sw flag */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
- if (link) {
- if (hw->phy.type == e1000_phy_82578) {
- ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
- &status_reg);
- if (ret_val)
- goto release;
-
- status_reg &= (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK);
-
- if (status_reg == (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- k1_enable = false;
- }
-
- if (hw->phy.type == e1000_phy_82577) {
- ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
- &status_reg);
- if (ret_val)
- goto release;
-
- status_reg &= (HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_MASK);
-
- if (status_reg == (HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_1000))
- k1_enable = false;
- }
-
- /* Link stall fix for link up */
- ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x0100);
- if (ret_val)
- goto release;
-
- } else {
- /* Link stall fix for link down */
- ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x4100);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
-
-release:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_configure_k1_ich8lan - Configure K1 power state
- * @hw: pointer to the HW structure
- * @enable: K1 state to configure
- *
- * Configure the K1 power state based on the provided parameter.
- * Assumes semaphore already acquired.
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- **/
-s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
-{
- s32 ret_val;
- u32 ctrl_reg = 0;
- u32 ctrl_ext = 0;
- u32 reg = 0;
- u16 kmrn_reg = 0;
-
- DEBUGFUNC("e1000_configure_k1_ich8lan");
-
- ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
- &kmrn_reg);
- if (ret_val)
- return ret_val;
-
- if (k1_enable)
- kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
- else
- kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
-
- ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
- kmrn_reg);
- if (ret_val)
- return ret_val;
-
- usec_delay(20);
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
-
- reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- reg |= E1000_CTRL_FRCSPD;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
- E1000_WRITE_FLUSH(hw);
- usec_delay(20);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- usec_delay(20);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
- * @hw: pointer to the HW structure
- * @d0_state: boolean if entering d0 or d3 device state
- *
- * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
- * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
- * in NVM determines whether HW should configure LPLU and Gbe Disable.
- **/
-STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
-{
- s32 ret_val = 0;
- u32 mac_reg;
- u16 oem_reg;
-
- DEBUGFUNC("e1000_oem_bits_config_ich8lan");
-
- if (hw->mac.type < e1000_pchlan)
- return ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- if (hw->mac.type == e1000_pchlan) {
- mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
- goto release;
- }
-
- mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
- if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
- goto release;
-
- mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
- ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
- if (ret_val)
- goto release;
-
- oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
-
- if (d0_state) {
- if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
- oem_reg |= HV_OEM_BITS_GBE_DIS;
-
- if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
- oem_reg |= HV_OEM_BITS_LPLU;
- } else {
- if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
- oem_reg |= HV_OEM_BITS_GBE_DIS;
-
- if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
- E1000_PHY_CTRL_NOND0A_LPLU))
- oem_reg |= HV_OEM_BITS_LPLU;
- }
-
- /* Set Restart auto-neg to activate the bits */
- if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
- !hw->phy.ops.check_reset_block(hw))
- oem_reg |= HV_OEM_BITS_RESTART_AN;
-
- ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
-
-release:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-
-/**
- * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
-
- ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= HV_KMRN_MDIO_SLOW;
-
- ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
-
- return ret_val;
-}
-
-/**
- * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- * done after every PHY reset.
- **/
-STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
-
- if (hw->mac.type != e1000_pchlan)
- return E1000_SUCCESS;
-
- /* Set MDIO slow mode before any other MDIO access */
- if (hw->phy.type == e1000_phy_82577) {
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (((hw->phy.type == e1000_phy_82577) &&
- ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
- ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
- /* Disable generation of early preamble */
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
- if (ret_val)
- return ret_val;
-
- /* Preamble tuning for SSC */
- ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
- 0xA204);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->phy.type == e1000_phy_82578) {
- /* Return registers to default by doing a soft reset then
- * writing 0x3140 to the control register.
- */
- if (hw->phy.revision < 2) {
- e1000_phy_sw_reset_generic(hw);
- ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
- 0x3140);
- }
- }
-
- /* Select page 0 */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- hw->phy.addr = 1;
- ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
- hw->phy.ops.release(hw);
- if (ret_val)
- return ret_val;
-
- /* Configure the K1 Si workaround during phy reset assuming there is
- * link so that it disables K1 if link is in 1Gbps.
- */
- ret_val = e1000_k1_gig_workaround_hv(hw, true);
- if (ret_val)
- return ret_val;
-
- /* Workaround for link disconnects on a busy hub in half duplex */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
- if (ret_val)
- goto release;
- ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
- phy_data & 0x00FF);
- if (ret_val)
- goto release;
-
- /* set MSE higher to enable link to stay up when noise is high */
- ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
-release:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
- * @hw: pointer to the HW structure
- **/
-void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
-{
- u32 mac_reg;
- u16 i, phy_reg = 0;
- s32 ret_val;
-
- DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val)
- goto release;
-
- /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
- for (i = 0; i < (hw->mac.rar_entry_count); i++) {
- mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
- hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
- (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
- (u16)((mac_reg >> 16) & 0xFFFF));
-
- mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
- hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
- (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
- (u16)((mac_reg & E1000_RAH_AV)
- >> 16));
- }
-
- e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-release:
- hw->phy.ops.release(hw);
-}
-
-#ifndef CRC32_OS_SUPPORT
-STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
-{
- u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
- u32 i, j, mask, crc;
-
- DEBUGFUNC("e1000_calc_rx_da_crc");
-
- crc = 0xffffffff;
- for (i = 0; i < 6; i++) {
- crc = crc ^ mac[i];
- for (j = 8; j > 0; j--) {
- mask = (crc & 1) * (-1);
- crc = (crc >> 1) ^ (poly & mask);
- }
- }
- return ~crc;
-}
-
-#endif /* CRC32_OS_SUPPORT */
-/**
- * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
- * with 82579 PHY
- * @hw: pointer to the HW structure
- * @enable: flag to enable/disable workaround when enabling/disabling jumbos
- **/
-s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 phy_reg, data;
- u32 mac_reg;
- u16 i;
-
- DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
-
- if (hw->mac.type < e1000_pch2lan)
- return E1000_SUCCESS;
-
- /* disable Rx path while enabling/disabling workaround */
- hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
- phy_reg | (1 << 14));
- if (ret_val)
- return ret_val;
-
- if (enable) {
- /* Write Rx addresses (rar_entry_count for RAL/H, and
- * SHRAL/H) and initial CRC values to the MAC
- */
- for (i = 0; i < hw->mac.rar_entry_count; i++) {
- u8 mac_addr[ETH_ADDR_LEN] = {0};
- u32 addr_high, addr_low;
-
- addr_high = E1000_READ_REG(hw, E1000_RAH(i));
- if (!(addr_high & E1000_RAH_AV))
- continue;
- addr_low = E1000_READ_REG(hw, E1000_RAL(i));
- mac_addr[0] = (addr_low & 0xFF);
- mac_addr[1] = ((addr_low >> 8) & 0xFF);
- mac_addr[2] = ((addr_low >> 16) & 0xFF);
- mac_addr[3] = ((addr_low >> 24) & 0xFF);
- mac_addr[4] = (addr_high & 0xFF);
- mac_addr[5] = ((addr_high >> 8) & 0xFF);
-
-#ifndef CRC32_OS_SUPPORT
- E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
- e1000_calc_rx_da_crc(mac_addr));
-#else /* CRC32_OS_SUPPORT */
- E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
- E1000_CRC32(ETH_ADDR_LEN, mac_addr));
-#endif /* CRC32_OS_SUPPORT */
- }
-
- /* Write Rx addresses to the PHY */
- e1000_copy_rx_addrs_to_phy_ich8lan(hw);
-
- /* Enable jumbo frame workaround in the MAC */
- mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
- mac_reg &= ~(1 << 14);
- mac_reg |= (7 << 15);
- E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
-
- mac_reg = E1000_READ_REG(hw, E1000_RCTL);
- mac_reg |= E1000_RCTL_SECRC;
- E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
-
- ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- data | (1 << 0));
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- &data);
- if (ret_val)
- return ret_val;
- data &= ~(0xF << 8);
- data |= (0xB << 8);
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- data);
- if (ret_val)
- return ret_val;
-
- /* Enable jumbo frame workaround in the PHY */
- hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
- data &= ~(0x7F << 5);
- data |= (0x37 << 5);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
- data &= ~(1 << 13);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
- data &= ~(0x3FF << 2);
- data |= (0x1A << 2);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
- ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
- (1 << 10));
- if (ret_val)
- return ret_val;
- } else {
- /* Write MAC register values back to h/w defaults */
- mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
- mac_reg &= ~(0xF << 14);
- E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
-
- mac_reg = E1000_READ_REG(hw, E1000_RCTL);
- mac_reg &= ~E1000_RCTL_SECRC;
- E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
-
- ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- data & ~(1 << 0));
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- &data);
- if (ret_val)
- return ret_val;
- data &= ~(0xF << 8);
- data |= (0xB << 8);
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- data);
- if (ret_val)
- return ret_val;
-
- /* Write PHY register values back to h/w defaults */
- hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
- data &= ~(0x7F << 5);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
- data |= (1 << 13);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
- data &= ~(0x3FF << 2);
- data |= (0x8 << 2);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
- if (ret_val)
- return ret_val;
- hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
- ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
- ~(1 << 10));
- if (ret_val)
- return ret_val;
- }
-
- /* re-enable Rx path after enabling/disabling workaround */
- return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
- ~(1 << 14));
-}
-
-/**
- * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- * done after every PHY reset.
- **/
-STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
-
- if (hw->mac.type != e1000_pch2lan)
- return E1000_SUCCESS;
-
- /* Set MDIO slow mode before any other MDIO access */
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- /* set MSE higher to enable link to stay up when noise is high */
- ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
- if (ret_val)
- goto release;
- /* drop link after 5 times MSE threshold was reached */
- ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
-release:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_k1_gig_workaround_lv - K1 Si workaround
- * @hw: pointer to the HW structure
- *
- * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
- * Disable K1 for 1000 and 100 speeds
- **/
-STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 status_reg = 0;
-
- DEBUGFUNC("e1000_k1_workaround_lv");
-
- if (hw->mac.type != e1000_pch2lan)
- return E1000_SUCCESS;
-
- /* Set K1 beacon duration based on 10Mbs speed */
- ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
- if (ret_val)
- return ret_val;
-
- if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
- == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
- if (status_reg &
- (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
- u16 pm_phy_reg;
-
- /* LV 1G/100 Packet drop issue wa */
- ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
- &pm_phy_reg);
- if (ret_val)
- return ret_val;
- pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
- ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
- pm_phy_reg);
- if (ret_val)
- return ret_val;
- } else {
- u32 mac_reg;
- mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
- mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
- mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
- E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
- * @hw: pointer to the HW structure
- * @gate: boolean set to true to gate, false to ungate
- *
- * Gate/ungate the automatic PHY configuration via hardware; perform
- * the configuration via software instead.
- **/
-STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
-{
- u32 extcnf_ctrl;
-
- DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
-
- if (hw->mac.type < e1000_pch2lan)
- return;
-
- extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
- if (gate)
- extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
- else
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
-
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-}
-
-/**
- * e1000_lan_init_done_ich8lan - Check for PHY config completion
- * @hw: pointer to the HW structure
- *
- * Check the appropriate indication the MAC has finished configuring the
- * PHY after a software reset.
- **/
-STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
-{
- u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
-
- DEBUGFUNC("e1000_lan_init_done_ich8lan");
-
- /* Wait for basic configuration completes before proceeding */
- do {
- data = E1000_READ_REG(hw, E1000_STATUS);
- data &= E1000_STATUS_LAN_INIT_DONE;
- usec_delay(100);
- } while ((!data) && --loop);
-
- /* If basic configuration is incomplete before the above loop
- * count reaches 0, loading the configuration from NVM will
- * leave the PHY in a bad state possibly resulting in no link.
- */
- if (loop == 0)
- DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
-
- /* Clear the Init Done bit for the next init event */
- data = E1000_READ_REG(hw, E1000_STATUS);
- data &= ~E1000_STATUS_LAN_INIT_DONE;
- E1000_WRITE_REG(hw, E1000_STATUS, data);
-}
-
-/**
- * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 reg;
-
- DEBUGFUNC("e1000_post_phy_reset_ich8lan");
-
- if (hw->phy.ops.check_reset_block(hw))
- return E1000_SUCCESS;
-
- /* Allow time for h/w to get to quiescent state after reset */
- msec_delay(10);
-
- /* Perform any necessary post-reset workarounds */
- switch (hw->mac.type) {
- case e1000_pchlan:
- ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_pch2lan:
- ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- /* Clear the host wakeup bit after lcd reset */
- if (hw->mac.type >= e1000_pchlan) {
- hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®);
- reg &= ~BM_WUC_HOST_WU_BIT;
- hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
- }
-
- /* Configure the LCD with the extended configuration region in NVM */
- ret_val = e1000_sw_lcd_config_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Configure the LCD with the OEM bits in NVM */
- ret_val = e1000_oem_bits_config_ich8lan(hw, true);
-
- if (hw->mac.type == e1000_pch2lan) {
- /* Ungate automatic PHY configuration on non-managed 82579 */
- if (!(E1000_READ_REG(hw, E1000_FWSM) &
- E1000_ICH_FWSM_FW_VALID)) {
- msec_delay(10);
- e1000_gate_hw_phy_config_ich8lan(hw, false);
- }
-
- /* Set EEE LPI Update Timer to 200usec */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_emi_reg_locked(hw,
- I82579_LPI_UPDATE_TIMER,
- 0x1387);
- hw->phy.ops.release(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY
- * This is a function pointer entry point called by drivers
- * or other shared routines.
- **/
-STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
-
- /* Gate automatic PHY configuration by hardware on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, true);
-
- ret_val = e1000_phy_hw_reset_generic(hw);
- if (ret_val)
- return ret_val;
-
- return e1000_post_phy_reset_ich8lan(hw);
-}
-
-/**
- * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU state according to the active flag. For PCH, if OEM write
- * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
- * the phy speed. This function will manually set the LPLU bit and restart
- * auto-neg as hw would do. D3 and D0 LPLU will call the same function
- * since it configures the same bit.
- **/
-STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
-{
- s32 ret_val;
- u16 oem_reg;
-
- DEBUGFUNC("e1000_set_lplu_state_pchlan");
-
- ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
- if (ret_val)
- return ret_val;
-
- if (active)
- oem_reg |= HV_OEM_BITS_LPLU;
- else
- oem_reg &= ~HV_OEM_BITS_LPLU;
-
- if (!hw->phy.ops.check_reset_block(hw))
- oem_reg |= HV_OEM_BITS_RESTART_AN;
-
- return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
-}
-
-/**
- * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
-
- if (phy->type == e1000_phy_ife)
- return E1000_SUCCESS;
-
- phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
- if (active) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Call gig speed drop workaround on LPLU before accessing
- * any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D3 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
-
- phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
- if (!active) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Call gig speed drop workaround on LPLU before accessing
- * any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
- * @hw: pointer to the HW structure
- * @bank: pointer to the variable that returns the active bank
- *
- * Reads signature byte from the NVM using the flash access registers.
- * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
- **/
-STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
-{
- u32 eecd;
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
- u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
- u8 sig_byte = 0;
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
-
- switch (hw->mac.type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- eecd = E1000_READ_REG(hw, E1000_EECD);
- if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
- E1000_EECD_SEC1VAL_VALID_MASK) {
- if (eecd & E1000_EECD_SEC1VAL)
- *bank = 1;
- else
- *bank = 0;
-
- return E1000_SUCCESS;
- }
- DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
- /* fall-thru */
- default:
- /* set bank to 0 in case flash read fails */
- *bank = 0;
-
- /* Check bank 0 */
- ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
- &sig_byte);
- if (ret_val)
- return ret_val;
- if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
- E1000_ICH_NVM_SIG_VALUE) {
- *bank = 0;
- return E1000_SUCCESS;
- }
-
- /* Check bank 1 */
- ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
- bank1_offset,
- &sig_byte);
- if (ret_val)
- return ret_val;
- if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
- E1000_ICH_NVM_SIG_VALUE) {
- *bank = 1;
- return E1000_SUCCESS;
- }
-
- DEBUGOUT("ERROR: No valid NVM bank present\n");
- return -E1000_ERR_NVM;
- }
-}
-
-/**
- * e1000_read_nvm_ich8lan - Read word(s) from the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to read.
- * @words: Size of data to read in words
- * @data: Pointer to the word(s) to read at offset.
- *
- * Reads a word(s) from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 act_offset;
- s32 ret_val = E1000_SUCCESS;
- u32 bank = 0;
- u16 i, word;
-
- DEBUGFUNC("e1000_read_nvm_ich8lan");
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- nvm->ops.acquire(hw);
-
- ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
- if (ret_val != E1000_SUCCESS) {
- DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
- bank = 0;
- }
-
- act_offset = (bank) ? nvm->flash_bank_size : 0;
- act_offset += offset;
-
- ret_val = E1000_SUCCESS;
- for (i = 0; i < words; i++) {
- if (dev_spec->shadow_ram[offset+i].modified) {
- data[i] = dev_spec->shadow_ram[offset+i].value;
- } else {
- ret_val = e1000_read_flash_word_ich8lan(hw,
- act_offset + i,
- &word);
- if (ret_val)
- break;
- data[i] = word;
- }
- }
-
- nvm->ops.release(hw);
-
-out:
- if (ret_val)
- DEBUGOUT1("NVM read error: %d\n", ret_val);
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_init_ich8lan - Initialize flash
- * @hw: pointer to the HW structure
- *
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- **/
-STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
-
- DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
-
- hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* Check if the flash descriptor is valid */
- if (!hsfsts.hsf_status.fldesvalid) {
- DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Clear FCERR and DAEL in hw status by writing 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress
- * bit to check against, in order to start a new cycle or
- * FDONE bit should be changed in the hardware so that it
- * is 1 after hardware reset, which can then be used as an
- * indication whether a cycle is in progress or has been
- * completed.
- */
-
- if (!hsfsts.hsf_status.flcinprog) {
- /* There is no cycle running at present,
- * so we can start a cycle.
- * Begin by setting Flash Cycle Done.
- */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- ret_val = E1000_SUCCESS;
- } else {
- s32 i;
-
- /* Otherwise poll for sometime so the current
- * cycle has a chance to end before giving up.
- */
- for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFSTS);
- if (!hsfsts.hsf_status.flcinprog) {
- ret_val = E1000_SUCCESS;
- break;
- }
- usec_delay(1);
- }
- if (ret_val == E1000_SUCCESS) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done.
- */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
- hsfsts.regval);
- } else {
- DEBUGOUT("Flash controller busy, cannot get access\n");
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
- * @hw: pointer to the HW structure
- * @timeout: maximum time to wait for completion
- *
- * This function starts a flash cycle and waits for its completion.
- **/
-STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- u32 i = 0;
-
- DEBUGFUNC("e1000_flash_cycle_ich8lan");
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
-
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone)
- break;
- usec_delay(1);
- } while (i++ < timeout);
-
- if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
- return E1000_SUCCESS;
-
- return -E1000_ERR_NVM;
-}
-
-/**
- * e1000_read_flash_word_ich8lan - Read word from flash
- * @hw: pointer to the HW structure
- * @offset: offset to data location
- * @data: pointer to the location for storing the data
- *
- * Reads the flash word at offset into data. Offset is converted
- * to bytes before read.
- **/
-STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- DEBUGFUNC("e1000_read_flash_word_ich8lan");
-
- if (!data)
- return -E1000_ERR_NVM;
-
- /* Must convert offset into bytes. */
- offset <<= 1;
-
- return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
-}
-
-/**
- * e1000_read_flash_byte_ich8lan - Read byte from flash
- * @hw: pointer to the HW structure
- * @offset: The offset of the byte to read.
- * @data: Pointer to a byte to store the value read.
- *
- * Reads a single byte from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 *data)
-{
- s32 ret_val;
- u16 word = 0;
-
- ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
-
- if (ret_val)
- return ret_val;
-
- *data = (u8)word;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_flash_data_ich8lan - Read byte or word from NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte or word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: Pointer to the word to store the value read.
- *
- * Reads a byte or word from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val = -E1000_ERR_NVM;
- u8 count = 0;
-
- DEBUGFUNC("e1000_read_flash_data_ich8lan");
-
- if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
- flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr);
-
- do {
- usec_delay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val != E1000_SUCCESS)
- break;
- hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
-
- ret_val =
- e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_READ_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it
- * and try the whole sequence a few more times, else
- * read in (shift in) the Flash Data0, the order is
- * least significant byte first msb to lsb
- */
- if (ret_val == E1000_SUCCESS) {
- flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
- if (size == 1)
- *data = (u8)(flash_data & 0x000000FF);
- else if (size == 2)
- *data = (u16)(flash_data & 0x0000FFFF);
- break;
- } else {
- /* If we've gotten here, then things are probably
- * completely hosed, but if the error condition is
- * detected, it won't hurt to give it another try...
- * ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (!hsfsts.hsf_status.flcdone) {
- DEBUGOUT("Timeout error - flash cycle did not complete.\n");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_ich8lan - Write word(s) to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to write.
- * @words: Size of data to write in words
- * @data: Pointer to the word(s) to write at offset.
- *
- * Writes a byte or word to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u16 i;
-
- DEBUGFUNC("e1000_write_nvm_ich8lan");
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- nvm->ops.acquire(hw);
-
- for (i = 0; i < words; i++) {
- dev_spec->shadow_ram[offset+i].modified = true;
- dev_spec->shadow_ram[offset+i].value = data[i];
- }
-
- nvm->ops.release(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
- * @hw: pointer to the HW structure
- *
- * The NVM checksum is updated by calling the generic update_nvm_checksum,
- * which writes the checksum to the shadow ram. The changes in the shadow
- * ram are then committed to the EEPROM by processing each bank at a time
- * checking for the modified bit and writing only the pending changes.
- * After a successful commit, the shadow ram is cleared and is ready for
- * future writes.
- **/
-STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
-
- ret_val = e1000_update_nvm_checksum_generic(hw);
- if (ret_val)
- goto out;
-
- if (nvm->type != e1000_nvm_flash_sw)
- goto out;
-
- nvm->ops.acquire(hw);
-
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written
- */
- ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
- if (ret_val != E1000_SUCCESS) {
- DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
- bank = 0;
- }
-
- if (bank == 0) {
- new_bank_offset = nvm->flash_bank_size;
- old_bank_offset = 0;
- ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
- if (ret_val)
- goto release;
- } else {
- old_bank_offset = nvm->flash_bank_size;
- new_bank_offset = 0;
- ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
- if (ret_val)
- goto release;
- }
-
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM
- */
- if (dev_spec->shadow_ram[i].modified) {
- data = dev_spec->shadow_ram[i].value;
- } else {
- ret_val = e1000_read_flash_word_ich8lan(hw, i +
- old_bank_offset,
- &data);
- if (ret_val)
- break;
- }
-
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress
- */
- if (i == E1000_ICH_NVM_SIG_WORD)
- data |= E1000_ICH_NVM_SIG_MASK;
-
- /* Convert offset to bytes. */
- act_offset = (i + new_bank_offset) << 1;
-
- usec_delay(100);
- /* Write the bytes to the new bank. */
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset,
- (u8)data);
- if (ret_val)
- break;
-
- usec_delay(100);
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset + 1,
- (u8)(data >> 8));
- if (ret_val)
- break;
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed.
- */
- if (ret_val) {
- DEBUGOUT("Flash commit failed.\n");
- goto release;
- }
-
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b
- */
- act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
- ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
- if (ret_val)
- goto release;
-
- data &= 0xBFFF;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset * 2 + 1,
- (u8)(data >> 8));
- if (ret_val)
- goto release;
-
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase
- */
- act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
- if (ret_val)
- goto release;
-
- /* Great! Everything worked, we can now clear the cached entries. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- dev_spec->shadow_ram[i].modified = false;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
-release:
- nvm->ops.release(hw);
-
- /* Reload the EEPROM, or else modifications will not appear
- * until after the next adapter reset.
- */
- if (!ret_val) {
- nvm->ops.reload(hw);
- msec_delay(10);
- }
-
-out:
- if (ret_val)
- DEBUGOUT1("NVM update error: %d\n", ret_val);
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
- * If the bit is 0, that the EEPROM had been modified, but the checksum was not
- * calculated, in which case we need to calculate the checksum and set bit 6.
- **/
-STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 data;
- u16 word;
- u16 valid_csum_mask;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
-
- /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
- * the checksum needs to be fixed. This bit is an indication that
- * the NVM was prepared by OEM software and did not calculate
- * the checksum...a likely scenario.
- */
- switch (hw->mac.type) {
- case e1000_pch_lpt:
- word = NVM_COMPAT;
- valid_csum_mask = NVM_COMPAT_VALID_CSUM;
- break;
- default:
- word = NVM_FUTURE_INIT_WORD1;
- valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
- break;
- }
-
- ret_val = hw->nvm.ops.read(hw, word, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & valid_csum_mask)) {
- data |= valid_csum_mask;
- ret_val = hw->nvm.ops.write(hw, word, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = hw->nvm.ops.update(hw);
- if (ret_val)
- return ret_val;
- }
-
- return e1000_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte/word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: The byte(s) to write to the NVM.
- *
- * Writes one/two bytes to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val;
- u8 count = 0;
-
- DEBUGFUNC("e1000_write_ich8_data");
-
- if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
-
- flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr);
-
- do {
- usec_delay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val != E1000_SUCCESS)
- break;
- hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
-
- if (size == 1)
- flash_data = (u32)data & 0x00FF;
- else
- flash_data = (u32)data;
-
- E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it
- * and try the whole sequence a few more times else done
- */
- ret_val =
- e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_WRITE_COMMAND_TIMEOUT);
- if (ret_val == E1000_SUCCESS)
- break;
-
- /* If we're here, then things are most likely
- * completely hosed, but if the error condition
- * is detected, it won't hurt to give it another
- * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr)
- /* Repeat for some time before giving up. */
- continue;
- if (!hsfsts.hsf_status.flcdone) {
- DEBUGOUT("Timeout error - flash cycle did not complete.\n");
- break;
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The index of the byte to read.
- * @data: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 data)
-{
- u16 word = (u16)data;
-
- DEBUGFUNC("e1000_write_flash_byte_ich8lan");
-
- return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
-}
-
-/**
- * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The offset of the byte to write.
- * @byte: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- * Goes through a retry algorithm before giving up.
- **/
-STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte)
-{
- s32 ret_val;
- u16 program_retries;
-
- DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
-
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (!ret_val)
- return ret_val;
-
- for (program_retries = 0; program_retries < 100; program_retries++) {
- DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
- usec_delay(100);
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (ret_val == E1000_SUCCESS)
- break;
- }
- if (program_retries == 100)
- return -E1000_ERR_NVM;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
- * @hw: pointer to the HW structure
- * @bank: 0 for first bank, 1 for second bank, etc.
- *
- * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
- * bank N is 4096 * N + flash_reg_addr.
- **/
-STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- /* bank size is in 16bit words - adjust to bytes */
- u32 flash_bank_size = nvm->flash_bank_size * 2;
- s32 ret_val;
- s32 count = 0;
- s32 j, iteration, sector_size;
-
- DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
-
- hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of hw flash status
- * register
- * 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector
- * can be calculated as = bank * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as = bank * 4096
- * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
- * (ich9 only, otherwise error condition)
- * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
- */
- switch (hsfsts.hsf_status.berasesz) {
- case 0:
- /* Hw sector size 256 */
- sector_size = ICH_FLASH_SEG_SIZE_256;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
- break;
- case 1:
- sector_size = ICH_FLASH_SEG_SIZE_4K;
- iteration = 1;
- break;
- case 2:
- sector_size = ICH_FLASH_SEG_SIZE_8K;
- iteration = 1;
- break;
- case 3:
- sector_size = ICH_FLASH_SEG_SIZE_64K;
- iteration = 1;
- break;
- default:
- return -E1000_ERR_NVM;
- }
-
- /* Start with the base address, then add the sector offset. */
- flash_linear_addr = hw->nvm.flash_base_addr;
- flash_linear_addr += (bank) ? flash_bank_size : 0;
-
- for (j = 0; j < iteration; j++) {
- do {
- u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
-
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Write a value 11 (block Erase) in Flash
- * Cycle field in hw flash control
- */
- hsflctl.regval =
- E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
- E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
- hsflctl.regval);
-
- /* Write the last 24 bits of an index within the
- * block into Flash Linear address field in Flash
- * Address.
- */
- flash_linear_addr += (j * sector_size);
- E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
- flash_linear_addr);
-
- ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
- if (ret_val == E1000_SUCCESS)
- break;
-
- /* Check if FCERR is set to 1. If 1,
- * clear it and try the whole sequence
- * a few more times else Done
- */
- hsfsts.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr)
- /* repeat for some time before giving up */
- continue;
- else if (!hsfsts.hsf_status.flcdone)
- return ret_val;
- } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_valid_led_default_ich8lan - Set the default LED settings
- * @hw: pointer to the HW structure
- * @data: Pointer to the LED settings
- *
- * Reads the LED default settings from the NVM to data. If the NVM LED
- * settings is all 0's or F's, set the LED default to a valid LED default
- * setting.
- **/
-STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_ich8lan");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT_ICH8LAN;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_id_led_init_pchlan - store LED configurations
- * @hw: pointer to the HW structure
- *
- * PCH does not control LEDs via the LEDCTL register, rather it uses
- * the PHY LED configuration register.
- *
- * PCH also does not have an "always on" or "always off" mode which
- * complicates the ID feature. Instead of using the "on" mode to indicate
- * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
- * use "link_up" mode. The LEDs will still ID on request if there is no
- * link based on logic in e1000_led_[on|off]_pchlan().
- **/
-STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
- u16 data, i, temp, shift;
-
- DEBUGFUNC("e1000_id_led_init_pchlan");
-
- /* Get default ID LED modes */
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
-
- mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
- shift = (i * 5);
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode1 |= (ledctl_on << shift);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode1 |= (ledctl_off << shift);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode2 |= (ledctl_on << shift);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode2 |= (ledctl_off << shift);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
- * @hw: pointer to the HW structure
- *
- * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
- * register, so the the bus width is hard coded.
- **/
-STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_bus_info_ich8lan");
-
- ret_val = e1000_get_bus_info_pcie_generic(hw);
-
- /* ICH devices are "PCI Express"-ish. They have
- * a configuration space, but do not contain
- * PCI Express Capability registers, so bus width
- * must be hardcoded.
- */
- if (bus->width == e1000_bus_width_unknown)
- bus->width = e1000_bus_width_pcie_x1;
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_ich8lan - Reset the hardware
- * @hw: pointer to the HW structure
- *
- * Does a full reset of the hardware which includes a reset of the PHY and
- * MAC.
- **/
-STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u16 kum_cfg;
- u32 ctrl, reg;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw_ich8lan");
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC
- * with the global reset.
- */
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac.type == e1000_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
- }
-
- if (hw->mac.type == e1000_pchlan) {
- /* Save the NVM K1 bit setting*/
- ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
- if (ret_val)
- return ret_val;
-
- if (kum_cfg & E1000_NVM_K1_ENABLE)
- dev_spec->nvm_k1_enabled = true;
- else
- dev_spec->nvm_k1_enabled = false;
- }
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- if (!hw->phy.ops.check_reset_block(hw)) {
- /* Full-chip reset requires MAC and PHY reset at the same
- * time to make sure the interface between MAC and the
- * external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
-
- /* Gate automatic PHY configuration by hardware on
- * non-managed 82579
- */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, true);
- }
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- DEBUGOUT("Issuing a global reset to ich8lan\n");
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
- /* cannot issue a flush here because it hangs the hardware */
- msec_delay(20);
-
- /* Set Phy Config Counter to 50msec */
- if (hw->mac.type == e1000_pch2lan) {
- reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
- reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
- reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
- E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
- }
-
- if (!ret_val)
- E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
- if (ctrl & E1000_CTRL_PHY_RST) {
- ret_val = hw->phy.ops.get_cfg_done(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_post_phy_reset_ich8lan(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* For PCH, this write will make sure that any noise
- * will be detected as a CRC error and be dropped rather than show up
- * as a bad packet to the DMA engine.
- */
- if (hw->mac.type == e1000_pchlan)
- E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
-
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- reg = E1000_READ_REG(hw, E1000_KABGTXD);
- reg |= E1000_KABGTXD_BGSQLBIAS;
- E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_hw_ich8lan - Initialize the hardware
- * @hw: pointer to the HW structure
- *
- * Prepares the hardware for transmit and receive by doing the following:
- * - initialize hardware bits
- * - initialize LED identification
- * - setup receive address registers
- * - setup flow control
- * - setup transmit descriptors
- * - clear statistics
- **/
-STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl_ext, txdctl, snoop;
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_init_hw_ich8lan");
-
- e1000_initialize_hw_bits_ich8lan(hw);
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- /* An error is not fatal and we should not stop init due to this */
- if (ret_val)
- DEBUGOUT("Error initializing identification LED\n");
-
- /* Setup the receive address. */
- e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* The 82578 Rx buffer will stall if wakeup is enabled in host and
- * the ME. Disable wakeup by clearing the host wakeup bit.
- * Reset the phy after disabling host wakeup to reset the Rx buffer.
- */
- if (hw->phy.type == e1000_phy_82578) {
- hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
- i &= ~BM_WUC_HOST_WU_BIT;
- hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
- ret_val = e1000_phy_hw_reset_ich8lan(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /* Set the transmit descriptor write-back policy for both queues */
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
- txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB);
- txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
- txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB);
- txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
-
- /* ICH8 has opposite polarity of no_snoop bits.
- * By default, we should use snoop behavior.
- */
- if (mac->type == e1000_ich8lan)
- snoop = PCIE_ICH8_SNOOP_ALL;
- else
- snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
- e1000_set_pcie_no_snoop_generic(hw, snoop);
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_ich8lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
- * @hw: pointer to the HW structure
- *
- * Sets/Clears required hardware bits necessary for correctly setting up the
- * hardware for transmit and receive.
- **/
-STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
-
- /* Extended Device Control */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg |= (1 << 22);
- /* Enable PHY low-power state when MAC is at D3 w/o WoL */
- if (hw->mac.type >= e1000_pchlan)
- reg |= E1000_CTRL_EXT_PHYPDEN;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* Transmit Descriptor Control 0 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg |= (1 << 22);
- E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = E1000_READ_REG(hw, E1000_TARC(0));
- if (hw->mac.type == e1000_ich8lan)
- reg |= (1 << 28) | (1 << 29);
- reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
- E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = E1000_READ_REG(hw, E1000_TARC(1));
- if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- reg |= (1 << 24) | (1 << 26) | (1 << 30);
- E1000_WRITE_REG(hw, E1000_TARC(1), reg);
-
- /* Device Status */
- if (hw->mac.type == e1000_ich8lan) {
- reg = E1000_READ_REG(hw, E1000_STATUS);
- reg &= ~(1 << 31);
- E1000_WRITE_REG(hw, E1000_STATUS, reg);
- }
-
- /* work-around descriptor data corruption issue during nfs v2 udp
- * traffic, just disable the nfs filtering capability
- */
- reg = E1000_READ_REG(hw, E1000_RFCTL);
- reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
-
- /* Disable IPv6 extension header parsing because some malformed
- * IPv6 headers can hang the Rx.
- */
- if (hw->mac.type == e1000_ich8lan)
- reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
- E1000_WRITE_REG(hw, E1000_RFCTL, reg);
-
- /* Enable ECC on Lynxpoint */
- if (hw->mac.type == e1000_pch_lpt) {
- reg = E1000_READ_REG(hw, E1000_PBECCSTS);
- reg |= E1000_PBECCSTS_ECC_ENABLE;
- E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
-
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_MEHE;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
- }
-
- return;
-}
-
-/**
- * e1000_setup_link_ich8lan - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_link_ich8lan");
-
- if (hw->phy.ops.check_reset_block(hw))
- return E1000_SUCCESS;
-
- /* ICH parts do not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- if (hw->fc.requested_mode == e1000_fc_default)
- hw->fc.requested_mode = e1000_fc_full;
-
- /* Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Continue to configure the copper link. */
- ret_val = hw->mac.ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
-
- E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
- if ((hw->phy.type == e1000_phy_82578) ||
- (hw->phy.type == e1000_phy_82579) ||
- (hw->phy.type == e1000_phy_i217) ||
- (hw->phy.type == e1000_phy_82577)) {
- E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
-
- ret_val = hw->phy.ops.write_reg(hw,
- PHY_REG(BM_PORT_CTRL_PAGE, 27),
- hw->fc.pause_time);
- if (ret_val)
- return ret_val;
- }
-
- return e1000_set_fc_watermarks_generic(hw);
-}
-
-/**
- * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
- * @hw: pointer to the HW structure
- *
- * Configures the kumeran interface to the PHY to wait the appropriate time
- * when polling the PHY, then call the generic setup_copper_link to finish
- * configuring the copper link.
- **/
-STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- DEBUGFUNC("e1000_setup_copper_link_ich8lan");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Set the mac to wait the maximum time between each iteration
- * and increase the max iterations when polling the phy;
- * this fixes erroneous timeouts at 10Mbps.
- */
- ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
- 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_INBAND_PARAM,
- ®_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_INBAND_PARAM,
- reg_data);
- if (ret_val)
- return ret_val;
-
- switch (hw->phy.type) {
- case e1000_phy_igp_3:
- ret_val = e1000_copper_link_setup_igp(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_bm:
- case e1000_phy_82578:
- ret_val = e1000_copper_link_setup_m88(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_82577:
- case e1000_phy_82579:
- ret_val = e1000_copper_link_setup_82577(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_ife:
- ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
- ®_data);
- if (ret_val)
- return ret_val;
-
- reg_data &= ~IFE_PMC_AUTO_MDIX;
-
- switch (hw->phy.mdix) {
- case 1:
- reg_data &= ~IFE_PMC_FORCE_MDIX;
- break;
- case 2:
- reg_data |= IFE_PMC_FORCE_MDIX;
- break;
- case 0:
- default:
- reg_data |= IFE_PMC_AUTO_MDIX;
- break;
- }
- ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
- reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
- * @hw: pointer to the HW structure
- *
- * Calls the PHY specific link setup function and then calls the
- * generic setup_copper_link to finish configuring the link for
- * Lynxpoint PCH devices
- **/
-STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- ret_val = e1000_copper_link_setup_82577(hw);
- if (ret_val)
- return ret_val;
-
- return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to store current link speed
- * @duplex: pointer to store the current link duplex
- *
- * Calls the generic get_speed_and_duplex to retrieve the current link
- * information and then calls the Kumeran lock loss workaround for links at
- * gigabit speeds.
- **/
-STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_link_up_info_ich8lan");
-
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac.type == e1000_ich8lan) &&
- (hw->phy.type == e1000_phy_igp_3) &&
- (*speed == SPEED_1000)) {
- ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
- * @hw: pointer to the HW structure
- *
- * Work-around for 82566 Kumeran PCS lock loss:
- * On link status change (i.e. PCI reset, speed change) and link is up and
- * speed is gigabit-
- * 0) if workaround is optionally disabled do nothing
- * 1) wait 1ms for Kumeran link to come up
- * 2) check Kumeran Diagnostic register PCS lock loss bit
- * 3) if not set the link is locked (all is good), otherwise...
- * 4) reset the PHY
- * 5) repeat up to 10 times
- * Note: this is only called for IGP3 copper when speed is 1gb.
- **/
-STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 phy_ctrl;
- s32 ret_val;
- u16 i, data;
- bool link;
-
- DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
-
- if (!dev_spec->kmrn_lock_loss_workaround_enabled)
- return E1000_SUCCESS;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (!link)
- return E1000_SUCCESS;
-
- for (i = 0; i < 10; i++) {
- /* read once to clear */
- ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return E1000_SUCCESS;
-
- /* Issue PHY reset */
- hw->phy.ops.reset(hw);
- msec_delay_irq(5);
- }
- /* Disable GigE link negotiation */
- phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
- phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- /* Call gig speed drop workaround on Gig disable before accessing
- * any PHY registers
- */
- e1000_gig_downshift_workaround_ich8lan(hw);
-
- /* unable to acquire PCS lock */
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
- * @hw: pointer to the HW structure
- * @state: boolean value used to set the current Kumeran workaround state
- *
- * If ICH8, set the current Kumeran workaround state (enabled - true
- * /disabled - false).
- **/
-void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-
- DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
-
- if (hw->mac.type != e1000_ich8lan) {
- DEBUGOUT("Workaround applies to ICH8 only.\n");
- return;
- }
-
- dev_spec->kmrn_lock_loss_workaround_enabled = state;
-
- return;
-}
-
-/**
- * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
- * @hw: pointer to the HW structure
- *
- * Workaround for 82566 power-down on D3 entry:
- * 1) disable gigabit link
- * 2) write VR power-down enable
- * 3) read it back
- * Continue if successful, else issue LCD reset and repeat
- **/
-void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
- u16 data;
- u8 retry = 0;
-
- DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
-
- if (hw->phy.type != e1000_phy_igp_3)
- return;
-
- /* Try the workaround twice (if needed) */
- do {
- /* Disable link */
- reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
- reg |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
-
- /* Call gig speed drop workaround on Gig disable before
- * accessing any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000_gig_downshift_workaround_ich8lan(hw);
-
- /* Write VR power-down enable */
- hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
- data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
- data | IGP3_VR_CTRL_MODE_SHUTDOWN);
-
- /* Read it back and test */
- hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
- data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
- break;
-
- /* Issue PHY reset and repeat at most one more time */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
-}
-
-/**
- * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
- * @hw: pointer to the HW structure
- *
- * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
- * LPLU, Gig disable, MDIC PHY reset):
- * 1) Set Kumeran Near-end loopback
- * 2) Clear Kumeran Near-end loopback
- * Should only be called for ICH8[m] devices with any 1G Phy.
- **/
-void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data;
-
- DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
-
- if ((hw->mac.type != e1000_ich8lan) ||
- (hw->phy.type == e1000_phy_ife))
- return;
-
- ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- ®_data);
- if (ret_val)
- return;
- reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
- if (ret_val)
- return;
- reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
- e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
-}
-
-/**
- * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
- * @hw: pointer to the HW structure
- *
- * During S0 to Sx transition, it is possible the link remains at gig
- * instead of negotiating to a lower speed. Before going to Sx, set
- * 'Gig Disable' to force link speed negotiation to a lower speed based on
- * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
- * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
- * needs to be written.
- * Parts that support (and are linked to a partner which support) EEE in
- * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
- * than 10Mbps w/o EEE.
- **/
-void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 phy_ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
-
- phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
- phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
-
- if (hw->phy.type == e1000_phy_i217) {
- u16 phy_reg, device_id = hw->device_id;
-
- if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
- (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
- u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
-
- E1000_WRITE_REG(hw, E1000_FEXTNVM6,
- fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- if (!dev_spec->eee_disable) {
- u16 eee_advert;
-
- ret_val =
- e1000_read_emi_reg_locked(hw,
- I217_EEE_ADVERTISEMENT,
- &eee_advert);
- if (ret_val)
- goto release;
-
- /* Disable LPLU if both link partners support 100BaseT
- * EEE and 100Full is advertised on both ends of the
- * link, and enable Auto Enable LPI since there will
- * be no driver to enable LPI while in Sx.
- */
- if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
- (dev_spec->eee_lp_ability &
- I82579_EEE_100_SUPPORTED) &&
- (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
- phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
- E1000_PHY_CTRL_NOND0A_LPLU);
-
- /* Set Auto Enable LPI after link up */
- hw->phy.ops.read_reg_locked(hw,
- I217_LPI_GPIO_CTRL,
- &phy_reg);
- phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
- hw->phy.ops.write_reg_locked(hw,
- I217_LPI_GPIO_CTRL,
- phy_reg);
- }
- }
-
- /* For i217 Intel Rapid Start Technology support,
- * when the system is going into Sx and no manageability engine
- * is present, the driver must configure proxy to reset only on
- * power good. LPI (Low Power Idle) state must also reset only
- * on power good, as well as the MTA (Multicast table array).
- * The SMBus release must also be disabled on LCD reset.
- */
- if (!(E1000_READ_REG(hw, E1000_FWSM) &
- E1000_ICH_FWSM_FW_VALID)) {
- /* Enable proxy to reset only on power good. */
- hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
- &phy_reg);
- phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
- hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
- phy_reg);
-
- /* Set bit enable LPI (EEE) to reset only on
- * power good.
- */
- hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
- phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
- hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
-
- /* Disable the SMB release on LCD reset. */
- hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
- phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
- hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
- }
-
- /* Enable MTA to reset for Intel Rapid Start Technology
- * Support
- */
- hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
- phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
- hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
-
-release:
- hw->phy.ops.release(hw);
- }
-out:
- E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
- if (hw->mac.type == e1000_ich8lan)
- e1000_gig_downshift_workaround_ich8lan(hw);
-
- if (hw->mac.type >= e1000_pchlan) {
- e1000_oem_bits_config_ich8lan(hw, false);
-
- /* Reset PHY to activate OEM bits on 82577/8 */
- if (hw->mac.type == e1000_pchlan)
- e1000_phy_hw_reset_generic(hw);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- e1000_write_smbus_addr(hw);
- hw->phy.ops.release(hw);
- }
-
- return;
-}
-
-/**
- * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
- * @hw: pointer to the HW structure
- *
- * During Sx to S0 transitions on non-managed devices or managed devices
- * on which PHY resets are not blocked, if the PHY registers cannot be
- * accessed properly by the s/w toggle the LANPHYPC value to power cycle
- * the PHY.
- * On i217, setup Intel Rapid Start Technology.
- **/
-void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_resume_workarounds_pchlan");
-
- if (hw->mac.type < e1000_pch2lan)
- return;
-
- ret_val = e1000_init_phy_workarounds_pchlan(hw);
- if (ret_val) {
- DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
- return;
- }
-
- /* For i217 Intel Rapid Start Technology support when the system
- * is transitioning from Sx and no manageability engine is present
- * configure SMBus to restore on reset, disable proxy, and enable
- * the reset on MTA (Multicast table array).
- */
- if (hw->phy.type == e1000_phy_i217) {
- u16 phy_reg;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val) {
- DEBUGOUT("Failed to setup iRST\n");
- return;
- }
-
- /* Clear Auto Enable LPI after link up */
- hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
- phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
- hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
-
- if (!(E1000_READ_REG(hw, E1000_FWSM) &
- E1000_ICH_FWSM_FW_VALID)) {
- /* Restore clear on SMB if no manageability engine
- * is present
- */
- ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
- &phy_reg);
- if (ret_val)
- goto release;
- phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
- hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
-
- /* Disable Proxy */
- hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
- }
- /* Enable reset on MTA */
- ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
- &phy_reg);
- if (ret_val)
- goto release;
- phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
- hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
-release:
- if (ret_val)
- DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
- hw->phy.ops.release(hw);
- }
-}
-
-/**
- * e1000_cleanup_led_ich8lan - Restore the default LED operation
- * @hw: pointer to the HW structure
- *
- * Return the LED back to the default configuration.
- **/
-STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_cleanup_led_ich8lan");
-
- if (hw->phy.type == e1000_phy_ife)
- return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- 0);
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on_ich8lan - Turn LEDs on
- * @hw: pointer to the HW structure
- *
- * Turn on the LEDs.
- **/
-STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_led_on_ich8lan");
-
- if (hw->phy.type == e1000_phy_ife)
- return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_ich8lan - Turn LEDs off
- * @hw: pointer to the HW structure
- *
- * Turn off the LEDs.
- **/
-STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_led_off_ich8lan");
-
- if (hw->phy.type == e1000_phy_ife)
- return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_led_pchlan - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use.
- **/
-STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_setup_led_pchlan");
-
- return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
- (u16)hw->mac.ledctl_mode1);
-}
-
-/**
- * e1000_cleanup_led_pchlan - Restore the default LED operation
- * @hw: pointer to the HW structure
- *
- * Return the LED back to the default configuration.
- **/
-STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_cleanup_led_pchlan");
-
- return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
- (u16)hw->mac.ledctl_default);
-}
-
-/**
- * e1000_led_on_pchlan - Turn LEDs on
- * @hw: pointer to the HW structure
- *
- * Turn on the LEDs.
- **/
-STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
-{
- u16 data = (u16)hw->mac.ledctl_mode2;
- u32 i, led;
-
- DEBUGFUNC("e1000_led_on_pchlan");
-
- /* If no link, then turn LED on by setting the invert bit
- * for each LED that's mode is "link_up" in ledctl_mode2.
- */
- if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- for (i = 0; i < 3; i++) {
- led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
- if ((led & E1000_PHY_LED0_MODE_MASK) !=
- E1000_LEDCTL_MODE_LINK_UP)
- continue;
- if (led & E1000_PHY_LED0_IVRT)
- data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
- else
- data |= (E1000_PHY_LED0_IVRT << (i * 5));
- }
- }
-
- return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
-}
-
-/**
- * e1000_led_off_pchlan - Turn LEDs off
- * @hw: pointer to the HW structure
- *
- * Turn off the LEDs.
- **/
-STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
-{
- u16 data = (u16)hw->mac.ledctl_mode1;
- u32 i, led;
-
- DEBUGFUNC("e1000_led_off_pchlan");
-
- /* If no link, then turn LED off by clearing the invert bit
- * for each LED that's mode is "link_up" in ledctl_mode1.
- */
- if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- for (i = 0; i < 3; i++) {
- led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
- if ((led & E1000_PHY_LED0_MODE_MASK) !=
- E1000_LEDCTL_MODE_LINK_UP)
- continue;
- if (led & E1000_PHY_LED0_IVRT)
- data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
- else
- data |= (E1000_PHY_LED0_IVRT << (i * 5));
- }
- }
-
- return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
-}
-
-/**
- * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
- * @hw: pointer to the HW structure
- *
- * Read appropriate register for the config done bit for completion status
- * and configure the PHY through s/w for EEPROM-less parts.
- *
- * NOTE: some silicon which is EEPROM-less will fail trying to read the
- * config done bit, so only an error is logged and continues. If we were
- * to return with error, EEPROM-less silicon would not be able to be reset
- * or change link.
- **/
-STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 bank = 0;
- u32 status;
-
- DEBUGFUNC("e1000_get_cfg_done_ich8lan");
-
- e1000_get_cfg_done_generic(hw);
-
- /* Wait for indication from h/w that it has completed basic config */
- if (hw->mac.type >= e1000_ich10lan) {
- e1000_lan_init_done_ich8lan(hw);
- } else {
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /* When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- ret_val = E1000_SUCCESS;
- }
- }
-
- /* Clear PHY Reset Asserted bit */
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_PHYRA)
- E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
- else
- DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
-
- /* If EEPROM is not marked present, init the IGP 3 PHY manually */
- if (hw->mac.type <= e1000_ich9lan) {
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
- (hw->phy.type == e1000_phy_igp_3)) {
- e1000_phy_init_script_igp3(hw);
- }
- } else {
- if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
- /* Maybe we should do a basic PHY config */
- DEBUGOUT("EEPROM not present\n");
- ret_val = -E1000_ERR_CONFIG;
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(hw->mac.ops.check_mng_mode(hw) ||
- hw->phy.ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
- * @hw: pointer to the HW structure
- *
- * Clears hardware counters specific to the silicon family and calls
- * clear_hw_cntrs_generic to clear all general purpose counters.
- **/
-STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
-{
- u16 phy_data;
- s32 ret_val;
-
- DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- /* Clear PHY statistics registers */
- if ((hw->phy.type == e1000_phy_82578) ||
- (hw->phy.type == e1000_phy_82579) ||
- (hw->phy.type == e1000_phy_i217) ||
- (hw->phy.type == e1000_phy_82577)) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- ret_val = hw->phy.ops.set_page(hw,
- HV_STATS_PAGE << IGP_PAGE_SHIFT);
- if (ret_val)
- goto release;
- hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
-release:
- hw->phy.ops.release(hw);
- }
-}
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_ICH8LAN_H_
-#define _E1000_ICH8LAN_H_
-
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
-
-/* Requires up to 10 seconds when MNG might be accessing part. */
-#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
-
-#define ICH_CYCLE_READ 0
-#define ICH_CYCLE_WRITE 2
-#define ICH_CYCLE_ERASE 3
-
-#define FLASH_GFPREG_BASE_MASK 0x1FFF
-#define FLASH_SECTOR_ADDR_SHIFT 12
-
-#define ICH_FLASH_SEG_SIZE_256 256
-#define ICH_FLASH_SEG_SIZE_4K 4096
-#define ICH_FLASH_SEG_SIZE_8K 8192
-#define ICH_FLASH_SEG_SIZE_64K 65536
-
-#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
-/* FW established a valid mode */
-#define E1000_ICH_FWSM_FW_VALID 0x00008000
-#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
-#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
-
-#define E1000_ICH_MNG_IAMT_MODE 0x2
-
-#define E1000_FWSM_WLOCK_MAC_MASK 0x0380
-#define E1000_FWSM_WLOCK_MAC_SHIFT 7
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FWSM_ULP_CFG_DONE 0x00000400 /* Low power cfg done */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-
-/* Shared Receive Address Registers */
-#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8))
-#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8))
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_H2ME 0x05B50 /* Host to ME */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_H2ME_ULP 0x00000800 /* ULP Indication Bit */
-#define E1000_H2ME_ENFORCE_SETTINGS 0x00001000 /* Enforce Settings */
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_OFF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC000
-#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
-#define E1000_ICH_NVM_SIG_VALUE 0x80
-
-#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-/* FEXT register bit definition */
-#define E1000_FEXT_PHY_CABLE_DISCONNECTED 0x00000004
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define E1000_FEXTNVM_SW_CONFIG 1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* different on ICH8M */
-
-#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
-#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
-
-#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
-
-#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100
-#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION 0x00000200
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FEXTNVM7_DISABLE_SMB_PERST 0x00000020
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
-
-#define E1000_ICH_RAR_ENTRIES 7
-#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
-#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
-
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
- ((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
-
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
-#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
-#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
-
-/* PHY Wakeup Registers and defines */
-#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
-#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
-#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
-#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
-#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
-#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
-#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
-#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
-#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
-#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
-
-#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
-#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
-#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
-#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
-#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
-#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
-#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
-
-#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
-#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
-#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
-#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
-#define HV_STATS_PAGE 778
-/* Half-duplex collision counts */
-#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */
-#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
-#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */
-#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
-#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */
-#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
-#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */
-#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
-#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision */
-#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
-#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
-#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
-#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */
-#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
-
-#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
-
-#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
-#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
-
-/* SMBus Control Phy Register */
-#define CV_SMB_CTRL PHY_REG(769, 23)
-#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-/* I218 Ultra Low Power Configuration 1 Register */
-#define I218_ULP_CONFIG1 PHY_REG(779, 16)
-#define I218_ULP_CONFIG1_START 0x0001 /* Start auto ULP config */
-#define I218_ULP_CONFIG1_IND 0x0004 /* Pwr up from ULP indication */
-#define I218_ULP_CONFIG1_STICKY_ULP 0x0010 /* Set sticky ULP mode */
-#define I218_ULP_CONFIG1_INBAND_EXIT 0x0020 /* Inband on ULP exit */
-#define I218_ULP_CONFIG1_WOL_HOST 0x0040 /* WoL Host on ULP exit */
-#define I218_ULP_CONFIG1_RESET_TO_SMBUS 0x0100 /* Reset to SMBus mode */
-#define I218_ULP_CONFIG1_DISABLE_SMB_PERST 0x1000 /* Disable on PERST# */
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-/* SMBus Address Phy Register */
-#define HV_SMB_ADDR PHY_REG(768, 26)
-#define HV_SMB_ADDR_MASK 0x007F
-#define HV_SMB_ADDR_PEC_EN 0x0200
-#define HV_SMB_ADDR_VALID 0x0080
-#define HV_SMB_ADDR_FREQ_MASK 0x1100
-#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
-#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
-
-/* Strapping Option Register - RO */
-#define E1000_STRAP 0x0000C
-#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
-#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
-#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
-#define E1000_STRAP_SMT_FREQ_SHIFT 12
-
-/* OEM Bits Phy Register */
-#define HV_OEM_BITS PHY_REG(768, 25)
-#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
-#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
-#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
-
-/* KMRN Mode Control */
-#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
-#define HV_KMRN_MDIO_SLOW 0x0400
-
-/* KMRN FIFO Control and Status */
-#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
-#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
-#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
-
-/* PHY Power Management Control */
-#define HV_PM_CTRL PHY_REG(770, 17)
-#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
-#define HV_PM_CTRL_K1_ENABLE 0x4000
-
-#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */
-
-/* Inband Control */
-#define I217_INBAND_CTRL PHY_REG(770, 18)
-#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK 0x3F00
-#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT 8
-
-/* Low Power Idle GPIO Control */
-#define I217_LPI_GPIO_CTRL PHY_REG(772, 18)
-#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI 0x0800
-
-/* PHY Low Power Idle Control */
-#define I82579_LPI_CTRL PHY_REG(772, 20)
-#define I82579_LPI_CTRL_100_ENABLE 0x2000
-#define I82579_LPI_CTRL_1000_ENABLE 0x4000
-#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
-
-/* 82579 DFT Control */
-#define I82579_DFT_CTRL PHY_REG(769, 20)
-#define I82579_DFT_CTRL_GATE_PHY_RESET 0x0040 /* Gate PHY Reset on MAC Reset */
-
-/* Extended Management Interface (EMI) Registers */
-#define I82579_EMI_ADDR 0x10
-#define I82579_EMI_DATA 0x11
-#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
-#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */
-#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */
-#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
-#define I82579_RX_CONFIG 0x3412 /* Receive configuration */
-#define I82579_EEE_PCS_STATUS 0x182E /* IEEE MMD Register 3.1 >> 8 */
-#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */
-#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */
-#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */
-#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE */
-#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE */
-#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */
-#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */
-#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
-#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
-#define I217_RX_CONFIG 0xB20C /* Receive configuration */
-
-#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */
-#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */
-
-/* Intel Rapid Start Technology Support */
-#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
-#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
-#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
-#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
-#define I217_CGFREG PHY_REG(772, 29)
-#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
-#define I217_MEMPWR PHY_REG(772, 26)
-#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
-
-/* Receive Address Initial CRC Calculation */
-#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4))
-
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
-#define E1000_PCI_REVISION_ID_REG 0x08
-#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */
-void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state);
-void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
-void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
-void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
-void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
-s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
-void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
-s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
-s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data);
-s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data);
-s32 e1000_set_eee_pchlan(struct e1000_hw *hw);
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx);
-s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-#endif /* _E1000_ICH8LAN_H_ */
-void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link);
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
-STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
-STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw);
-STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
-
-/**
- * e1000_init_mac_ops_generic - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_mac_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- DEBUGFUNC("e1000_init_mac_ops_generic");
-
- /* General Setup */
- mac->ops.init_params = e1000_null_ops_generic;
- mac->ops.init_hw = e1000_null_ops_generic;
- mac->ops.reset_hw = e1000_null_ops_generic;
- mac->ops.setup_physical_interface = e1000_null_ops_generic;
- mac->ops.get_bus_info = e1000_null_ops_generic;
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
- mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
- mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
- mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
- /* LED */
- mac->ops.cleanup_led = e1000_null_ops_generic;
- mac->ops.setup_led = e1000_null_ops_generic;
- mac->ops.blink_led = e1000_null_ops_generic;
- mac->ops.led_on = e1000_null_ops_generic;
- mac->ops.led_off = e1000_null_ops_generic;
- /* LINK */
- mac->ops.setup_link = e1000_null_ops_generic;
- mac->ops.get_link_up_info = e1000_null_link_info;
- mac->ops.check_for_link = e1000_null_ops_generic;
- /* Management */
- mac->ops.check_mng_mode = e1000_null_mng_mode;
- /* VLAN, MC, etc. */
- mac->ops.update_mc_addr_list = e1000_null_update_mc;
- mac->ops.clear_vfta = e1000_null_mac_generic;
- mac->ops.write_vfta = e1000_null_write_vfta;
- mac->ops.rar_set = e1000_rar_set_generic;
- mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
-}
-
-/**
- * e1000_null_ops_generic - No-op function, returns 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_ops_generic");
- UNREFERENCED_1PARAMETER(hw);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mac_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_mac_generic");
- UNREFERENCED_1PARAMETER(hw);
- return;
-}
-
-/**
- * e1000_null_link_info - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
-{
- DEBUGFUNC("e1000_null_link_info");
- UNREFERENCED_3PARAMETER(hw, s, d);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mng_mode - No-op function, return false
- * @hw: pointer to the HW structure
- **/
-bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_mng_mode");
- UNREFERENCED_1PARAMETER(hw);
- return false;
-}
-
-/**
- * e1000_null_update_mc - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
- DEBUGFUNC("e1000_null_update_mc");
- UNREFERENCED_3PARAMETER(hw, h, a);
- return;
-}
-
-/**
- * e1000_null_write_vfta - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
- u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
-{
- DEBUGFUNC("e1000_null_write_vfta");
- UNREFERENCED_3PARAMETER(hw, a, b);
- return;
-}
-
-/**
- * e1000_null_rar_set - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
- DEBUGFUNC("e1000_null_rar_set");
- UNREFERENCED_3PARAMETER(hw, h, a);
- return;
-}
-
-/**
- * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
- **/
-s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- u32 status = E1000_READ_REG(hw, E1000_STATUS);
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_get_bus_info_pci_generic");
-
- /* PCI or PCI-X? */
- bus->type = (status & E1000_STATUS_PCIX_MODE)
- ? e1000_bus_type_pcix
- : e1000_bus_type_pci;
-
- /* Bus speed */
- if (bus->type == e1000_bus_type_pci) {
- bus->speed = (status & E1000_STATUS_PCI66)
- ? e1000_bus_speed_66
- : e1000_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- bus->speed = e1000_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- bus->speed = e1000_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- bus->speed = e1000_bus_speed_133;
- break;
- default:
- bus->speed = e1000_bus_speed_reserved;
- break;
- }
- }
-
- /* Bus width */
- bus->width = (status & E1000_STATUS_BUS64)
- ? e1000_bus_width_64
- : e1000_bus_width_32;
-
- /* Which PCI(-X) function? */
- mac->ops.set_lan_id(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_bus_info_pcie_generic - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
- u16 pcie_link_status;
-
- DEBUGFUNC("e1000_get_bus_info_pcie_generic");
-
- bus->type = e1000_bus_type_pci_express;
-
- ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
- &pcie_link_status);
- if (ret_val) {
- bus->width = e1000_bus_width_unknown;
- bus->speed = e1000_bus_speed_unknown;
- } else {
- switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
- case PCIE_LINK_SPEED_2500:
- bus->speed = e1000_bus_speed_2500;
- break;
- case PCIE_LINK_SPEED_5000:
- bus->speed = e1000_bus_speed_5000;
- break;
- default:
- bus->speed = e1000_bus_speed_unknown;
- break;
- }
-
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
- }
-
- mac->ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
- *
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading memory-mapped registers
- * and swaps the port value if requested.
- **/
-STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u32 reg;
-
- /* The status register reports the correct function number
- * for the device regardless of function swap state.
- */
- reg = E1000_READ_REG(hw, E1000_STATUS);
- bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading PCI config space.
- **/
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u16 pci_header_type;
- u32 status;
-
- e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
- if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
- } else {
- bus->func = 0;
- }
-}
-
-/**
- * e1000_set_lan_id_single_port - Set LAN id for a single port device
- * @hw: pointer to the HW structure
- *
- * Sets the LAN function id to zero for a single port device.
- **/
-void e1000_set_lan_id_single_port(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- bus->func = 0;
-}
-
-/**
- * e1000_clear_vfta_generic - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_generic(struct e1000_hw *hw)
-{
- u32 offset;
-
- DEBUGFUNC("e1000_clear_vfta_generic");
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_write_vfta_generic - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
-{
- DEBUGFUNC("e1000_write_vfta_generic");
-
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_init_rx_addrs_generic - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setup the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
-{
- u32 i;
- u8 mac_addr[ETH_ADDR_LEN] = {0};
-
- DEBUGFUNC("e1000_init_rx_addrs_generic");
-
- /* Setup the receive address */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
-
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- hw->mac.ops.rar_set(hw, mac_addr, i);
-}
-
-/**
- * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
- * @hw: pointer to the HW structure
- *
- * Checks the nvm for an alternate MAC address. An alternate MAC address
- * can be setup by pre-boot software and must be treated like a permanent
- * address and must override the actual permanent MAC address. If an
- * alternate MAC address is found it is programmed into RAR0, replacing
- * the permanent address that was installed into RAR0 by the Si on reset.
- * This function will return SUCCESS unless it encounters an error while
- * reading the EEPROM.
- **/
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 i;
- s32 ret_val;
- u16 offset, nvm_alt_mac_addr_offset, nvm_data;
- u8 alt_mac_addr[ETH_ADDR_LEN];
-
- DEBUGFUNC("e1000_check_alt_mac_addr_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
- if (ret_val)
- return ret_val;
-
- /* not supported on older hardware or 82573 */
- if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
- return E1000_SUCCESS;
-
- /* Alternate MAC address is handled by the option ROM for 82580
- * and newer. SW support not required.
- */
- if (hw->mac.type >= e1000_82580)
- return E1000_SUCCESS;
-
- ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
- (nvm_alt_mac_addr_offset == 0x0000))
- /* There is no Alternate MAC Address */
- return E1000_SUCCESS;
-
- if (hw->bus.func == E1000_FUNC_1)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
- if (hw->bus.func == E1000_FUNC_2)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
-
- if (hw->bus.func == E1000_FUNC_3)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
- for (i = 0; i < ETH_ADDR_LEN; i += 2) {
- offset = nvm_alt_mac_addr_offset + (i >> 1);
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
- alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
- }
-
- /* if multicast bit is set, the alternate address will not be used */
- if (alt_mac_addr[0] & 0x01) {
- DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
- return E1000_SUCCESS;
- }
-
- /* We have a valid alternate MAC address, and we want to treat it the
- * same as the normal permanent MAC address stored by the HW into the
- * RAR. Do this by mapping this address into RAR0.
- */
- hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_rar_set_generic - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- DEBUGFUNC("e1000_rar_set_generic");
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- /* Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_hash_mc_addr_generic - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value.
- **/
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- DEBUGFUNC("e1000_hash_mc_addr_generic");
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- /* The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 hash_value, hash_bit, hash_reg;
- int i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_generic");
-
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
-
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
- mc_addr_list += (ETH_ADDR_LEN);
- }
-
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
- * @hw: pointer to the HW structure
- *
- * In certain situations, a system BIOS may report that the PCIx maximum
- * memory read byte count (MMRBC) value is higher than than the actual
- * value. We check the PCIx command register with the current PCIx status
- * register.
- **/
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
-{
- u16 cmd_mmrbc;
- u16 pcix_cmd;
- u16 pcix_stat_hi_word;
- u16 stat_mmrbc;
-
- DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
-
- /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
- if (hw->bus.type != e1000_bus_type_pcix)
- return;
-
- e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
- e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if (cmd_mmrbc > stat_mmrbc) {
- pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
- }
-}
-
-/**
- * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
-
- E1000_READ_REG(hw, E1000_CRCERRS);
- E1000_READ_REG(hw, E1000_SYMERRS);
- E1000_READ_REG(hw, E1000_MPC);
- E1000_READ_REG(hw, E1000_SCC);
- E1000_READ_REG(hw, E1000_ECOL);
- E1000_READ_REG(hw, E1000_MCC);
- E1000_READ_REG(hw, E1000_LATECOL);
- E1000_READ_REG(hw, E1000_COLC);
- E1000_READ_REG(hw, E1000_DC);
- E1000_READ_REG(hw, E1000_SEC);
- E1000_READ_REG(hw, E1000_RLEC);
- E1000_READ_REG(hw, E1000_XONRXC);
- E1000_READ_REG(hw, E1000_XONTXC);
- E1000_READ_REG(hw, E1000_XOFFRXC);
- E1000_READ_REG(hw, E1000_XOFFTXC);
- E1000_READ_REG(hw, E1000_FCRUC);
- E1000_READ_REG(hw, E1000_GPRC);
- E1000_READ_REG(hw, E1000_BPRC);
- E1000_READ_REG(hw, E1000_MPRC);
- E1000_READ_REG(hw, E1000_GPTC);
- E1000_READ_REG(hw, E1000_GORCL);
- E1000_READ_REG(hw, E1000_GORCH);
- E1000_READ_REG(hw, E1000_GOTCL);
- E1000_READ_REG(hw, E1000_GOTCH);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_RUC);
- E1000_READ_REG(hw, E1000_RFC);
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RJC);
- E1000_READ_REG(hw, E1000_TORL);
- E1000_READ_REG(hw, E1000_TORH);
- E1000_READ_REG(hw, E1000_TOTL);
- E1000_READ_REG(hw, E1000_TOTH);
- E1000_READ_REG(hw, E1000_TPR);
- E1000_READ_REG(hw, E1000_TPT);
- E1000_READ_REG(hw, E1000_MPTC);
- E1000_READ_REG(hw, E1000_BPTC);
-}
-
-/**
- * e1000_check_for_copper_link_generic - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_check_for_copper_link");
-
- /* We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return E1000_SUCCESS;
-
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- return E1000_SUCCESS; /* No link detected */
-
- mac->get_link_status = false;
-
- /* Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift_generic(hw);
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg)
- return -E1000_ERR_CONFIG;
-
- /* Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- mac->ops.config_collision_dist(hw);
-
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_fiber_link_generic - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_check_for_fiber_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
- !(rxcw & E1000_RXCW_C)) {
- if (!mac->autoneg_failed) {
- mac->autoneg_failed = true;
- return E1000_SUCCESS;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_check_for_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
- if (!mac->autoneg_failed) {
- mac->autoneg_failed = true;
- return E1000_SUCCESS;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
- /* If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- DEBUGOUT("SERDES: Link up - forced.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - force failed.\n");
- }
- }
-
- if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - no sync.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - autoneg failed\n");
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 nvm_offset = 0;
-
- DEBUGFUNC("e1000_set_default_fc_generic");
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->mac.type == e1000_i350) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
- ret_val = hw->nvm.ops.read(hw,
- NVM_INIT_CONTROL2_REG +
- nvm_offset,
- 1, &nvm_data);
- } else {
- ret_val = hw->nvm.ops.read(hw,
- NVM_INIT_CONTROL2_REG,
- 1, &nvm_data);
- }
-
-
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_link_generic - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-s32 e1000_setup_link_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_link_generic");
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
- return E1000_SUCCESS;
-
- /* If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = hw->mac.ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
- E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
- return e1000_set_fc_watermarks_generic(hw);
-}
-
-/**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
-s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
-
- DEBUGFUNC("e1000_commit_fc_settings_generic");
-
- /* Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /* Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /* Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /* Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_TXCW, txcw);
- mac->txcw = txcw;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
-
- /* If we have a signal (the cable is plugged in, or assumed true for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = true;
- /* AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- mac->autoneg_failed = false;
- } else {
- mac->autoneg_failed = false;
- DEBUGOUT("Valid Link Found\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- hw->mac.ops.config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-
- /* For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- DEBUGOUT("No signal detected\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_generic - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw)
-{
- u32 tctl;
-
- DEBUGFUNC("e1000_config_collision_dist_generic");
-
- tctl = E1000_READ_REG(hw, E1000_TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * transmission as well.
- **/
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
-{
- u32 fcrtl = 0, fcrth = 0;
-
- DEBUGFUNC("e1000_set_fc_watermarks_generic");
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /* We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- if (hw->fc.send_xon)
- fcrtl |= E1000_FCRTL_XONE;
-
- fcrth = hw->fc.high_water;
- }
- E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
- E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_force_mac_fc_generic - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_force_mac_fc_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and Tx flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
-
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_config_fc_after_link_up_generic - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
- u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_config_fc_after_link_up_generic");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = e1000_force_mac_fc_generic(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = e1000_force_mac_fc_generic(hw);
- }
-
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
- return ret_val;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- } else {
- /* Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have SerDes media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
- mac->autoneg) {
- /* Read the PCS_LSTS and check to see if AutoNeg
- * has completed.
- */
- pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
- if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
- DEBUGOUT("PCS Auto Neg has not completed.\n");
- return ret_val;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (PCS_ANADV) and the Auto_Negotiation Base
- * Page Ability Register (PCS_LPAB) to determine how
- * flow control was negotiated.
- */
- pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
- pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (PCS_ANADV) and two bits in the Auto Negotiation Base
- * Page Ability Register (PCS_LPAB) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | e1000_fc_full
- *
- */
- if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
- /* Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- } else {
- /* Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\n");
- }
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
- pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
- E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
-
- ret_val = e1000_force_mac_fc_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- u32 status;
-
- DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
-
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 *speed, u16 *duplex)
-{
- DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
- UNREFERENCED_1PARAMETER(hw);
-
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_generic");
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_generic(hw);
- DEBUGOUT("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_put_hw_semaphore_generic - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
- swsm = E1000_READ_REG(hw, E1000_SWSM);
-
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
- E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- * e1000_get_auto_rd_done_generic - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
-{
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_auto_rd_done_generic");
-
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
- break;
- msec_delay(1);
- i++;
- }
-
- if (i == AUTO_READ_DONE_TIMEOUT) {
- DEBUGOUT("Auto read by HW from NVM has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_valid_led_default_generic - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_id_led_init_generic -
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000_id_led_init_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
-
- DEBUGFUNC("e1000_id_led_init_generic");
-
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
-
- mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_led_generic - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
-s32 e1000_setup_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl;
-
- DEBUGFUNC("e1000_setup_led_generic");
-
- if (hw->mac.ops.setup_led != e1000_setup_led_generic)
- return -E1000_ERR_CONFIG;
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- hw->mac.ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_cleanup_led_generic");
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_blink_led_generic - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
-s32 e1000_blink_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl_blink = 0;
- u32 i;
-
- DEBUGFUNC("e1000_blink_led_generic");
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* Set the blink bit for each LED that's "on" (0x0E)
- * (or "off" if inverted) in ledctl_mode2. The blink
- * logic in hardware only works when mode is set to "on"
- * so it must be changed accordingly when the mode is
- * "off" and inverted.
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 32; i += 8) {
- u32 mode = (hw->mac.ledctl_mode2 >> i) &
- E1000_LEDCTL_LED0_MODE_MASK;
- u32 led_default = hw->mac.ledctl_default >> i;
-
- if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_ON)) ||
- ((led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_OFF))) {
- ledctl_blink &=
- ~(E1000_LEDCTL_LED0_MODE_MASK << i);
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_MODE_LED_ON) << i;
- }
- }
- }
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-s32 e1000_led_on_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_on_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
-s32 e1000_led_off_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_off_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr;
-
- DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
-
- if (hw->bus.type != e1000_bus_type_pci_express)
- return;
-
- if (no_snoop) {
- gcr = E1000_READ_REG(hw, E1000_GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- }
-}
-
-/**
- * e1000_disable_pcie_master_generic - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns E1000_SUCCESS if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
-
- DEBUGFUNC("e1000_disable_pcie_master_generic");
-
- if (hw->bus.type != e1000_bus_type_pci_express)
- return E1000_SUCCESS;
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- while (timeout) {
- if (!(E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE) ||
- E1000_REMOVED(hw->hw_addr))
- break;
- usec_delay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000_reset_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_reset_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- return;
- }
-
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
-
- mac->in_ifs_mode = false;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
-}
-
-/**
- * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
-void e1000_update_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_update_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- return;
- }
-
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = true;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- E1000_WRITE_REG(hw, E1000_AIT,
- mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = false;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
- }
- }
-}
-
-/**
- * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Verify that when not using auto-negotiation that MDI/MDIx is correctly
- * set, which is forced to MDI mode only.
- **/
-STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_validate_mdi_setting_generic");
-
- if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->phy.mdix = 1;
- return -E1000_ERR_CONFIG;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Validate the MDI/MDIx setting, allowing for auto-crossover during forced
- * operation.
- **/
-s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
- UNREFERENCED_1PARAMETER(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset such as E1000_SCTL
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes an address/data control type register. There are several of these
- * and they all have the format address << 8 | data and bit 31 is polled for
- * completion.
- **/
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data)
-{
- u32 i, regvalue = 0;
-
- DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
-
- /* Set up the address and data */
- regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
- E1000_WRITE_REG(hw, reg, regvalue);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
- usec_delay(5);
- regvalue = E1000_READ_REG(hw, reg);
- if (regvalue & E1000_GEN_CTL_READY)
- break;
- }
- if (!(regvalue & E1000_GEN_CTL_READY)) {
- DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
- return -E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MAC_H_
-#define _E1000_MAC_H_
-
-void e1000_init_mac_ops_generic(struct e1000_hw *hw);
-#ifndef E1000_REMOVED
-#define E1000_REMOVED(a) (0)
-#endif /* E1000_REMOVED */
-void e1000_null_mac_generic(struct e1000_hw *hw);
-s32 e1000_null_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
-bool e1000_null_mng_mode(struct e1000_hw *hw);
-void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
-void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
-void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
-s32 e1000_blink_led_generic(struct e1000_hw *hw);
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
-s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
-s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
-s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
-void e1000_set_lan_id_single_port(struct e1000_hw *hw);
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-s32 e1000_id_led_init_generic(struct e1000_hw *hw);
-s32 e1000_led_on_generic(struct e1000_hw *hw);
-s32 e1000_led_off_generic(struct e1000_hw *hw);
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count);
-s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
-s32 e1000_setup_led_generic(struct e1000_hw *hw);
-s32 e1000_setup_link_generic(struct e1000_hw *hw);
-s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw);
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data);
-
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
-
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
-void e1000_clear_vfta_generic(struct e1000_hw *hw);
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
-void e1000_reset_adaptive_generic(struct e1000_hw *hw);
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
-void e1000_update_adaptive_generic(struct e1000_hw *hw);
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-/**
- * e1000_calculate_checksum - Calculate checksum for buffer
- * @buffer: pointer to EEPROM
- * @length: size of EEPROM to calculate a checksum for
- *
- * Calculates the checksum for some buffer on a specified length. The
- * checksum calculated is returned.
- **/
-u8 e1000_calculate_checksum(u8 *buffer, u32 length)
-{
- u32 i;
- u8 sum = 0;
-
- DEBUGFUNC("e1000_calculate_checksum");
-
- if (!buffer)
- return 0;
-
- for (i = 0; i < length; i++)
- sum += buffer[i];
-
- return (u8) (0 - sum);
-}
-
-/**
- * e1000_mng_enable_host_if_generic - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
-{
- u32 hicr;
- u8 i;
-
- DEBUGFUNC("e1000_mng_enable_host_if_generic");
-
- if (!hw->mac.arc_subsystem_valid) {
- DEBUGOUT("ARC subsystem not valid.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_EN)) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_mng_mode_generic - Generic check management mode
- * @hw: pointer to the HW structure
- *
- * Reads the firmware semaphore register and returns true (>0) if
- * manageability is enabled, else false (0).
- **/
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
-{
- u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
- DEBUGFUNC("e1000_check_mng_mode_generic");
-
-
- return (fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
-}
-
-/**
- * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- **/
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
-{
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
- u32 *buffer = (u32 *)&hw->mng_cookie;
- u32 offset;
- s32 ret_val, hdr_csum, csum;
- u8 i, len;
-
- DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
-
- hw->mac.tx_pkt_filtering = true;
-
- /* No manageability, no filtering */
- if (!hw->mac.ops.check_mng_mode(hw)) {
- hw->mac.tx_pkt_filtering = false;
- return hw->mac.tx_pkt_filtering;
- }
-
- /* If we can't read from the host interface for whatever
- * reason, disable filtering.
- */
- ret_val = e1000_mng_enable_host_if_generic(hw);
- if (ret_val != E1000_SUCCESS) {
- hw->mac.tx_pkt_filtering = false;
- return hw->mac.tx_pkt_filtering;
- }
-
- /* Read in the header. Length and offset are in dwords. */
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
- for (i = 0; i < len; i++)
- *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
- offset + i);
- hdr_csum = hdr->checksum;
- hdr->checksum = 0;
- csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /* If either the checksums or signature don't match, then
- * the cookie area isn't considered valid, in which case we
- * take the safe route of assuming Tx filtering is enabled.
- */
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
- hw->mac.tx_pkt_filtering = true;
- return hw->mac.tx_pkt_filtering;
- }
-
- /* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
- hw->mac.tx_pkt_filtering = false;
-
- return hw->mac.tx_pkt_filtering;
-}
-
-/**
- * e1000_mng_write_cmd_header_generic - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
-
- DEBUGFUNC("e1000_mng_write_cmd_header_generic");
-
- /* Write the whole command header structure with new checksum. */
-
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
-
- length >>= 2;
- /* Write the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
- E1000_WRITE_FLUSH(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_mng_host_if_write_generic - Write to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
-{
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- u16 remaining, i, j, prev_bytes;
-
- DEBUGFUNC("e1000_mng_host_if_write_generic");
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
- return -E1000_ERR_PARAM;
-
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area.
- */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
- data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
- data);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length)
-{
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
-
- DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- /* Enable the host interface */
- ret_val = e1000_mng_enable_host_if_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* Populate the host interface with the contents of "buffer". */
- ret_val = e1000_mng_host_if_write_generic(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- return ret_val;
-
- /* Write the manageability command header */
- ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr);
- if (ret_val)
- return ret_val;
-
- /* Tell the ARC a new command is pending. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_enable_mng_pass_thru - Check if management passthrough is needed
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to leave interface enabled so that frames can
- * be directed to and from the management interface.
- **/
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
-{
- u32 manc;
- u32 fwsm, factps;
-
- DEBUGFUNC("e1000_enable_mng_pass_thru");
-
- if (!hw->mac.asf_firmware_present)
- return false;
-
- manc = E1000_READ_REG(hw, E1000_MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN))
- return false;
-
- if (hw->mac.has_fwsm) {
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
- factps = E1000_READ_REG(hw, E1000_FACTPS);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)))
- return true;
- } else if ((hw->mac.type == e1000_82574) ||
- (hw->mac.type == e1000_82583)) {
- u16 data;
-
- factps = E1000_READ_REG(hw, E1000_FACTPS);
- e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
- (e1000_mng_mode_pt << 13)))
- return true;
- } else if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- return true;
- }
-
- return false;
-}
-
-/**
- * e1000_host_interface_command - Writes buffer to host interface
- * @hw: pointer to the HW structure
- * @buffer: contains a command to write
- * @length: the byte length of the buffer, must be multiple of 4 bytes
- *
- * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS
- * else returns E1000_ERR_HOST_INTERFACE_COMMAND.
- **/
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
-{
- u32 hicr, i;
-
- DEBUGFUNC("e1000_host_interface_command");
-
- if (!(hw->mac.arc_subsystem_valid)) {
- DEBUGOUT("Hardware doesn't support host interface command.\n");
- return E1000_SUCCESS;
- }
-
- if (!hw->mac.asf_firmware_present) {
- DEBUGOUT("Firmware is not present.\n");
- return E1000_SUCCESS;
- }
-
- if (length == 0 || length & 0x3 ||
- length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
- DEBUGOUT("Buffer length failure.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_EN)) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block
- * into the ram area.
- */
- for (i = 0; i < length; i++)
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
- *((u32 *)buffer + i));
-
- /* Setting this bit tells the ARC that a new command is pending. */
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
- for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay(1);
- }
-
- /* Check command successful completion. */
- if (i == E1000_HI_COMMAND_TIMEOUT ||
- (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
- DEBUGOUT("Command has failed with no status valid.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- for (i = 0; i < length; i++)
- *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
- E1000_HOST_IF,
- i);
-
- return E1000_SUCCESS;
-}
-/**
- * e1000_load_firmware - Writes proxy FW code buffer to host interface
- * and execute.
- * @hw: pointer to the HW structure
- * @buffer: contains a firmware to write
- * @length: the byte length of the buffer, must be multiple of 4 bytes
- *
- * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled
- * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND.
- **/
-s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length)
-{
- u32 hicr, hibba, fwsm, icr, i;
-
- DEBUGFUNC("e1000_load_firmware");
-
- if (hw->mac.type < e1000_i210) {
- DEBUGOUT("Hardware doesn't support loading FW by the driver\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_EN)) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_CONFIG;
- }
- if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) {
- DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n");
- return -E1000_ERR_CONFIG;
- }
-
- if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) {
- DEBUGOUT("Buffer length failure.\n");
- return -E1000_ERR_INVALID_ARGUMENT;
- }
-
- /* Clear notification from ROM-FW by reading ICR register */
- icr = E1000_READ_REG(hw, E1000_ICR_V2);
-
- /* Reset ROM-FW */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- hicr |= E1000_HICR_FW_RESET_ENABLE;
- E1000_WRITE_REG(hw, E1000_HICR, hicr);
- hicr |= E1000_HICR_FW_RESET;
- E1000_WRITE_REG(hw, E1000_HICR, hicr);
- E1000_WRITE_FLUSH(hw);
-
- /* Wait till MAC notifies about its readiness after ROM-FW reset */
- for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) {
- icr = E1000_READ_REG(hw, E1000_ICR_V2);
- if (icr & E1000_ICR_MNG)
- break;
- msec_delay(1);
- }
-
- /* Check for timeout */
- if (i == E1000_HI_COMMAND_TIMEOUT) {
- DEBUGOUT("FW reset failed.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Wait till MAC is ready to accept new FW code */
- for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
- if ((fwsm & E1000_FWSM_FW_VALID) &&
- ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT ==
- E1000_FWSM_HI_EN_ONLY_MODE))
- break;
- msec_delay(1);
- }
-
- /* Check for timeout */
- if (i == E1000_HI_COMMAND_TIMEOUT) {
- DEBUGOUT("FW reset failed.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant FW code block
- * into the ram area in DWORDs via 1kB ram addressing window.
- */
- for (i = 0; i < length; i++) {
- if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) {
- /* Point to correct 1kB ram window */
- hibba = E1000_HI_FW_BASE_ADDRESS +
- ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) *
- (i / E1000_HI_FW_BLOCK_DWORD_LENGTH));
-
- E1000_WRITE_REG(hw, E1000_HIBBA, hibba);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
- i % E1000_HI_FW_BLOCK_DWORD_LENGTH,
- *((u32 *)buffer + i));
- }
-
- /* Setting this bit tells the ARC that a new FW is ready to execute. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
- for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay(1);
- }
-
- /* Check for successful FW start. */
- if (i == E1000_HI_COMMAND_TIMEOUT) {
- DEBUGOUT("New FW did not start within timeout period.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- return E1000_SUCCESS;
-}
-
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MANAGE_H_
-#define _E1000_MANAGE_H_
-
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
- u8 *buffer, u16 length);
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
-u8 e1000_calculate_checksum(u8 *buffer, u32 length);
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
-s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length);
-
-enum e1000_mng_mode {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_if_only
-};
-
-#define E1000_FACTPS_MNGCG 0x20000000
-
-#define E1000_FWSM_MODE_MASK 0xE
-#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000
-#define E1000_FWSM_HI_EN_ONLY_MODE 0x4
-
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
-
-#define E1000_VFTA_ENTRY_SHIFT 5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */
-#define E1000_HI_FW_BASE_ADDRESS 0x10000
-#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */
-#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */
-#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */
-#define E1000_HICR_EN 0x01 /* Enable bit - RO */
-/* Driver sets this bit when done to put command in RAM */
-#define E1000_HICR_C 0x02
-#define E1000_HICR_SV 0x04 /* Status Validity */
-#define E1000_HICR_FW_RESET_ENABLE 0x40
-#define E1000_HICR_FW_RESET 0x80
-
-/* Intel(R) Active Management Technology signature */
-#define E1000_IAMT_SIGNATURE 0x544D4149
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_mbx.h"
-
-/**
- * e1000_null_mbx_check_for_flag - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG mbx_id)
-{
- DEBUGFUNC("e1000_null_mbx_check_flag");
- UNREFERENCED_2PARAMETER(hw, mbx_id);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mbx_transact - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw,
- u32 E1000_UNUSEDARG *msg,
- u16 E1000_UNUSEDARG size,
- u16 E1000_UNUSEDARG mbx_id)
-{
- DEBUGFUNC("e1000_null_mbx_rw_msg");
- UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mbx - Reads a message from the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to read
- *
- * returns SUCCESS if it successfully read message from buffer
- **/
-s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_read_mbx");
-
- /* limit read to size of mailbox */
- if (size > mbx->size)
- size = mbx->size;
-
- if (mbx->ops.read)
- ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx - Write a message to the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_mbx");
-
- if (size > mbx->size)
- ret_val = -E1000_ERR_MBX;
-
- else if (mbx->ops.write)
- ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg - checks to see if someone sent us mail
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_msg");
-
- if (mbx->ops.check_for_msg)
- ret_val = mbx->ops.check_for_msg(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack - checks to see if someone sent us ACK
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_ack");
-
- if (mbx->ops.check_for_ack)
- ret_val = mbx->ops.check_for_ack(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst - checks to see if other side has reset
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_rst");
-
- if (mbx->ops.check_for_rst)
- ret_val = mbx->ops.check_for_rst(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_poll_for_msg - Wait for message notification
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message notification
- **/
-STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- int countdown = mbx->timeout;
-
- DEBUGFUNC("e1000_poll_for_msg");
-
- if (!countdown || !mbx->ops.check_for_msg)
- goto out;
-
- while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
- countdown--;
- if (!countdown)
- break;
- usec_delay(mbx->usec_delay);
- }
-
- /* if we failed, all future posted messages fail until reset */
- if (!countdown)
- mbx->timeout = 0;
-out:
- return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- * e1000_poll_for_ack - Wait for message acknowledgement
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message acknowledgement
- **/
-STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- int countdown = mbx->timeout;
-
- DEBUGFUNC("e1000_poll_for_ack");
-
- if (!countdown || !mbx->ops.check_for_ack)
- goto out;
-
- while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
- countdown--;
- if (!countdown)
- break;
- usec_delay(mbx->usec_delay);
- }
-
- /* if we failed, all future posted messages fail until reset */
- if (!countdown)
- mbx->timeout = 0;
-out:
- return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- * e1000_read_posted_mbx - Wait for message notification and receive message
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message notification and
- * copied it into the receive buffer.
- **/
-s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_read_posted_mbx");
-
- if (!mbx->ops.read)
- goto out;
-
- ret_val = e1000_poll_for_msg(hw, mbx_id);
-
- /* if ack received read message, otherwise we timed out */
- if (!ret_val)
- ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer and
- * received an ack to that message within delay * timeout period
- **/
-s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_write_posted_mbx");
-
- /* exit if either we can't write or there isn't a defined timeout */
- if (!mbx->ops.write || !mbx->timeout)
- goto out;
-
- /* send msg */
- ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
- /* if msg sent wait until we receive an ack */
- if (!ret_val)
- ret_val = e1000_poll_for_ack(hw, mbx_id);
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_ops_generic - Initialize mbx function pointers
- * @hw: pointer to the HW structure
- *
- * Sets the function pointers to no-op functions
- **/
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- mbx->ops.init_params = e1000_null_ops_generic;
- mbx->ops.read = e1000_null_mbx_transact;
- mbx->ops.write = e1000_null_mbx_transact;
- mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
- mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
- mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
-}
-
-/**
- * e1000_read_v2p_mailbox - read v2p mailbox
- * @hw: pointer to the HW structure
- *
- * This function is used to read the v2p mailbox without losing the read to
- * clear status bits.
- **/
-STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
-{
- u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
-
- v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
- hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
-
- return v2p_mailbox;
-}
-
-/**
- * e1000_check_for_bit_vf - Determine if a status bit was set
- * @hw: pointer to the HW structure
- * @mask: bitmask for bits to be tested and cleared
- *
- * This function is used to check for the read to clear bits within
- * the V2P mailbox.
- **/
-STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
-{
- u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
- s32 ret_val = -E1000_ERR_MBX;
-
- if (v2p_mailbox & mask)
- ret_val = E1000_SUCCESS;
-
- hw->dev_spec.vf.v2p_mailbox &= ~mask;
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg_vf - checks to see if the PF has sent mail
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw,
- u16 E1000_UNUSEDARG mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- UNREFERENCED_1PARAMETER(mbx_id);
- DEBUGFUNC("e1000_check_for_msg_vf");
-
- if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.reqs++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw,
- u16 E1000_UNUSEDARG mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- UNREFERENCED_1PARAMETER(mbx_id);
- DEBUGFUNC("e1000_check_for_ack_vf");
-
- if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.acks++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst_vf - checks to see if the PF has reset
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns true if the PF has set the reset done bit or else false
- **/
-STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw,
- u16 E1000_UNUSEDARG mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- UNREFERENCED_1PARAMETER(mbx_id);
- DEBUGFUNC("e1000_check_for_rst_vf");
-
- if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
- E1000_V2PMAILBOX_RSTI))) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.rsts++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_obtain_mbx_lock_vf - obtain mailbox lock
- * @hw: pointer to the HW structure
- *
- * return SUCCESS if we obtained the mailbox lock
- **/
-STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_obtain_mbx_lock_vf");
-
- /* Take ownership of the buffer */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
-
- /* reserve mailbox for vf use */
- if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
- ret_val = E1000_SUCCESS;
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx_vf - Write a message to the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 E1000_UNUSEDARG mbx_id)
-{
- s32 ret_val;
- u16 i;
-
- UNREFERENCED_1PARAMETER(mbx_id);
-
- DEBUGFUNC("e1000_write_mbx_vf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_vf(hw);
- if (ret_val)
- goto out_no_write;
-
- /* flush msg and acks as we are overwriting the message buffer */
- e1000_check_for_msg_vf(hw, 0);
- e1000_check_for_ack_vf(hw, 0);
-
- /* copy the caller specified message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
-
- /* update stats */
- hw->mbx.stats.msgs_tx++;
-
- /* Drop VFU and interrupt the PF to tell it a message has been sent */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
-
-out_no_write:
- return ret_val;
-}
-
-/**
- * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to read
- *
- * returns SUCCESS if it successfully read message from buffer
- **/
-STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 E1000_UNUSEDARG mbx_id)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i;
-
- DEBUGFUNC("e1000_read_mbx_vf");
- UNREFERENCED_1PARAMETER(mbx_id);
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_vf(hw);
- if (ret_val)
- goto out_no_read;
-
- /* copy the message from the mailbox memory buffer */
- for (i = 0; i < size; i++)
- msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
-
- /* Acknowledge receipt and release mailbox, then we're done */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
-
- /* update stats */
- hw->mbx.stats.msgs_rx++;
-
-out_no_read:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params_vf - set initial values for vf mailbox
- * @hw: pointer to the HW structure
- *
- * Initializes the hw->mbx struct to correct values for vf mailbox
- */
-s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
-
- /* start mailbox as timed out and let the reset_hw call set the timeout
- * value to begin communications */
- mbx->timeout = 0;
- mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
-
- mbx->size = E1000_VFMAILBOX_SIZE;
-
- mbx->ops.read = e1000_read_mbx_vf;
- mbx->ops.write = e1000_write_mbx_vf;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
- mbx->ops.check_for_msg = e1000_check_for_msg_vf;
- mbx->ops.check_for_ack = e1000_check_for_ack_vf;
- mbx->ops.check_for_rst = e1000_check_for_rst_vf;
-
- mbx->stats.msgs_tx = 0;
- mbx->stats.msgs_rx = 0;
- mbx->stats.reqs = 0;
- mbx->stats.acks = 0;
- mbx->stats.rsts = 0;
-
- return E1000_SUCCESS;
-}
-
-STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
-{
- u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
- s32 ret_val = -E1000_ERR_MBX;
-
- if (mbvficr & mask) {
- ret_val = E1000_SUCCESS;
- E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg_pf - checks to see if the VF has sent mail
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_msg_pf");
-
- if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.reqs++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack_pf - checks to see if the VF has ACKed
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_ack_pf");
-
- if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.acks++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst_pf - checks to see if the VF has reset
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
-{
- u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_rst_pf");
-
- if (vflre & (1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
- hw->mbx.stats.rsts++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_obtain_mbx_lock_pf - obtain mailbox lock
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * return SUCCESS if we obtained the mailbox lock
- **/
-STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
- u32 p2v_mailbox;
-
- DEBUGFUNC("e1000_obtain_mbx_lock_pf");
-
- /* Take ownership of the buffer */
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
-
- /* reserve mailbox for vf use */
- p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
- if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
- ret_val = E1000_SUCCESS;
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx_pf - Places a message in the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @vf_number: the VF index
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 vf_number)
-{
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_write_mbx_pf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
- if (ret_val)
- goto out_no_write;
-
- /* flush msg and acks as we are overwriting the message buffer */
- e1000_check_for_msg_pf(hw, vf_number);
- e1000_check_for_ack_pf(hw, vf_number);
-
- /* copy the caller specified message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
-
- /* Interrupt VF to tell it a message has been sent and release buffer*/
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
-
- /* update stats */
- hw->mbx.stats.msgs_tx++;
-
-out_no_write:
- return ret_val;
-
-}
-
-/**
- * e1000_read_mbx_pf - Read a message from the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @vf_number: the VF index
- *
- * This function copies a message from the mailbox buffer to the caller's
- * memory buffer. The presumption is that the caller knows that there was
- * a message due to a VF request so no polling for message is needed.
- **/
-STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 vf_number)
-{
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_read_mbx_pf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
- if (ret_val)
- goto out_no_read;
-
- /* copy the message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
-
- /* Acknowledge the message and release buffer */
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
-
- /* update stats */
- hw->mbx.stats.msgs_rx++;
-
-out_no_read:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params_pf - set initial values for pf mailbox
- * @hw: pointer to the HW structure
- *
- * Initializes the hw->mbx struct to correct values for pf mailbox
- */
-s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
-
- switch (hw->mac.type) {
- case e1000_82576:
- case e1000_i350:
- case e1000_i354:
- mbx->timeout = 0;
- mbx->usec_delay = 0;
-
- mbx->size = E1000_VFMAILBOX_SIZE;
-
- mbx->ops.read = e1000_read_mbx_pf;
- mbx->ops.write = e1000_write_mbx_pf;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
- mbx->ops.check_for_msg = e1000_check_for_msg_pf;
- mbx->ops.check_for_ack = e1000_check_for_ack_pf;
- mbx->ops.check_for_rst = e1000_check_for_rst_pf;
-
- mbx->stats.msgs_tx = 0;
- mbx->stats.msgs_rx = 0;
- mbx->stats.reqs = 0;
- mbx->stats.acks = 0;
- mbx->stats.rsts = 0;
- default:
- return E1000_SUCCESS;
- }
-}
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MBX_H_
-#define _E1000_MBX_H_
-
-#include "e1000_api.h"
-
-/* Define mailbox register bits */
-#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
-#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
-#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
-#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
-#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
-#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
-#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
-
-#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */
-#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */
-#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */
-
-#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
-#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */
-#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
-#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */
-
-#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
-
-/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
- * PF. The reverse is true if it is E1000_PF_*.
- * Message ACK's are the value or'd with 0xF0000000
- */
-/* Msgs below or'd with this are the ACK */
-#define E1000_VT_MSGTYPE_ACK 0x80000000
-/* Msgs below or'd with this are the NACK */
-#define E1000_VT_MSGTYPE_NACK 0x40000000
-/* Indicates that VF is still clear to send requests */
-#define E1000_VT_MSGTYPE_CTS 0x20000000
-#define E1000_VT_MSGINFO_SHIFT 16
-/* bits 23:16 are used for extra info for certain messages */
-#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_VF_RESET 0x01 /* VF requests reset */
-#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */
-#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */
-#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */
-#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */
-#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/
-#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
-
-#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */
-#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */
-
-s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_check_for_msg(struct e1000_hw *, u16);
-s32 e1000_check_for_ack(struct e1000_hw *, u16);
-s32 e1000_check_for_rst(struct e1000_hw *, u16);
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
-s32 e1000_init_mbx_params_vf(struct e1000_hw *);
-s32 e1000_init_mbx_params_pf(struct e1000_hw *);
-
-#endif /* _E1000_MBX_H_ */
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw);
-
-/**
- * e1000_init_nvm_ops_generic - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- DEBUGFUNC("e1000_init_nvm_ops_generic");
-
- /* Initialize function pointers */
- nvm->ops.init_params = e1000_null_ops_generic;
- nvm->ops.acquire = e1000_null_ops_generic;
- nvm->ops.read = e1000_null_read_nvm;
- nvm->ops.release = e1000_null_nvm_generic;
- nvm->ops.reload = e1000_reload_nvm_generic;
- nvm->ops.update = e1000_null_ops_generic;
- nvm->ops.valid_led_default = e1000_null_led_default;
- nvm->ops.validate = e1000_null_ops_generic;
- nvm->ops.write = e1000_null_write_nvm;
-}
-
-/**
- * e1000_null_nvm_read - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
- u16 E1000_UNUSEDARG *c)
-{
- DEBUGFUNC("e1000_null_read_nvm");
- UNREFERENCED_4PARAMETER(hw, a, b, c);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_nvm_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_nvm_generic");
- UNREFERENCED_1PARAMETER(hw);
- return;
-}
-
-/**
- * e1000_null_led_default - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG *data)
-{
- DEBUGFUNC("e1000_null_led_default");
- UNREFERENCED_2PARAMETER(hw, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_write_nvm - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
- u16 E1000_UNUSEDARG *c)
-{
- DEBUGFUNC("e1000_null_write_nvm");
- UNREFERENCED_4PARAMETER(hw, a, b, c);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_raise_eec_clk - Raise EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Enable/Raise the EEPROM clock bit.
- **/
-STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, E1000_EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_lower_eec_clk - Lower EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Clear/Lower the EEPROM clock bit.
- **/
-STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, E1000_EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- * @hw: pointer to the HW structure
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
-STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u32 mask;
-
- DEBUGFUNC("e1000_shift_out_eec_bits");
-
- mask = 0x01 << (count - 1);
- if (nvm->type == e1000_nvm_eeprom_microwire)
- eecd &= ~E1000_EECD_DO;
- else
- if (nvm->type == e1000_nvm_eeprom_spi)
- eecd |= E1000_EECD_DO;
-
- do {
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
-
- mask >>= 1;
- } while (mask);
-
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- * @hw: pointer to the HW structure
- * @count: number of bits to shift in
- *
- * In order to read a register from the EEPROM, we need to shift 'count' bits
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
- * the EEPROM (setting the SK bit), and then reading the value of the data out
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
- * always be clear.
- **/
-STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
- u32 eecd;
- u32 i;
- u16 data;
-
- DEBUGFUNC("e1000_shift_in_eec_bits");
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data <<= 1;
- e1000_raise_eec_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- eecd &= ~E1000_EECD_DI;
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_eec_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/**
- * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- * @hw: pointer to the HW structure
- * @ee_reg: EEPROM flag for polling
- *
- * Polls the EEPROM status bit for either read or write completion based
- * upon the value of 'ee_reg'.
- **/
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
- u32 attempts = 100000;
- u32 i, reg = 0;
-
- DEBUGFUNC("e1000_poll_eerd_eewr_done");
-
- for (i = 0; i < attempts; i++) {
- if (ee_reg == E1000_NVM_POLL_READ)
- reg = E1000_READ_REG(hw, E1000_EERD);
- else
- reg = E1000_READ_REG(hw, E1000_EEWR);
-
- if (reg & E1000_NVM_RW_REG_DONE)
- return E1000_SUCCESS;
-
- usec_delay(5);
- }
-
- return -E1000_ERR_NVM;
-}
-
-/**
- * e1000_acquire_nvm_generic - Generic request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
-{
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
-
- DEBUGFUNC("e1000_acquire_nvm_generic");
-
- E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- while (timeout) {
- if (eecd & E1000_EECD_GNT)
- break;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, E1000_EECD);
- timeout--;
- }
-
- if (!timeout) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- DEBUGOUT("Could not acquire NVM grant\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_standby_nvm - Return EEPROM to standby state
- * @hw: pointer to the HW structure
- *
- * Return the EEPROM to a standby state.
- **/
-STATIC void e1000_standby_nvm(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
- DEBUGFUNC("e1000_standby_nvm");
-
- if (nvm->type == e1000_nvm_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
-
- e1000_lower_eec_clk(hw, &eecd);
- } else if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
- }
-}
-
-/**
- * e1000_stop_nvm - Terminate EEPROM command
- * @hw: pointer to the HW structure
- *
- * Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-void e1000_stop_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- DEBUGFUNC("e1000_stop_nvm");
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- /* Pull CS high */
- eecd |= E1000_EECD_CS;
- e1000_lower_eec_clk(hw, &eecd);
- } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
- }
-}
-
-/**
- * e1000_release_nvm_generic - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000_release_nvm_generic(struct e1000_hw *hw)
-{
- u32 eecd;
-
- DEBUGFUNC("e1000_release_nvm_generic");
-
- e1000_stop_nvm(hw);
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- * @hw: pointer to the HW structure
- *
- * Setups the EEPROM for reading and writing.
- **/
-STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u8 spi_stat_reg;
-
- DEBUGFUNC("e1000_ready_nvm_eeprom");
-
- if (nvm->type == e1000_nvm_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- } else if (nvm->type == e1000_nvm_eeprom_spi) {
- u16 timeout = NVM_MAX_RETRY_SPI;
-
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(1);
-
- /* Read "Status Register" repeatedly until the LSB is cleared.
- * The EEPROM will signal that the command has been completed
- * by clearing bit 0 of the internal status register. If it's
- * not cleared within 'timeout', then error out.
- */
- while (timeout) {
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- e1000_standby_nvm(hw);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("SPI NVM Status error\n");
- return -E1000_ERR_NVM;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_nvm_spi - Read EEPROM's using SPI
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i = 0;
- s32 ret_val;
- u16 word_in;
- u8 read_opcode = NVM_READ_OPCODE_SPI;
-
- DEBUGFUNC("e1000_read_nvm_spi");
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- e1000_standby_nvm(hw);
-
- if ((nvm->address_bits == 8) && (offset >= 128))
- read_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
-
- /* Read the data. SPI NVMs increment the address with each byte
- * read and will roll over if reading beyond the end. This allows
- * us to read the whole NVM from any offset
- */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_eec_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
-
-release:
- nvm->ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_nvm_microwire - Reads EEPROM's using microwire
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i = 0;
- s32 ret_val;
- u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
-
- DEBUGFUNC("e1000_read_nvm_microwire");
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)(offset + i),
- nvm->address_bits);
-
- /* Read the data. For microwire, each word requires the
- * overhead of setup and tear-down.
- */
- data[i] = e1000_shift_in_eec_bits(hw, 16);
- e1000_standby_nvm(hw);
- }
-
-release:
- nvm->ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_nvm_eerd - Reads EEPROM using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eerd = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_nvm_eerd");
-
- /* A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
- E1000_NVM_RW_REG_START;
-
- E1000_WRITE_REG(hw, E1000_EERD, eerd);
- ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
- if (ret_val)
- break;
-
- data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
- E1000_NVM_RW_REG_DATA);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_spi - Write to EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using SPI interface.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val = -E1000_ERR_NVM;
- u16 widx = 0;
-
- DEBUGFUNC("e1000_write_nvm_spi");
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- while (widx < words) {
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val) {
- nvm->ops.release(hw);
- return ret_val;
- }
-
- e1000_standby_nvm(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode) */
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
-
- e1000_standby_nvm(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((nvm->address_bits == 8) && (offset >= 128))
- write_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
-
- /* Loop to allow for up to whole page write of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_eec_bits(hw, word_out, 16);
- widx++;
-
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
- e1000_standby_nvm(hw);
- break;
- }
- }
- msec_delay(10);
- nvm->ops.release(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_microwire - Writes EEPROM using microwire
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using microwire interface.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u32 eecd;
- u16 words_written = 0;
- u16 widx = 0;
-
- DEBUGFUNC("e1000_write_nvm_microwire");
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
-
- e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
- e1000_standby_nvm(hw);
-
- while (words_written < words) {
- e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
- nvm->opcode_bits);
-
- e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
- nvm->address_bits);
-
- e1000_shift_out_eec_bits(hw, data[words_written], 16);
-
- e1000_standby_nvm(hw);
-
- for (widx = 0; widx < 200; widx++) {
- eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & E1000_EECD_DO)
- break;
- usec_delay(50);
- }
-
- if (widx == 200) {
- DEBUGOUT("NVM Write did not complete\n");
- ret_val = -E1000_ERR_NVM;
- goto release;
- }
-
- e1000_standby_nvm(hw);
-
- words_written++;
- }
-
- e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
-
- e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
-release:
- nvm->ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_pba_string_generic - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- **/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 pba_ptr;
- u16 offset;
- u16 length;
-
- DEBUGFUNC("e1000_read_pba_string_generic");
-
- if ((hw->mac.type >= e1000_i210) &&
- !e1000_get_flash_presence_i210(hw)) {
- DEBUGOUT("Flashless no PBA string\n");
- return -E1000_ERR_NVM_PBA_SECTION;
- }
-
- if (pba_num == NULL) {
- DEBUGOUT("PBA string buffer was null\n");
- return -E1000_ERR_INVALID_ARGUMENT;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- /* if nvm_data is not ptr guard the PBA must be in legacy format which
- * means pba_ptr is actually our second data word for the PBA number
- * and we can decode it into an ascii string
- */
- if (nvm_data != NVM_PBA_PTR_GUARD) {
- DEBUGOUT("NVM PBA number is not stored as string\n");
-
- /* make sure callers buffer is big enough to store the PBA */
- if (pba_num_size < E1000_PBANUM_LENGTH) {
- DEBUGOUT("PBA string buffer too small\n");
- return E1000_ERR_NO_SPACE;
- }
-
- /* extract hex string from data and pba_ptr */
- pba_num[0] = (nvm_data >> 12) & 0xF;
- pba_num[1] = (nvm_data >> 8) & 0xF;
- pba_num[2] = (nvm_data >> 4) & 0xF;
- pba_num[3] = nvm_data & 0xF;
- pba_num[4] = (pba_ptr >> 12) & 0xF;
- pba_num[5] = (pba_ptr >> 8) & 0xF;
- pba_num[6] = '-';
- pba_num[7] = 0;
- pba_num[8] = (pba_ptr >> 4) & 0xF;
- pba_num[9] = pba_ptr & 0xF;
-
- /* put a null character on the end of our string */
- pba_num[10] = '\0';
-
- /* switch all the data but the '-' to hex char */
- for (offset = 0; offset < 10; offset++) {
- if (pba_num[offset] < 0xA)
- pba_num[offset] += '0';
- else if (pba_num[offset] < 0x10)
- pba_num[offset] += 'A' - 0xA;
- }
-
- return E1000_SUCCESS;
- }
-
- ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (length == 0xFFFF || length == 0) {
- DEBUGOUT("NVM PBA number section invalid length\n");
- return -E1000_ERR_NVM_PBA_SECTION;
- }
- /* check if pba_num buffer is big enough */
- if (pba_num_size < (((u32)length * 2) - 1)) {
- DEBUGOUT("PBA string buffer too small\n");
- return -E1000_ERR_NO_SPACE;
- }
-
- /* trim pba length from start of string */
- pba_ptr++;
- length--;
-
- for (offset = 0; offset < length; offset++) {
- ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
- pba_num[offset * 2] = (u8)(nvm_data >> 8);
- pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
- }
- pba_num[offset * 2] = '\0';
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_pba_length_generic - Read device part number length
- * @hw: pointer to the HW structure
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number length from the EEPROM and
- * stores the value in pba_num_size.
- **/
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 pba_ptr;
- u16 length;
-
- DEBUGFUNC("e1000_read_pba_length_generic");
-
- if (pba_num_size == NULL) {
- DEBUGOUT("PBA buffer size was null\n");
- return -E1000_ERR_INVALID_ARGUMENT;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- /* if data is not ptr guard the PBA must be in legacy format */
- if (nvm_data != NVM_PBA_PTR_GUARD) {
- *pba_num_size = E1000_PBANUM_LENGTH;
- return E1000_SUCCESS;
- }
-
- ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (length == 0xFFFF || length == 0) {
- DEBUGOUT("NVM PBA number section invalid length\n");
- return -E1000_ERR_NVM_PBA_SECTION;
- }
-
- /* Convert from length in u16 values to u8 chars, add 1 for NULL,
- * and subtract 2 because length field is included in length.
- */
- *pba_num_size = ((u32)length * 2) - 1;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_pba_num_generic - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- **/
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
-{
- s32 ret_val;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_read_pba_num_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- } else if (nvm_data == NVM_PBA_PTR_GUARD) {
- DEBUGOUT("NVM Not Supported\n");
- return -E1000_NOT_IMPLEMENTED;
- }
- *pba_num = (u32)(nvm_data << 16);
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
- *pba_num |= nvm_data;
-
- return E1000_SUCCESS;
-}
-
-
-/**
- * e1000_read_pba_raw
- * @hw: pointer to the HW structure
- * @eeprom_buf: optional pointer to EEPROM image
- * @eeprom_buf_size: size of EEPROM image in words
- * @max_pba_block_size: PBA block size limit
- * @pba: pointer to output PBA structure
- *
- * Reads PBA from EEPROM image when eeprom_buf is not NULL.
- * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
- *
- **/
-s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, u16 max_pba_block_size,
- struct e1000_pba *pba)
-{
- s32 ret_val;
- u16 pba_block_size;
-
- if (pba == NULL)
- return -E1000_ERR_PARAM;
-
- if (eeprom_buf == NULL) {
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
- &pba->word[0]);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
- pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
- pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
- } else {
- return -E1000_ERR_PARAM;
- }
- }
-
- if (pba->word[0] == NVM_PBA_PTR_GUARD) {
- if (pba->pba_block == NULL)
- return -E1000_ERR_PARAM;
-
- ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
- eeprom_buf_size,
- &pba_block_size);
- if (ret_val)
- return ret_val;
-
- if (pba_block_size > max_pba_block_size)
- return -E1000_ERR_PARAM;
-
- if (eeprom_buf == NULL) {
- ret_val = e1000_read_nvm(hw, pba->word[1],
- pba_block_size,
- pba->pba_block);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > (u32)(pba->word[1] +
- pba_block_size)) {
- memcpy(pba->pba_block,
- &eeprom_buf[pba->word[1]],
- pba_block_size * sizeof(u16));
- } else {
- return -E1000_ERR_PARAM;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_pba_raw
- * @hw: pointer to the HW structure
- * @eeprom_buf: optional pointer to EEPROM image
- * @eeprom_buf_size: size of EEPROM image in words
- * @pba: pointer to PBA structure
- *
- * Writes PBA to EEPROM image when eeprom_buf is not NULL.
- * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
- *
- **/
-s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, struct e1000_pba *pba)
-{
- s32 ret_val;
-
- if (pba == NULL)
- return -E1000_ERR_PARAM;
-
- if (eeprom_buf == NULL) {
- ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
- &pba->word[0]);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
- eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
- eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
- } else {
- return -E1000_ERR_PARAM;
- }
- }
-
- if (pba->word[0] == NVM_PBA_PTR_GUARD) {
- if (pba->pba_block == NULL)
- return -E1000_ERR_PARAM;
-
- if (eeprom_buf == NULL) {
- ret_val = e1000_write_nvm(hw, pba->word[1],
- pba->pba_block[0],
- pba->pba_block);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > (u32)(pba->word[1] +
- pba->pba_block[0])) {
- memcpy(&eeprom_buf[pba->word[1]],
- pba->pba_block,
- pba->pba_block[0] * sizeof(u16));
- } else {
- return -E1000_ERR_PARAM;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_pba_block_size
- * @hw: pointer to the HW structure
- * @eeprom_buf: optional pointer to EEPROM image
- * @eeprom_buf_size: size of EEPROM image in words
- * @pba_data_size: pointer to output variable
- *
- * Returns the size of the PBA block in words. Function operates on EEPROM
- * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
- * EEPROM device.
- *
- **/
-s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, u16 *pba_block_size)
-{
- s32 ret_val;
- u16 pba_word[2];
- u16 length;
-
- DEBUGFUNC("e1000_get_pba_block_size");
-
- if (eeprom_buf == NULL) {
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
- pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
- pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
- } else {
- return -E1000_ERR_PARAM;
- }
- }
-
- if (pba_word[0] == NVM_PBA_PTR_GUARD) {
- if (eeprom_buf == NULL) {
- ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
- &length);
- if (ret_val)
- return ret_val;
- } else {
- if (eeprom_buf_size > pba_word[1])
- length = eeprom_buf[pba_word[1] + 0];
- else
- return -E1000_ERR_PARAM;
- }
-
- if (length == 0xFFFF || length == 0)
- return -E1000_ERR_NVM_PBA_SECTION;
- } else {
- /* PBA number in legacy format, there is no PBA Block. */
- length = 0;
- }
-
- if (pba_block_size != NULL)
- *pba_block_size = length;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr_generic - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- **/
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 rar_high;
- u32 rar_low;
- u16 i;
-
- rar_high = E1000_READ_REG(hw, E1000_RAH(0));
- rar_low = E1000_READ_REG(hw, E1000_RAL(0));
-
- for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
-
- for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_generic");
-
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- DEBUGOUT("NVM Checksum Invalid\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_update_nvm_checksum_generic - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum");
-
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
- if (ret_val)
- DEBUGOUT("NVM Write Error while updating checksum.\n");
-
- return ret_val;
-}
-
-/**
- * e1000_reload_nvm_generic - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_reload_nvm_generic");
-
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_get_fw_version - Get firmware version information
- * @hw: pointer to the HW structure
- * @fw_vers: pointer to output version structure
- *
- * unsupported/not present features return 0 in version structure
- **/
-void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
-{
- u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
- u8 q, hval, rem, result;
- u16 comb_verh, comb_verl, comb_offset;
-
- memset(fw_vers, 0, sizeof(struct e1000_fw_version));
-
- /* basic eeprom version numbers, bits used vary by part and by tool
- * used to create the nvm images */
- /* Check which data format we have */
- switch (hw->mac.type) {
- case e1000_i211:
- e1000_read_invm_version(hw, fw_vers);
- return;
- case e1000_82575:
- case e1000_82576:
- case e1000_82580:
- hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
- /* Use this format, unless EETRACK ID exists,
- * then use alternate format
- */
- if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
- hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
- fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
- >> NVM_MAJOR_SHIFT;
- fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
- >> NVM_MINOR_SHIFT;
- fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
- goto etrack_id;
- }
- break;
- case e1000_i210:
- if (!(e1000_get_flash_presence_i210(hw))) {
- e1000_read_invm_version(hw, fw_vers);
- return;
- }
- /* fall through */
- case e1000_i350:
- hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
- /* find combo image version */
- hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
- if ((comb_offset != 0x0) &&
- (comb_offset != NVM_VER_INVALID)) {
-
- hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
- + 1), 1, &comb_verh);
- hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
- 1, &comb_verl);
-
- /* get Option Rom version if it exists and is valid */
- if ((comb_verh && comb_verl) &&
- ((comb_verh != NVM_VER_INVALID) &&
- (comb_verl != NVM_VER_INVALID))) {
-
- fw_vers->or_valid = true;
- fw_vers->or_major =
- comb_verl >> NVM_COMB_VER_SHFT;
- fw_vers->or_build =
- (comb_verl << NVM_COMB_VER_SHFT)
- | (comb_verh >> NVM_COMB_VER_SHFT);
- fw_vers->or_patch =
- comb_verh & NVM_COMB_VER_MASK;
- }
- }
- break;
- default:
- hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
- return;
- }
- hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
- fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
- >> NVM_MAJOR_SHIFT;
-
- /* check for old style version format in newer images*/
- if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
- eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
- } else {
- eeprom_verl = (fw_version & NVM_MINOR_MASK)
- >> NVM_MINOR_SHIFT;
- }
- /* Convert minor value to hex before assigning to output struct
- * Val to be converted will not be higher than 99, per tool output
- */
- q = eeprom_verl / NVM_HEX_CONV;
- hval = q * NVM_HEX_TENS;
- rem = eeprom_verl % NVM_HEX_CONV;
- result = hval + rem;
- fw_vers->eep_minor = result;
-
-etrack_id:
- if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
- hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
- hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
- fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
- | eeprom_verl;
- }
- return;
-}
-
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_NVM_H_
-#define _E1000_NVM_H_
-
-struct e1000_pba {
- u16 word[2];
- u16 *pba_block;
-};
-
-struct e1000_fw_version {
- u32 etrack_id;
- u16 eep_major;
- u16 eep_minor;
- u16 eep_build;
-
- u8 invm_major;
- u8 invm_minor;
- u8 invm_img_type;
-
- bool or_valid;
- u16 or_major;
- u16 or_build;
- u16 or_patch;
-};
-
-
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-void e1000_null_nvm_generic(struct e1000_hw *hw);
-s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data);
-s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
-
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
-s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, u16 max_pba_block_size,
- struct e1000_pba *pba);
-s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, struct e1000_pba *pba);
-s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
- u32 eeprom_buf_size, u16 *pba_block_size);
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
-s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
-void e1000_stop_nvm(struct e1000_hw *hw);
-void e1000_release_nvm_generic(struct e1000_hw *hw);
-void e1000_get_fw_version(struct e1000_hw *hw,
- struct e1000_fw_version *fw_vers);
-
-#define E1000_STM_OPCODE 0xDB00
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2014, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-/*
- * NOTE: the following routines using the e1000
- * naming style are provided to the shared
- * code but are OS specific
- */
-
-void
-e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return;
-}
-
-void
-e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- *value = 0;
- return;
-}
-
-void
-e1000_pci_set_mwi(struct e1000_hw *hw)
-{
-}
-
-void
-e1000_pci_clear_mwi(struct e1000_hw *hw)
-{
-}
-
-
-/*
- * Read the PCI Express capabilities
- */
-int32_t
-e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return E1000_NOT_IMPLEMENTED;
-}
-
-/*
- * Write the PCI Express capabilities
- */
-int32_t
-e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return E1000_NOT_IMPLEMENTED;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2014, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_OSDEP_H_
-#define _E1000_OSDEP_H_
-
-#include <stdint.h>
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <rte_common.h>
-#include <rte_cycles.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_byteorder.h>
-
-#include "../e1000_logs.h"
-
-#define DELAY(x) rte_delay_us(x)
-#define usec_delay(x) DELAY(x)
-#define usec_delay_irq(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define DEBUGFUNC(F) DEBUGOUT(F "\n");
-#define DEBUGOUT(S, args...) PMD_DRV_LOG_RAW(DEBUG, S, ##args)
-#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args)
-
-#define UNREFERENCED_PARAMETER(_p)
-#define UNREFERENCED_1PARAMETER(_p)
-#define UNREFERENCED_2PARAMETER(_p, _q)
-#define UNREFERENCED_3PARAMETER(_p, _q, _r)
-#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s)
-
-#define FALSE 0
-#define TRUE 1
-
-#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
-
-/* Mutex used in the shared code */
-#define E1000_MUTEX uintptr_t
-#define E1000_MUTEX_INIT(mutex) (*(mutex) = 0)
-#define E1000_MUTEX_LOCK(mutex) (*(mutex) = 1)
-#define E1000_MUTEX_UNLOCK(mutex) (*(mutex) = 0)
-
-typedef uint64_t u64;
-typedef uint32_t u32;
-typedef uint16_t u16;
-typedef uint8_t u8;
-typedef int64_t s64;
-typedef int32_t s32;
-typedef int16_t s16;
-typedef int8_t s8;
-typedef int bool;
-
-#define __le16 u16
-#define __le32 u32
-#define __le64 u64
-
-#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
-
-#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
-
-#define E1000_PCI_REG_WRITE(reg, value) do { \
- E1000_PCI_REG((reg)) = (rte_cpu_to_le_32(value)); \
-} while (0)
-
-#define E1000_PCI_REG_ADDR(hw, reg) \
- ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
-
-#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
- E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
-
-static inline uint32_t e1000_read_addr(volatile void* addr)
-{
- return rte_le_to_cpu_32(E1000_PCI_REG(addr));
-}
-
-/* Necessary defines */
-#define E1000_MRQC_ENABLE_MASK 0x00000007
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-#define E1000_ALL_FULL_DUPLEX ( \
- ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
-
-#define M88E1543_E_PHY_ID 0x01410EA0
-#define NAHUM6LP_HW
-#define ULP_SUPPORT
-
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-
-/* Register READ/WRITE macros */
-
-#define E1000_READ_REG(hw, reg) \
- e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
-
-#define E1000_WRITE_REG(hw, reg, value) \
- E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
- E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
- E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
-
-#define E1000_ACCESS_PANIC(x, hw, reg, value) \
- rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \
- __FILE__, __LINE__, (hw), (reg), (unsigned int)(value))
-
-/*
- * To be able to do IO write, we need to map IO BAR
- * (bar 2/4 depending on device).
- * Right now mapping multiple BARs is not supported by DPDK.
- * Fortunatelly we need it only for legacy hw support.
- */
-
-#define E1000_WRITE_REG_IO(hw, reg, value) \
- E1000_WRITE_REG(hw, reg, value)
-
-/*
- * Not implemented.
- */
-
-#define E1000_READ_FLASH_REG(hw, reg) \
- (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG, hw, reg, 0), 0)
-
-#define E1000_READ_FLASH_REG16(hw, reg) \
- (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG16, hw, reg, 0), 0)
-
-#define E1000_WRITE_FLASH_REG(hw, reg, value) \
- E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG, hw, reg, value)
-
-#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
- E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG16, hw, reg, value)
-
-#define STATIC static
-
-#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN 6
-#endif
-
-#define false FALSE
-#define true TRUE
-
-#endif /* _E1000_OSDEP_H_ */
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
-STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set);
-STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
-STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read);
-
-/* Cable length tables */
-STATIC const u16 e1000_m88_cable_length_table[] = {
- 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_m88_cable_length_table) / \
- sizeof(e1000_m88_cable_length_table[0]))
-
-STATIC const u16 e1000_igp_2_cable_length_table[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
- 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
- 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
- 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
- 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
- 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
- 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
- 124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_igp_2_cable_length_table) / \
- sizeof(e1000_igp_2_cable_length_table[0]))
-
-/**
- * e1000_init_phy_ops_generic - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_phy_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- DEBUGFUNC("e1000_init_phy_ops_generic");
-
- /* Initialize function pointers */
- phy->ops.init_params = e1000_null_ops_generic;
- phy->ops.acquire = e1000_null_ops_generic;
- phy->ops.check_polarity = e1000_null_ops_generic;
- phy->ops.check_reset_block = e1000_null_ops_generic;
- phy->ops.commit = e1000_null_ops_generic;
- phy->ops.force_speed_duplex = e1000_null_ops_generic;
- phy->ops.get_cfg_done = e1000_null_ops_generic;
- phy->ops.get_cable_length = e1000_null_ops_generic;
- phy->ops.get_info = e1000_null_ops_generic;
- phy->ops.set_page = e1000_null_set_page;
- phy->ops.read_reg = e1000_null_read_reg;
- phy->ops.read_reg_locked = e1000_null_read_reg;
- phy->ops.read_reg_page = e1000_null_read_reg;
- phy->ops.release = e1000_null_phy_generic;
- phy->ops.reset = e1000_null_ops_generic;
- phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
- phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
- phy->ops.write_reg = e1000_null_write_reg;
- phy->ops.write_reg_locked = e1000_null_write_reg;
- phy->ops.write_reg_page = e1000_null_write_reg;
- phy->ops.power_up = e1000_null_phy_generic;
- phy->ops.power_down = e1000_null_phy_generic;
- phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
- phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
- phy->ops.cfg_on_link_up = e1000_null_ops_generic;
-}
-
-/**
- * e1000_null_set_page - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG data)
-{
- DEBUGFUNC("e1000_null_set_page");
- UNREFERENCED_2PARAMETER(hw, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_read_reg - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
- u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
-{
- DEBUGFUNC("e1000_null_read_reg");
- UNREFERENCED_3PARAMETER(hw, offset, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_phy_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_phy_generic");
- UNREFERENCED_1PARAMETER(hw);
- return;
-}
-
-/**
- * e1000_null_lplu_state - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
- bool E1000_UNUSEDARG active)
-{
- DEBUGFUNC("e1000_null_lplu_state");
- UNREFERENCED_2PARAMETER(hw, active);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_write_reg - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
- u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
-{
- DEBUGFUNC("e1000_null_write_reg");
- UNREFERENCED_3PARAMETER(hw, offset, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_i2c_byte_null - No-op function, return 0
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to write
- * @dev_addr: device address
- * @data: data value read
- *
- **/
-s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG byte_offset,
- u8 E1000_UNUSEDARG dev_addr,
- u8 E1000_UNUSEDARG *data)
-{
- DEBUGFUNC("e1000_read_i2c_byte_null");
- UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_i2c_byte_null - No-op function, return 0
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to write
- * @dev_addr: device address
- * @data: data value to write
- *
- **/
-s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG byte_offset,
- u8 E1000_UNUSEDARG dev_addr,
- u8 E1000_UNUSEDARG data)
-{
- DEBUGFUNC("e1000_write_i2c_byte_null");
- UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_reset_block_generic - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Read the PHY management control register and check whether a PHY reset
- * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
- * return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
-{
- u32 manc;
-
- DEBUGFUNC("e1000_check_reset_block");
-
- manc = E1000_READ_REG(hw, E1000_MANC);
-
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_id - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-s32 e1000_get_phy_id(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_id;
- u16 retry_count = 0;
-
- DEBUGFUNC("e1000_get_phy_id");
-
- if (!phy->ops.read_reg)
- return E1000_SUCCESS;
-
- while (retry_count < 2) {
- ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id = (u32)(phy_id << 16);
- usec_delay(20);
- ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
- if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
- return E1000_SUCCESS;
-
- retry_count++;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_reset_dsp_generic - Reset PHY DSP
- * @hw: pointer to the HW structure
- *
- * Reset the digital signal processor.
- **/
-s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_phy_reset_dsp_generic");
-
- if (!hw->phy.ops.write_reg)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
- if (ret_val)
- return ret_val;
-
- return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
-}
-
-/**
- * e1000_read_phy_reg_mdic - Read MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- DEBUGFUNC("e1000_read_phy_reg_mdic");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /* Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- usec_delay_irq(50);
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
- DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
- offset,
- (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
- return -E1000_ERR_PHY;
- }
- *data = (u16) mdic;
-
- /* Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- usec_delay_irq(100);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg_mdic - Write MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- DEBUGFUNC("e1000_write_phy_reg_mdic");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /* Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- usec_delay_irq(50);
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
- DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
- offset,
- (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
- return -E1000_ERR_PHY;
- }
-
- /* Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- usec_delay_irq(100);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_phy_reg_i2c - Read PHY register using i2c
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the i2c interface and stores the
- * retrieved information in data.
- **/
-s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, i2ccmd = 0;
-
- DEBUGFUNC("e1000_read_phy_reg_i2c");
-
- /* Set up Op-code, Phy Address, and register address in the I2CCMD
- * register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- (E1000_I2CCMD_OPCODE_READ));
-
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
- /* Poll the ready bit to see if the I2C read completed */
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
- if (i2ccmd & E1000_I2CCMD_READY)
- break;
- }
- if (!(i2ccmd & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (i2ccmd & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
-
- /* Need to byte-swap the 16-bit value. */
- *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg_i2c - Write PHY register using i2c
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset using the i2c interface.
- **/
-s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, i2ccmd = 0;
- u16 phy_data_swapped;
-
- DEBUGFUNC("e1000_write_phy_reg_i2c");
-
- /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
- if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
- DEBUGOUT1("PHY I2C Address %d is out of range.\n",
- hw->phy.addr);
- return -E1000_ERR_CONFIG;
- }
-
- /* Swap the data bytes for the I2C interface */
- phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
-
- /* Set up Op-code, Phy Address, and register address in the I2CCMD
- * register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_WRITE |
- phy_data_swapped);
-
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
- /* Poll the ready bit to see if the I2C read completed */
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
- if (i2ccmd & E1000_I2CCMD_READY)
- break;
- }
- if (!(i2ccmd & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (i2ccmd & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_sfp_data_byte - Reads SFP module data.
- * @hw: pointer to the HW structure
- * @offset: byte location offset to be read
- * @data: read data buffer pointer
- *
- * Reads one byte from SFP module data stored
- * in SFP resided EEPROM memory or SFP diagnostic area.
- * Function should be called with
- * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
- * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
- * access
- **/
-s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
-{
- u32 i = 0;
- u32 i2ccmd = 0;
- u32 data_local = 0;
-
- DEBUGFUNC("e1000_read_sfp_data_byte");
-
- if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
- DEBUGOUT("I2CCMD command address exceeds upper limit\n");
- return -E1000_ERR_PHY;
- }
-
- /* Set up Op-code, EEPROM Address,in the I2CCMD
- * register. The MAC will take care of interfacing with the
- * EEPROM to retrieve the desired data.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_READ);
-
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
- /* Poll the ready bit to see if the I2C read completed */
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- data_local = E1000_READ_REG(hw, E1000_I2CCMD);
- if (data_local & E1000_I2CCMD_READY)
- break;
- }
- if (!(data_local & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (data_local & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
- *data = (u8) data_local & 0xFF;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_sfp_data_byte - Writes SFP module data.
- * @hw: pointer to the HW structure
- * @offset: byte location offset to write to
- * @data: data to write
- *
- * Writes one byte to SFP module data stored
- * in SFP resided EEPROM memory or SFP diagnostic area.
- * Function should be called with
- * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
- * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
- * access
- **/
-s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
-{
- u32 i = 0;
- u32 i2ccmd = 0;
- u32 data_local = 0;
-
- DEBUGFUNC("e1000_write_sfp_data_byte");
-
- if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
- DEBUGOUT("I2CCMD command address exceeds upper limit\n");
- return -E1000_ERR_PHY;
- }
- /* The programming interface is 16 bits wide
- * so we need to read the whole word first
- * then update appropriate byte lane and write
- * the updated word back.
- */
- /* Set up Op-code, EEPROM Address,in the I2CCMD
- * register. The MAC will take care of interfacing
- * with an EEPROM to write the data given.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_READ);
- /* Set a command to read single word */
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- /* Poll the ready bit to see if lastly
- * launched I2C operation completed
- */
- i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
- if (i2ccmd & E1000_I2CCMD_READY) {
- /* Check if this is READ or WRITE phase */
- if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
- E1000_I2CCMD_OPCODE_READ) {
- /* Write the selected byte
- * lane and update whole word
- */
- data_local = i2ccmd & 0xFF00;
- data_local |= data;
- i2ccmd = ((offset <<
- E1000_I2CCMD_REG_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_WRITE | data_local);
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
- } else {
- break;
- }
- }
- }
- if (!(i2ccmd & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (i2ccmd & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_phy_reg_m88 - Read m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_phy_reg_m88");
-
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_m88 - Write m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_phy_reg_m88");
-
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_set_page_igp - Set page as on IGP-like PHY(s)
- * @hw: pointer to the HW structure
- * @page: page to set (shifted left when necessary)
- *
- * Sets PHY page required for PHY register access. Assumes semaphore is
- * already acquired. Note, this function sets phy.addr to 1 so the caller
- * must set it appropriately (if necessary) after this function returns.
- **/
-s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
-{
- DEBUGFUNC("e1000_set_page_igp");
-
- DEBUGOUT1("Setting page 0x%x\n", page);
-
- hw->phy.addr = 1;
-
- return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
-}
-
-/**
- * __e1000_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("__e1000_read_phy_reg_igp");
-
- if (!locked) {
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG)
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (!ret_val)
- ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores the
- * retrieved information in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000_read_phy_reg_igp_locked - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * e1000_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_phy_reg_igp");
-
- if (!locked) {
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG)
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (!ret_val)
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
- offset,
- data);
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000_write_phy_reg_igp_locked - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * __e1000_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then reads the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- u32 kmrnctrlsta;
-
- DEBUGFUNC("__e1000_read_kmrn_reg");
-
- if (!locked) {
- s32 ret_val = E1000_SUCCESS;
-
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(2);
-
- kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- if (!locked)
- hw->phy.ops.release(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_kmrn_reg_generic - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset using the
- * kumeran interface. The information retrieved is stored in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000_read_kmrn_reg_locked - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the kumeran interface. The
- * information retrieved is stored in data.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * __e1000_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then write the data to PHY register
- * at the offset using the kumeran interface. Release any acquired semaphores
- * before exiting.
- **/
-STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- u32 kmrnctrlsta;
-
- DEBUGFUNC("e1000_write_kmrn_reg_generic");
-
- if (!locked) {
- s32 ret_val = E1000_SUCCESS;
-
- if (!hw->phy.ops.acquire)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(2);
-
- if (!locked)
- hw->phy.ops.release(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_kmrn_reg_generic - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to the PHY register at the offset
- * using the kumeran interface. Release the acquired semaphore before exiting.
- **/
-s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000_write_kmrn_reg_locked - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Write the data to PHY register at the offset using the kumeran interface.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
- * @hw: pointer to the HW structure
- *
- * Sets up Master/slave mode
- **/
-STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- /* Resolve Master/Slave mode */
- ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) : e1000_ms_auto;
-
- switch (hw->phy.ms_type) {
- case e1000_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- /* fall-through */
- default:
- break;
- }
-
- return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
-}
-
-/**
- * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up Carrier-sense on Transmit and downshift values.
- **/
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_82577");
-
- if (hw->phy.type == e1000_phy_82580) {
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- return ret_val;
- }
- }
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
-
- /* Enable downshift */
- phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
-
- ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Set MDI/MDIX mode */
- ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
- /* Options:
- * 0 - Auto (default)
- * 1 - MDI mode
- * 2 - MDI-X mode
- */
- switch (hw->phy.mdix) {
- case 1:
- break;
- case 2:
- phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
- break;
- case 0:
- default:
- phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
- break;
- }
- ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
- if (ret_val)
- return ret_val;
-
- return e1000_set_master_slave_mode(hw);
-}
-
-/**
- * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
- * and downshift values are set also.
- **/
-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_m88");
-
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* For BM PHY this bit is downshift enable */
- if (phy->type != e1000_phy_bm)
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift on BM (disabled by default) */
- if (phy->type == e1000_phy_bm) {
- /* For 82574/82583, first disable then enable downshift */
- if (phy->id == BME1000_E_PHY_ID_R2) {
- phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Commit the changes. */
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- return ret_val;
- }
- }
-
- phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
- }
-
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy->type == e1000_phy_m88) &&
- (phy->revision < E1000_REVISION_4) &&
- (phy->id != BME1000_E_PHY_ID_R2)) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((phy->revision == E1000_REVISION_2) &&
- (phy->id == M88E1111_I_PHY_ID)) {
- /* 82573L PHY - set the downshift counter to 5x. */
- phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- }
- ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
- /* Set PHY page 0, register 29 to 0x0003 */
- ret_val = phy->ops.write_reg(hw, 29, 0x0003);
- if (ret_val)
- return ret_val;
-
- /* Set PHY page 0, register 30 to 0x0000 */
- ret_val = phy->ops.write_reg(hw, 30, 0x0000);
- if (ret_val)
- return ret_val;
- }
-
- /* Commit the changes. */
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- return ret_val;
- }
-
- if (phy->type == e1000_phy_82578) {
- ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* 82578 PHY - set the downshift count to 1x. */
- phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
- phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
- ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
- * Also enables and sets the downshift parameters.
- **/
-s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
-
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- /* M88E1112 does not support this mode) */
- if (phy->id != M88E1112_E_PHY_ID) {
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- }
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift and setting it to X6 */
- if (phy->id == M88E1543_E_PHY_ID) {
- phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
- ret_val =
- phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- return ret_val;
- }
- }
-
- phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
- phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
- phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
-
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Commit the changes. */
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- return ret_val;
- }
-
- ret_val = e1000_set_master_slave_mode(hw);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- * igp PHY's.
- **/
-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_copper_link_setup_igp");
-
-
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- return ret_val;
- }
-
- /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
- * timeout issues when LFS is enabled.
- */
- msec_delay(100);
-
- /* The NVM settings will configure LPLU in D3 for
- * non-IGP1 PHYs.
- */
- if (phy->type == e1000_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* disable lplu d0 during driver init */
- if (hw->phy.ops.set_d0_lplu_state) {
- ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- }
- /* Configure mdi-mdix settings */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (phy->mdix) {
- case 1:
- data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->mac.autoneg) {
- /* when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default.
- */
- if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
-
- /* Set auto Master/Slave resolution process */
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~CR_1000T_MS_ENABLE;
- ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_set_master_slave_mode(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- * @hw: pointer to the HW structure
- *
- * Reads the MII auto-neg advertisement register and/or the 1000T control
- * register and if the PHY is already setup for auto-negotiation, then
- * return successful. Otherwise, setup advertisement and flow control to
- * the appropriate values for the wanted auto-negotiation.
- **/
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg = 0;
-
- DEBUGFUNC("e1000_phy_setup_autoneg");
-
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
- &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
- mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
- DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
- DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
- * negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control (Rx & Tx) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause:
- /* Rx Flow control is enabled, and Tx Flow control is
- * disabled, by a software over-ride.
- *
- * Since there really isn't a way to advertise that we are
- * capable of Rx Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric Rx PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause:
- /* Tx Flow control is enabled, and Rx Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full:
- /* Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL)
- ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
-
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- DEBUGFUNC("e1000_copper_link_autoneg");
-
- /* Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (!phy->autoneg_advertised)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->autoneg_wait_to_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->mac.get_link_status = true;
-
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_generic - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_setup_copper_link_generic");
-
- if (hw->mac.autoneg) {
- /* Setup autoneg and flow control advertisement and perform
- * autonegotiation.
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings.
- */
- DEBUGOUT("Forcing Speed and Duplex\n");
- ret_val = hw->phy.ops.force_speed_duplex(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
- &link);
- if (ret_val)
- return ret_val;
-
- if (link) {
- DEBUGOUT("Valid link established!!!\n");
- hw->mac.ops.config_collision_dist(hw);
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- } else {
- DEBUGOUT("Unable to establish link!!!\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Waits for link and returns
- * successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("IGP PSCR: %X\n", phy_data);
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Resets the PHY to commit the
- * changes. If time expires while waiting for link up, we reset the DSP.
- * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
- * successful completion, else return corresponding error code.
- **/
-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
-
- /* I210 and I211 devices support Auto-Crossover in forced operation. */
- if (phy->type != e1000_phy_i210) {
- /* Clear Auto-Crossover to force MDI manually. M88E1000
- * requires MDI forced whenever speed and duplex are forced.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Reset the phy to commit changes. */
- ret_val = hw->phy.ops.commit(hw);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- bool reset_dsp = true;
-
- switch (hw->phy.id) {
- case I347AT4_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1543_E_PHY_ID:
- case M88E1512_E_PHY_ID:
- case I210_I_PHY_ID:
- reset_dsp = false;
- break;
- default:
- if (hw->phy.type != e1000_phy_m88)
- reset_dsp = false;
- break;
- }
-
- if (!reset_dsp) {
- DEBUGOUT("Link taking longer than expected.\n");
- } else {
- /* We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = phy->ops.write_reg(hw,
- M88E1000_PHY_PAGE_SELECT,
- 0x001d);
- if (ret_val)
- return ret_val;
- ret_val = e1000_phy_reset_dsp_generic(hw);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->phy.type != e1000_phy_m88)
- return E1000_SUCCESS;
-
- if (hw->phy.id == I347AT4_E_PHY_ID ||
- hw->phy.id == M88E1340M_E_PHY_ID ||
- hw->phy.id == M88E1112_E_PHY_ID)
- return E1000_SUCCESS;
- if (hw->phy.id == I210_I_PHY_ID)
- return E1000_SUCCESS;
- if ((hw->phy.id == M88E1543_E_PHY_ID) ||
- (hw->phy.id == M88E1512_E_PHY_ID))
- return E1000_SUCCESS;
- ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Resetting the phy means we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock from
- * the reset value of 2.5MHz.
- */
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
- * @hw: pointer to the HW structure
- *
- * Forces the speed and duplex settings of the PHY.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- e1000_phy_force_speed_duplex_setup(hw, &data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
- if (ret_val)
- return ret_val;
-
- /* Disable MDI-X support for 10/100 */
- ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IFE_PMC_AUTO_MDIX;
- data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("IFE PMC: %X\n", data);
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- * @hw: pointer to the HW structure
- * @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- * Forces speed and duplex on the PHY by doing the following: disable flow
- * control, force speed/duplex on the MAC, disable auto speed detection,
- * disable auto-negotiation, configure duplex, configure speed, configure
- * the collision distance, write configuration to CTRL register. The
- * caller must write to the PHY_CONTROL register for these settings to
- * take affect.
- **/
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
-
- /* Turn off flow control when forcing speed/duplex */
- hw->fc.current_mode = e1000_fc_none;
-
- /* Force speed/duplex on the mac */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~E1000_CTRL_SPD_SEL;
-
- /* Disable Auto Speed Detection */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Disable autoneg on the phy */
- *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
- /* Forcing Full or Half Duplex? */
- if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
- ctrl &= ~E1000_CTRL_FD;
- *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- } else {
- ctrl |= E1000_CTRL_FD;
- *phy_ctrl |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- }
-
- /* Forcing 10mb or 100mb? */
- if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
- ctrl |= E1000_CTRL_SPD_100;
- *phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~MII_CR_SPEED_1000;
- DEBUGOUT("Forcing 100mb\n");
- } else {
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb\n");
- }
-
- hw->mac.ops.config_collision_dist(hw);
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-}
-
-/**
- * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_generic");
-
- if (!hw->phy.ops.read_reg)
- return E1000_SUCCESS;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (!active) {
- data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- return ret_val;
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP02E1000_PM_D3_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns 1
- *
- * A downshift is detected by querying the PHY link health.
- **/
-s32 e1000_check_downshift_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- DEBUGFUNC("e1000_check_downshift_generic");
-
- switch (phy->type) {
- case e1000_phy_i210:
- case e1000_phy_m88:
- case e1000_phy_gg82563:
- case e1000_phy_bm:
- case e1000_phy_82578:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
- break;
- case e1000_phy_igp:
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
- break;
- default:
- /* speed downshift not supported */
- phy->speed_downgraded = false;
- return E1000_SUCCESS;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->speed_downgraded = !!(phy_data & mask);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_m88 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_check_polarity_m88");
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
- if (!ret_val)
- phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_igp - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY port status register, and the
- * current speed (since there is no polarity at 100Mbps).
- **/
-s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data, offset, mask;
-
- DEBUGFUNC("e1000_check_polarity_igp");
-
- /* Polarity is determined based on the speed of
- * our connection.
- */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
- } else {
- /* This really only applies to 10Mbps since
- * there is no polarity for 100Mbps (always 0).
- */
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &data);
-
- if (!ret_val)
- phy->cable_polarity = ((data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_ife - Check cable polarity for IFE PHY
- * @hw: pointer to the HW structure
- *
- * Polarity is determined on the polarity reversal feature being enabled.
- **/
-s32 e1000_check_polarity_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- DEBUGFUNC("e1000_check_polarity_ife");
-
- /* Polarity is determined based on the reversal feature being enabled.
- */
- if (phy->polarity_correction) {
- offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
- mask = IFE_PESC_POLARITY_REVERSED;
- } else {
- offset = IFE_PHY_SPECIAL_CONTROL;
- mask = IFE_PSC_FORCE_POLARITY;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->cable_polarity = ((phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal);
-
- return ret_val;
-}
-
-/**
- * e1000_wait_autoneg - Wait for auto-neg completion
- * @hw: pointer to the HW structure
- *
- * Waits for auto-negotiation to complete or for the auto-negotiation time
- * limit to expire, which ever happens first.
- **/
-STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i, phy_status;
-
- DEBUGFUNC("e1000_wait_autoneg");
-
- if (!hw->phy.ops.read_reg)
- return E1000_SUCCESS;
-
- /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
- for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_AUTONEG_COMPLETE)
- break;
- msec_delay(100);
- }
-
- /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
- * has completed.
- */
- return ret_val;
-}
-
-/**
- * e1000_phy_has_link_generic - Polls PHY for link
- * @hw: pointer to the HW structure
- * @iterations: number of times to poll for link
- * @usec_interval: delay between polling attempts
- * @success: pointer to whether polling was successful or not
- *
- * Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i, phy_status;
-
- DEBUGFUNC("e1000_phy_has_link_generic");
-
- if (!hw->phy.ops.read_reg)
- return E1000_SUCCESS;
-
- for (i = 0; i < iterations; i++) {
- /* Some PHYs require the PHY_STATUS register to be read
- * twice due to the link bit being sticky. No harm doing
- * it across the board.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val) {
- /* If the first read fails, another entity may have
- * ownership of the resources, wait and try again to
- * see if they have relinquished the resources yet.
- */
- if (usec_interval >= 1000)
- msec_delay(usec_interval/1000);
- else
- usec_delay(usec_interval);
- }
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_LINK_STATUS)
- break;
- if (usec_interval >= 1000)
- msec_delay(usec_interval/1000);
- else
- usec_delay(usec_interval);
- }
-
- *success = (i < iterations);
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the PHY specific status register to retrieve the cable length
- * information. The cable length is determined by averaging the minimum and
- * maximum values to get the "average" cable length. The m88 PHY has four
- * possible cable length values, which are:
- * Register Value Cable Length
- * 0 < 50 meters
- * 1 50 - 80 meters
- * 2 80 - 110 meters
- * 3 110 - 140 meters
- * 4 > 140 meters
- **/
-s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- DEBUGFUNC("e1000_get_cable_length_m88");
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
- return -E1000_ERR_PHY;
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return E1000_SUCCESS;
-}
-
-s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, phy_data2, is_cm;
- u16 index, default_page;
-
- DEBUGFUNC("e1000_get_cable_length_m88_gen2");
-
- switch (hw->phy.id) {
- case I210_I_PHY_ID:
- /* Get cable length from PHY Cable Diagnostics Control Reg */
- ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
- (I347AT4_PCDL + phy->addr),
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Check if the unit of cable length is meters or cm */
- ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
- I347AT4_PCDC, &phy_data2);
- if (ret_val)
- return ret_val;
-
- is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
-
- /* Populate the phy structure with cable length in meters */
- phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->cable_length = phy_data / (is_cm ? 100 : 1);
- break;
- case M88E1543_E_PHY_ID:
- case M88E1512_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case I347AT4_E_PHY_ID:
- /* Remember the original page select and set it to 7 */
- ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
- &default_page);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
- if (ret_val)
- return ret_val;
-
- /* Get cable length from PHY Cable Diagnostics Control Reg */
- ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Check if the unit of cable length is meters or cm */
- ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
- if (ret_val)
- return ret_val;
-
- is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
-
- /* Populate the phy structure with cable length in meters */
- phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->cable_length = phy_data / (is_cm ? 100 : 1);
-
- /* Reset the page select to its original value */
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
- default_page);
- if (ret_val)
- return ret_val;
- break;
-
- case M88E1112_E_PHY_ID:
- /* Remember the original page select and set it to 5 */
- ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
- &default_page);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
- return -E1000_ERR_PHY;
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length +
- phy->max_cable_length) / 2;
-
- /* Reset the page select to its original value */
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
- default_page);
- if (ret_val)
- return ret_val;
-
- break;
- default:
- return -E1000_ERR_PHY;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of coarse and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, i, agc_value = 0;
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
- IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D
- };
-
- DEBUGFUNC("e1000_get_cable_length_igp_2");
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Getting bits 15:9, which represent the combination of
- * coarse and fine gain values. The result is a number
- * that can be put into the lookup table to obtain the
- * approximate cable length.
- */
- cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK);
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0);
- phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_info_m88 - Retrieve PHY information
- * @hw: pointer to the HW structure
- *
- * Valid for only copper links. Read the PHY status register (sticky read)
- * to verify that link is up. Read the PHY special control register to
- * determine the polarity and 10base-T extended distance. Read the PHY
- * special status register to determine MDI/MDIx and current speed. If
- * speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_m88");
-
- if (phy->media_type != e1000_media_type_copper) {
- DEBUGOUT("Phy info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->polarity_correction = !!(phy_data &
- M88E1000_PSCR_POLARITY_REVERSAL);
-
- ret_val = e1000_check_polarity_m88(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- /* Set values to "undefined" */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_igp - Retrieve igp PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_igp");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_igp(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- ret_val = phy->ops.get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_ife - Retrieves various IFE PHY states
- * @hw: pointer to the HW structure
- *
- * Populates "phy" structure with various feature states.
- **/
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_ife");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
- if (ret_val)
- return ret_val;
- phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
-
- if (phy->polarity_correction) {
- ret_val = e1000_check_polarity_ife(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* Polarity is forced */
- phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal);
- }
-
- ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
-
- /* The following parameters are undefined for 10/100 operation. */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_sw_reset_generic - PHY software reset
- * @hw: pointer to the HW structure
- *
- * Does a software reset of the PHY by reading the PHY control register and
- * setting/write the control register reset bit to the PHY.
- **/
-s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_ctrl;
-
- DEBUGFUNC("e1000_phy_sw_reset_generic");
-
- if (!hw->phy.ops.read_reg)
- return E1000_SUCCESS;
-
- ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= MII_CR_RESET;
- ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_generic - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl;
-
- DEBUGFUNC("e1000_phy_hw_reset_generic");
-
- if (phy->ops.check_reset_block) {
- ret_val = phy->ops.check_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
- }
-
- ret_val = phy->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(phy->reset_delay_us);
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(150);
-
- phy->ops.release(hw);
-
- return phy->ops.get_cfg_done(hw);
-}
-
-/**
- * e1000_get_cfg_done_generic - Generic configuration done
- * @hw: pointer to the HW structure
- *
- * Generic function to wait 10 milli-seconds for configuration to complete
- * and return success.
- **/
-s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_get_cfg_done_generic");
- UNREFERENCED_1PARAMETER(hw);
-
- msec_delay_irq(10);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
- * @hw: pointer to the HW structure
- *
- * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
- **/
-s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
-{
- DEBUGOUT("Running IGP 3 PHY init script\n");
-
- /* PHY init IGP 3 */
- /* Enable rise/fall, 10-mode work in class-A */
- hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
- /* Remove all caps from Replica path filter */
- hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
- /* Bias trimming for ADC, AFE and Driver (Default) */
- hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
- /* Increase Hybrid poly bias */
- hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
- /* Add 4% to Tx amplitude in Gig mode */
- hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
- /* Disable trimming (TTT) */
- hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
- /* Poly DC correction to 94.6% + 2% for all channels */
- hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
- /* ABS DC correction to 95.9% */
- hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
- /* BG temp curve trim */
- hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
- /* Increasing ADC OPAMP stage 1 currents to max */
- hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
- /* Force 1000 ( required for enabling PHY regs configuration) */
- hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
- /* Set upd_freq to 6 */
- hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
- /* Disable NPDFE */
- hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
- /* Disable adaptive fixed FFE (Default) */
- hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
- /* Enable FFE hysteresis */
- hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
- /* Fixed FFE for short cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
- /* Fixed FFE for medium cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
- /* Fixed FFE for long cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
- /* Enable Adaptive Clip Threshold */
- hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
- /* AHT reset limit to 1 */
- hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
- /* Set AHT master delay to 127 msec */
- hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
- /* Set scan bits for AHT */
- hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
- /* Set AHT Preset bits */
- hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
- /* Change integ_factor of channel A to 3 */
- hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
- /* Change prop_factor of channels BCD to 8 */
- hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
- /* Change cg_icount + enable integbp for channels BCD */
- hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
- /* Change cg_icount + enable integbp + change prop_factor_master
- * to 8 for channel A
- */
- hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
- /* Disable AHT in Slave mode on channel A */
- hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
- /* Enable LPLU and disable AN to 1000 in non-D0a states,
- * Enable SPD+B2B
- */
- hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
- /* Enable restart AN on an1000_dis change */
- hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
- /* Enable wh_fifo read clock in 10/100 modes */
- hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
- /* Restart AN, Speed selection is 1000 */
- hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_type_from_id - Get PHY type from id
- * @phy_id: phy_id read from the phy
- *
- * Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
-{
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- switch (phy_id) {
- case M88E1000_I_PHY_ID:
- case M88E1000_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1543_E_PHY_ID:
- case M88E1512_E_PHY_ID:
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
- phy_type = e1000_phy_igp_2;
- break;
- case GG82563_E_PHY_ID:
- phy_type = e1000_phy_gg82563;
- break;
- case IGP03E1000_E_PHY_ID:
- phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy_type = e1000_phy_ife;
- break;
- case BME1000_E_PHY_ID:
- case BME1000_E_PHY_ID_R2:
- phy_type = e1000_phy_bm;
- break;
- case I82578_E_PHY_ID:
- phy_type = e1000_phy_82578;
- break;
- case I82577_E_PHY_ID:
- phy_type = e1000_phy_82577;
- break;
- case I82579_E_PHY_ID:
- phy_type = e1000_phy_82579;
- break;
- case I217_E_PHY_ID:
- phy_type = e1000_phy_i217;
- break;
- case I82580_I_PHY_ID:
- phy_type = e1000_phy_82580;
- break;
- case I210_I_PHY_ID:
- phy_type = e1000_phy_i210;
- break;
- default:
- phy_type = e1000_phy_unknown;
- break;
- }
- return phy_type;
-}
-
-/**
- * e1000_determine_phy_address - Determines PHY address.
- * @hw: pointer to the HW structure
- *
- * This uses a trial and error method to loop through possible PHY
- * addresses. It tests each by reading the PHY ID registers and
- * checking for a match.
- **/
-s32 e1000_determine_phy_address(struct e1000_hw *hw)
-{
- u32 phy_addr = 0;
- u32 i;
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- hw->phy.id = phy_type;
-
- for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
- hw->phy.addr = phy_addr;
- i = 0;
-
- do {
- e1000_get_phy_id(hw);
- phy_type = e1000_get_phy_type_from_id(hw->phy.id);
-
- /* If phy_type is valid, break - we found our
- * PHY address
- */
- if (phy_type != e1000_phy_unknown)
- return E1000_SUCCESS;
-
- msec_delay(1);
- i++;
- } while (i < 10);
- }
-
- return -E1000_ERR_PHY_TYPE;
-}
-
-/**
- * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
- * @page: page to access
- *
- * Returns the phy address for the page requested.
- **/
-STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
-{
- u32 phy_addr = 2;
-
- if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000_write_phy_reg_bm - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- DEBUGFUNC("e1000_write_phy_reg_bm");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto release;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /* Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_bm - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- DEBUGFUNC("e1000_read_phy_reg_bm");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto release;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /* Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_bm2 - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- DEBUGFUNC("e1000_read_phy_reg_bm2");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto release;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_bm2 - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- DEBUGFUNC("e1000_write_phy_reg_bm2");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto release;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
- *
- * Assumes semaphore already acquired and phy_reg points to a valid memory
- * address to store contents of the BM_WUC_ENABLE_REG register.
- **/
-s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val;
- u16 temp;
-
- DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
-
- if (!phy_reg)
- return -E1000_ERR_PARAM;
-
- /* All page select, port ctrl and wakeup registers use phy address 1 */
- hw->phy.addr = 1;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- DEBUGOUT("Could not set Port Control page\n");
- return ret_val;
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
- if (ret_val) {
- DEBUGOUT2("Could not read PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- return ret_val;
- }
-
- /* Enable both PHY wakeup mode and Wakeup register page writes.
- * Prevent a power state change by disabling ME and Host PHY wakeup.
- */
- temp = *phy_reg;
- temp |= BM_WUC_ENABLE_BIT;
- temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
-
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
- if (ret_val) {
- DEBUGOUT2("Could not write PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- return ret_val;
- }
-
- /* Select Host Wakeup Registers page - caller now able to write
- * registers on the Wakeup registers page
- */
- return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
-}
-
-/**
- * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
- *
- * Restore BM_WUC_ENABLE_REG to its original value.
- *
- * Assumes semaphore already acquired and *phy_reg is the contents of the
- * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
- * caller.
- **/
-s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
-
- if (!phy_reg)
- return -E1000_ERR_PARAM;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- DEBUGOUT("Could not set Port Control page\n");
- return ret_val;
- }
-
- /* Restore 769.17 to its original value */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
- if (ret_val)
- DEBUGOUT2("Could not restore PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-
- return ret_val;
-}
-
-/**
- * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to read or write
- * @read: determines if operation is read or write
- * @page_set: BM_WUC_PAGE already set and access enabled
- *
- * Read the PHY register at offset and store the retrieved information in
- * data, or write data to PHY register at offset. Note the procedure to
- * access the PHY wakeup registers is different than reading the other PHY
- * registers. It works as such:
- * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
- * 2) Set page to 800 for host (801 if we were manageability)
- * 3) Write the address using the address opcode (0x11)
- * 4) Read or write the data using the data opcode (0x12)
- * 5) Restore 769.17.2 to its original value
- *
- * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
- * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
- *
- * Assumes semaphore is already acquired. When page_set==true, assumes
- * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
- * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
- **/
-STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set)
-{
- s32 ret_val;
- u16 reg = BM_PHY_REG_NUM(offset);
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 phy_reg = 0;
-
- DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
-
- /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
- if ((hw->mac.type == e1000_pchlan) &&
- (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
- DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
- page);
-
- if (!page_set) {
- /* Enable access to PHY wakeup registers */
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val) {
- DEBUGOUT("Could not enable PHY wakeup reg access\n");
- return ret_val;
- }
- }
-
- DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
-
- /* Write the Wakeup register page offset value using opcode 0x11 */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
- if (ret_val) {
- DEBUGOUT1("Could not write address opcode to page %d\n", page);
- return ret_val;
- }
-
- if (read) {
- /* Read the Wakeup register page value using opcode 0x12 */
- ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- data);
- } else {
- /* Write the Wakeup register page value using opcode 0x12 */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- *data);
- }
-
- if (ret_val) {
- DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
- return ret_val;
- }
-
- if (!page_set)
- ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
- return ret_val;
-}
-
-/**
- * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_up_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
- u16 power_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- if (hw->phy.type == e1000_phy_i210) {
- hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
- power_reg &= ~GS40G_CS_POWER_DOWN;
- hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
- }
- hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
-}
-
-/**
- * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_down_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
- u16 power_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- /* i210 Phy requires an additional bit for power up/down */
- if (hw->phy.type == e1000_phy_i210) {
- hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
- power_reg |= GS40G_CS_POWER_DOWN;
- hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
- }
- hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
- msec_delay(1);
-}
-
-/**
- * __e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphore before exiting.
- **/
-STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- DEBUGFUNC("__e1000_read_phy_reg_hv");
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- data, true);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores
- * the retrieved information in data. Release the acquired semaphore
- * before exiting.
- **/
-s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_read_phy_reg_hv_locked - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_read_phy_reg_page_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired and page already set.
- **/
-s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * __e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- DEBUGFUNC("__e1000_write_phy_reg_hv");
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- &data, false);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- /* Workaround MDIO accesses being disabled after entering IEEE
- * Power Down (when bit 11 of the PHY Control register is set)
- */
- if ((hw->phy.type == e1000_phy_82578) &&
- (hw->phy.revision >= 1) &&
- (hw->phy.addr == 2) &&
- !(MAX_PHY_REG_ADDRESS & reg) &&
- (data & (1 << 11))) {
- u16 data2 = 0x7EFF;
- ret_val = e1000_access_phy_debug_regs_hv(hw,
- (1 << 6) | 0x3,
- &data2, false);
- if (ret_val)
- goto out;
- }
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register at the offset.
- * Release the acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_write_phy_reg_hv_locked - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired.
- **/
-s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_write_phy_reg_page_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired and page already set.
- **/
-s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
- * @page: page to be accessed
- **/
-STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
-{
- u32 phy_addr = 2;
-
- if (page >= HV_INTC_FC_PAGE_START)
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to be read or written
- * @read: determines if operation is read or write
- *
- * Reads the PHY register at offset and stores the retreived information
- * in data. Assumes semaphore already acquired. Note that the procedure
- * to access these regs uses the address port and data port to read/write.
- * These accesses done with PHY address 2 and without using pages.
- **/
-STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read)
-{
- s32 ret_val;
- u32 addr_reg;
- u32 data_reg;
-
- DEBUGFUNC("e1000_access_phy_debug_regs_hv");
-
- /* This takes care of the difference with desktop vs mobile phy */
- addr_reg = ((hw->phy.type == e1000_phy_82578) ?
- I82578_ADDR_REG : I82577_ADDR_REG);
- data_reg = addr_reg + 1;
-
- /* All operations in this function are phy address 2 */
- hw->phy.addr = 2;
-
- /* masking with 0x3F to remove the page from offset */
- ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
- if (ret_val) {
- DEBUGOUT("Could not write the Address Offset port register\n");
- return ret_val;
- }
-
- /* Read or write the data value next */
- if (read)
- ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
- else
- ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
-
- if (ret_val)
- DEBUGOUT("Could not access the Data port register\n");
-
- return ret_val;
-}
-
-/**
- * e1000_link_stall_workaround_hv - Si workaround
- * @hw: pointer to the HW structure
- *
- * This function works around a Si bug where the link partner can get
- * a link up indication before the PHY does. If small packets are sent
- * by the link partner they can be placed in the packet buffer without
- * being properly accounted for by the PHY and will stall preventing
- * further packets from being received. The workaround is to clear the
- * packet buffer after the PHY detects link up.
- **/
-s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_link_stall_workaround_hv");
-
- if (hw->phy.type != e1000_phy_82578)
- return E1000_SUCCESS;
-
- /* Do not apply workaround if in PHY loopback bit 14 set */
- hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
- if (data & PHY_CONTROL_LB)
- return E1000_SUCCESS;
-
- /* check if link is up and at 1Gbps */
- ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK);
-
- if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- return E1000_SUCCESS;
-
- msec_delay(200);
-
- /* flush the packets in the fifo buffer */
- ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
- (HV_MUX_DATA_CTRL_GEN_TO_MAC |
- HV_MUX_DATA_CTRL_FORCE_SPEED));
- if (ret_val)
- return ret_val;
-
- return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
- HV_MUX_DATA_CTRL_GEN_TO_MAC);
-}
-
-/**
- * e1000_check_polarity_82577 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_check_polarity_82577");
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
-
- if (!ret_val)
- phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex.
- **/
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_82577");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_82577(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
-
- if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
- I82577_PHY_STATUS2_SPEED_1000MBPS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the diagnostic status register and verifies result is valid before
- * placing it in the phy_cable_length field.
- **/
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, length;
-
- DEBUGFUNC("e1000_get_cable_length_82577");
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT);
-
- if (length == E1000_CABLE_LENGTH_UNDEFINED)
- return -E1000_ERR_PHY;
-
- phy->cable_length = length;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg_gs40g - Write GS40G PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u16 page = offset >> GS40G_PAGE_SHIFT;
-
- DEBUGFUNC("e1000_write_phy_reg_gs40g");
-
- offset = offset & GS40G_OFFSET_MASK;
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
- if (ret_val)
- goto release;
- ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_gs40g - Read GS40G PHY register
- * @hw: pointer to the HW structure
- * @offset: lower half is register offset to read to
- * upper half is page to use.
- * @data: data to read at register offset
- *
- * Acquires semaphore, if necessary, then reads the data in the PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u16 page = offset >> GS40G_PAGE_SHIFT;
-
- DEBUGFUNC("e1000_read_phy_reg_gs40g");
-
- offset = offset & GS40G_OFFSET_MASK;
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
- if (ret_val)
- goto release;
- ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
-release:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_mphy - Read mPHY control register
- * @hw: pointer to the HW structure
- * @address: address to be read
- * @data: pointer to the read data
- *
- * Reads the mPHY control register in the PHY at offset and stores the
- * information read to data.
- **/
-s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
-{
- u32 mphy_ctrl = 0;
- bool locked = false;
- bool ready;
-
- DEBUGFUNC("e1000_read_phy_reg_mphy");
-
- /* Check if mPHY is ready to read/write operations */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
-
- /* Check if mPHY access is disabled and enable it if so */
- mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
- if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
- locked = true;
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
- }
-
- /* Set the address that we want to read */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
-
- /* We mask address, because we want to use only current lane */
- mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
- ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
- (address & E1000_MPHY_ADDRESS_MASK);
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-
- /* Read data from the address */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- *data = E1000_READ_REG(hw, E1000_MPHY_DATA);
-
- /* Disable access to mPHY if it was originally disabled */
- if (locked)
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
- E1000_MPHY_DIS_ACCESS);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg_mphy - Write mPHY control register
- * @hw: pointer to the HW structure
- * @address: address to write to
- * @data: data to write to register at offset
- * @line_override: used when we want to use different line than default one
- *
- * Writes data to mPHY control register.
- **/
-s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
- bool line_override)
-{
- u32 mphy_ctrl = 0;
- bool locked = false;
- bool ready;
-
- DEBUGFUNC("e1000_write_phy_reg_mphy");
-
- /* Check if mPHY is ready to read/write operations */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
-
- /* Check if mPHY access is disabled and enable it if so */
- mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
- if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
- locked = true;
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
- }
-
- /* Set the address that we want to read */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
-
- /* We mask address, because we want to use only current lane */
- if (line_override)
- mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
- else
- mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
- mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
- (address & E1000_MPHY_ADDRESS_MASK);
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-
- /* Read data from the address */
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
-
- /* Disable access to mPHY if it was originally disabled */
- if (locked)
- ready = e1000_is_mphy_ready(hw);
- if (!ready)
- return -E1000_ERR_PHY;
- E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
- E1000_MPHY_DIS_ACCESS);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_is_mphy_ready - Check if mPHY control register is not busy
- * @hw: pointer to the HW structure
- *
- * Returns mPHY control register status.
- **/
-bool e1000_is_mphy_ready(struct e1000_hw *hw)
-{
- u16 retry_count = 0;
- u32 mphy_ctrl = 0;
- bool ready = false;
-
- while (retry_count < 2) {
- mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
- if (mphy_ctrl & E1000_MPHY_BUSY) {
- usec_delay(20);
- retry_count++;
- continue;
- }
- ready = true;
- break;
- }
-
- if (!ready)
- DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
-
- return ready;
-}
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_PHY_H_
-#define _E1000_PHY_H_
-
-void e1000_init_phy_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-void e1000_null_phy_generic(struct e1000_hw *hw);
-s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_null_set_page(struct e1000_hw *hw, u16 data);
-s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 *data);
-s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 data);
-s32 e1000_check_downshift_generic(struct e1000_hw *hw);
-s32 e1000_check_polarity_m88(struct e1000_hw *hw);
-s32 e1000_check_polarity_igp(struct e1000_hw *hw);
-s32 e1000_check_polarity_ife(struct e1000_hw *hw);
-s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
-s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
-s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
-s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
-s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
-s32 e1000_get_phy_id(struct e1000_hw *hw);
-s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
-s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
-s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
-s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
-s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
-s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
-s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success);
-s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
-s32 e1000_determine_phy_address(struct e1000_hw *hw);
-s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
-s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
-s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
-void e1000_power_up_phy_copper(struct e1000_hw *hw);
-void e1000_power_down_phy_copper(struct e1000_hw *hw);
-s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
-s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
-s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
-s32 e1000_check_polarity_82577(struct e1000_hw *hw);
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
-s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data);
-s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
- bool line_override);
-bool e1000_is_mphy_ready(struct e1000_hw *hw);
-
-#define E1000_MAX_PHY_ADDR 8
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
-#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
-#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
-#define IGP_PAGE_SHIFT 5
-#define PHY_REG_MASK 0x1F
-
-/* GS40G - I210 PHY defines */
-#define GS40G_PAGE_SELECT 0x16
-#define GS40G_PAGE_SHIFT 16
-#define GS40G_OFFSET_MASK 0xFFFF
-#define GS40G_PAGE_2 0x20000
-#define GS40G_MAC_REG2 0x15
-#define GS40G_MAC_LB 0x4140
-#define GS40G_MAC_SPEED_1G 0X0006
-#define GS40G_COPPER_SPEC 0x0010
-#define GS40G_CS_POWER_DOWN 0x0002
-
-/* BM/HV Specific Registers */
-#define BM_PORT_CTRL_PAGE 769
-#define BM_WUC_PAGE 800
-#define BM_WUC_ADDRESS_OPCODE 0x11
-#define BM_WUC_DATA_OPCODE 0x12
-#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE
-#define BM_WUC_ENABLE_REG 17
-#define BM_WUC_ENABLE_BIT (1 << 2)
-#define BM_WUC_HOST_WU_BIT (1 << 4)
-#define BM_WUC_ME_WU_BIT (1 << 5)
-
-#define PHY_UPPER_SHIFT 21
-#define BM_PHY_REG(page, reg) \
- (((reg) & MAX_PHY_REG_ADDRESS) |\
- (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
- (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
-#define BM_PHY_REG_PAGE(offset) \
- ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
-#define BM_PHY_REG_NUM(offset) \
- ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
- (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
- ~MAX_PHY_REG_ADDRESS)))
-
-#define HV_INTC_FC_PAGE_START 768
-#define I82578_ADDR_REG 29
-#define I82577_ADDR_REG 16
-#define I82577_CFG_REG 22
-#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */
-#define I82577_CTRL_REG 23
-
-/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2 18
-#define I82577_PHY_LBK_CTRL 19
-#define I82577_PHY_STATUS_2 26
-#define I82577_PHY_DIAG_STATUS 31
-
-/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
-#define I82577_PHY_STATUS2_MDIX 0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
-
-/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200
-#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400
-#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600
-
-/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
-
-/* 82580 PHY Power Management */
-#define E1000_82580_PHY_POWER_MGMT 0xE14
-#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */
-#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */
-#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */
-#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */
-
-#define E1000_MPHY_DIS_ACCESS 0x80000000 /* disable_access bit */
-#define E1000_MPHY_ENA_ACCESS 0x40000000 /* enable_access bit */
-#define E1000_MPHY_BUSY 0x00010000 /* busy bit */
-#define E1000_MPHY_ADDRESS_FNC_OVERRIDE 0x20000000 /* fnc_override bit */
-#define E1000_MPHY_ADDRESS_MASK 0x0000FFFF /* address mask */
-
-/* BM PHY Copper Specific Control 1 */
-#define BM_CS_CTRL1 16
-
-/* BM PHY Copper Specific Status */
-#define BM_CS_STATUS 17
-#define BM_CS_STATUS_LINK_UP 0x0400
-#define BM_CS_STATUS_RESOLVED 0x0800
-#define BM_CS_STATUS_SPEED_MASK 0xC000
-#define BM_CS_STATUS_SPEED_1000 0x8000
-
-/* 82577 Mobile Phy Status Register */
-#define HV_M_STATUS 26
-#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
-#define HV_M_STATUS_SPEED_MASK 0x0300
-#define HV_M_STATUS_SPEED_1000 0x0200
-#define HV_M_STATUS_SPEED_100 0x0100
-#define HV_M_STATUS_LINK_UP 0x0040
-
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
-
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-
-/* Enable flexible speed on link-up */
-#define IGP01E1000_GMII_FLEX_SPD 0x0010
-#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-#define IGP02E1000_AGC_RANGE 15
-
-#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
-
-#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KMRNCTRLSTA_REN 0x00200000
-#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
-#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
-#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
-#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
-#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */
-#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
-#define E1000_KMRNCTRLSTA_OP_MODES 0x1F /* Kumeran Modes of Operation */
-#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC 0x0002 /* change LSC to CSC */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
-
-/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED 0x0100
-
-/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
-#define IFE_PSC_FORCE_POLARITY 0x0020
-
-/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE 0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */
-
-/* SFP modules ID memory locations */
-#define E1000_SFF_IDENTIFIER_OFFSET 0x00
-#define E1000_SFF_IDENTIFIER_SFF 0x02
-#define E1000_SFF_IDENTIFIER_SFP 0x03
-
-#define E1000_SFF_ETH_FLAGS_OFFSET 0x06
-/* Flags for SFP modules compatible with ETH up to 1Gb */
-struct sfp_e1000_flags {
- u8 e1000_base_sx:1;
- u8 e1000_base_lx:1;
- u8 e1000_base_cx:1;
- u8 e1000_base_t:1;
- u8 e100_base_lx:1;
- u8 e100_base_fx:1;
- u8 e10_base_bx10:1;
- u8 e10_base_px:1;
-};
-
-/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */
-#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600
-#define E1000_SFF_VENDOR_OUI_FTL 0x00906500
-#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00
-#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_REGS_H_
-#define _E1000_REGS_H_
-
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
-#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
-#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
-#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */
-#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
-#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
-#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
-#define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */
-#define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */
-#define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */
-#define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */
-#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */
-#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FEXT 0x0002C /* Future Extended - RW */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
-#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */
-#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
-#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */
-#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
-#define E1000_SVCR 0x000F0
-#define E1000_SVT 0x000F4
-#define E1000_LPIC 0x000FC /* Low Power IDLE control */
-#define E1000_RCTL 0x00100 /* Rx Control - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
-#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */
-#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
-#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
-#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
-#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
-#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
-#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
-#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
-#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
-#define E1000_TCTL 0x00400 /* Tx Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
-#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_LEDMUX 0x08130 /* LED MUX Control */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
-#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
-#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */
-#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */
-#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */
-#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */
-#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */
-#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */
-#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */
-#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */
-#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
-#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
-#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
-#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
-#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
-#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */
-#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */
-#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */
-#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */
-#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
-#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
-#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
-#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
-#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
-#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
-#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
-/* Split and Replication Rx Control - RW */
-#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
-#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
-#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
-#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
-#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
-#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
-#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
-#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */
-#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */
-#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
-#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
-#define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */
-#define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */
-#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */
-#define E1000_I210_FLMNGCTL 0x12038
-#define E1000_I210_FLMNGDATA 0x1203C
-#define E1000_I210_FLMNGCNT 0x12040
-
-#define E1000_I210_FLSWCTL 0x12048
-#define E1000_I210_FLSWDATA 0x1204C
-#define E1000_I210_FLSWCNT 0x12050
-
-#define E1000_I210_FLA 0x1201C
-
-#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n))
-#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */
-
-/* QAV Tx mode control register */
-#define E1000_I210_TQAVCTRL 0x3570
-
-/* QAV Tx mode control register bitfields masks */
-/* QAV enable */
-#define E1000_TQAVCTRL_MODE (1 << 0)
-/* Fetching arbitration type */
-#define E1000_TQAVCTRL_FETCH_ARB (1 << 4)
-/* Fetching timer enable */
-#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5)
-/* Launch arbitration type */
-#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8)
-/* Launch timer enable */
-#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9)
-/* SP waits for SR enable */
-#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10)
-/* Fetching timer correction */
-#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16
-#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \
- (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET)
-
-/* High credit registers where _n can be 0 or 1. */
-#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n))
-
-/* Queues fetch arbitration priority control register */
-#define E1000_I210_TQAVARBCTRL 0x3574
-/* Queues priority masks where _n and _p can be 0-3. */
-#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n))
-/* QAV Tx mode control registers where _n can be 0 or 1. */
-#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n))
-
-/* QAV Tx mode control register bitfields masks */
-#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */
-#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */
-#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */
-
-/* Good transmitted packets counter registers */
-#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n)))
-
-/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
-#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n))
-
-#define E1000_MMDAC 13 /* MMD Access Control */
-#define E1000_MMDAAD 14 /* MMD Access Address/Data */
-
-/* Convenience macros
- *
- * Note: "_n" is the queue number of the register to be written to.
- *
- * Example usage:
- * E1000_RDBAL_REG(current_rx_queue)
- */
-#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
- (0x0C000 + ((_n) * 0x40)))
-#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
- (0x0C004 + ((_n) * 0x40)))
-#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
- (0x0C008 + ((_n) * 0x40)))
-#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
- (0x0C00C + ((_n) * 0x40)))
-#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
- (0x0C010 + ((_n) * 0x40)))
-#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
- (0x0C014 + ((_n) * 0x40)))
-#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
-#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
- (0x0C018 + ((_n) * 0x40)))
-#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
- (0x0C028 + ((_n) * 0x40)))
-#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
- (0x0C030 + ((_n) * 0x40)))
-#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
- (0x0E000 + ((_n) * 0x40)))
-#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
- (0x0E004 + ((_n) * 0x40)))
-#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
- (0x0E008 + ((_n) * 0x40)))
-#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
- (0x0E010 + ((_n) * 0x40)))
-#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
- (0x0E014 + ((_n) * 0x40)))
-#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
-#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
- (0x0E018 + ((_n) * 0x40)))
-#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
- (0x0E028 + ((_n) * 0x40)))
-#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
- (0x0E038 + ((_n) * 0x40)))
-#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
- (0x0E03C + ((_n) * 0x40)))
-#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
-#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
-#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
- (0x054E0 + ((_i - 16) * 8)))
-#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
- (0x054E4 + ((_i - 16) * 8)))
-#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
-#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
-#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
-#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
-#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
-#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
-#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
-#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
-#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */
-#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */
-#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
-/* Same as TXPBS, renamed for newer Si - RW */
-#define E1000_ITPBS 0x03404
-#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
-#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */
-#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */
-#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */
-#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */
-#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */
-#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
-#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
-#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
-/* DMA Tx Max Total Allow Size Reqs - RW */
-#define E1000_DTXMXSZRQ 0x03540
-#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
-#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */
-
-#define E1000_VFGPRC 0x00F10
-#define E1000_VFGORC 0x00F18
-#define E1000_VFMPRC 0x00F3C
-#define E1000_VFGPTC 0x00F14
-#define E1000_VFGOTC 0x00F34
-#define E1000_VFGOTLBC 0x00F50
-#define E1000_VFGPTLBC 0x00F44
-#define E1000_VFGORLBC 0x00F48
-#define E1000_VFGPRLBC 0x00F40
-/* Virtualization statistical counters */
-#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
-#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
-#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
-#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
-#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
-#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
-#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
-#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
-#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
-
-/* LinkSec */
-#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */
-#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */
-#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */
-#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */
-#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */
-#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */
-#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */
-#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */
-#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */
-#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */
-#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */
-#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */
-#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */
-#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */
-#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */
-#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */
-#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */
-#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */
-#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */
-#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */
-#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */
-#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */
-#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */
-#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */
-#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */
-#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */
-#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */
-#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */
-#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */
-#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */
-/* LinkSec Tx 128-bit Key 0 - WO */
-#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n)))
-/* LinkSec Tx 128-bit Key 1 - WO */
-#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n)))
-#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
-#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
-/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
- * key - RW.
- */
-#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
-
-#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */
-#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
-#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
-#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
-/* IPSec Rx IPv4/v6 Address - RW */
-#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n)))
-/* IPSec Rx 128-bit Key - RW */
-#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n)))
-#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
-#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
-/* IPSec Tx 128-bit Key - RW */
-#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n)))
-#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
-#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
-#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
-#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
-#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
-#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
-#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
-#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
-#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
-#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
-#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
-#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
-#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
-#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
-#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
-#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
-#define E1000_LENERRS 0x04138 /* Length Errors Count */
-#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
-#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
-#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
-#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
-#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
-#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */
-#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
-#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
-#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */
-#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */
-#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
-#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */
-/* Flexible Host Filter Table */
-#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100))
-/* Ext Flexible Host Filter Table */
-#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100))
-
-
-#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
-/* Management Decision Filters */
-#define E1000_MDEF(_n) (0x05890 + (4 * (_n)))
-#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */
-#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
-#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
-#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-/* Driver-only SW semaphore (not used by BOOT agents) */
-#define E1000_SWSM2 0x05B58
-#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
-#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
-#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Interface Control */
-#define E1000_FWSTS 0x08F0C /* FW Status */
-
-/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
-#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/
-#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */
-#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */
-#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
-#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
-/* VT Registers */
-#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
-#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
-#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
-#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
-#define E1000_VFRE 0x00C8C /* VF Receive Enables */
-#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
-#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
-#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
-#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
-#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
-#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
-#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
-#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
-#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */
-#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */
-#define E1000_MDFB 0x03558 /* Malicious Driver free block */
-#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */
-#define E1000_TXSWC 0x05ACC /* Tx Switch Control */
-#define E1000_SCCRL 0x05DB0 /* Storm Control Control */
-#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */
-#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */
-/* These act per VF so an array friendly macro is used */
-#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
-#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
-#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
-#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
-#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
-/* VLAN Virtual Machine Filter - RW */
-#define E1000_VLVF(_n) (0x05D00 + (4 * (_n)))
-#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
-#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */
-#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */
-#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
-#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
-#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
-#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
-#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
-#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
-#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
-#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
-#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
-#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
-#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
-#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
-#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */
-#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */
-#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
-#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
-#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */
-#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */
-#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
-#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */
-
-/* Filtering Registers */
-#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
-#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
-#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
-#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
-#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
-#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
-#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
-
-#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
-#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
-#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
-#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
-#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
-/* Tx Desc plane TC Rate-scheduler config */
-#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4))
-/* Tx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4))
-/* Tx Desc Plane TC Rate-Scheduler Status */
-#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4))
-/* Tx Desc Plane TC Rate-Scheduler MMW */
-#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4))
-/* Tx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4))
-/* Tx Packet plane TC Rate-scheduler MMW */
-#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler MMW */
-#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4))
-/* Tx Desc plane VM Rate-Scheduler MMW*/
-#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4))
-/* Tx BCN Rate-Scheduler MMW */
-#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4))
-#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
-#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
-#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
-#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
-#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
-#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
-#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
-#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
-#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
-#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
-#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
-#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
-#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
-#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
-
-/* DMA Coalescing registers */
-#define E1000_DMACR 0x02508 /* Control Register */
-#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
-#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
-#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
-#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */
-#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
-#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
-
-/* PCIe Parity Status Register */
-#define E1000_PCIEERRSTS 0x05BA8
-
-#define E1000_PROXYS 0x5F64 /* Proxying Status */
-#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */
-/* Thermal sensor configuration and status registers */
-#define E1000_THMJT 0x08100 /* Junction Temperature */
-#define E1000_THLOWTC 0x08104 /* Low Threshold Control */
-#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */
-#define E1000_THHIGHTC 0x0810C /* High Threshold Control */
-#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */
-
-/* Energy Efficient Ethernet "EEE" registers */
-#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */
-#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */
-#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/
-#define E1000_EEE_SU 0x0E34 /* EEE Setup */
-#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */
-#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */
-
-/* OS2BMC Registers */
-#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */
-#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */
-#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */
-#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */
-
-
-
-#endif
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-
-#include "e1000_api.h"
-
-
-STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
-STATIC void e1000_release_vf(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
-STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
-STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
-STATIC void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
-STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
-
-/**
- * e1000_init_phy_params_vf - Inits PHY params
- * @hw: pointer to the HW structure
- *
- * Doesn't do much - there's no PHY available to the VF.
- **/
-STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_phy_params_vf");
- hw->phy.type = e1000_phy_vf;
- hw->phy.ops.acquire = e1000_acquire_vf;
- hw->phy.ops.release = e1000_release_vf;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_nvm_params_vf - Inits NVM params
- * @hw: pointer to the HW structure
- *
- * Doesn't do much - there's no NVM available to the VF.
- **/
-STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_nvm_params_vf");
- hw->nvm.type = e1000_nvm_none;
- hw->nvm.ops.acquire = e1000_acquire_vf;
- hw->nvm.ops.release = e1000_release_vf;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_vf - Inits MAC params
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_vf");
-
- /* Set media type */
- /*
- * Virtual functions don't care what they're media type is as they
- * have no direct access to the PHY, or the media. That is handled
- * by the physical function driver.
- */
- hw->phy.media_type = e1000_media_type_unknown;
-
- /* No ASF features for the VF driver */
- mac->asf_firmware_present = false;
- /* ARC subsystem not supported */
- mac->arc_subsystem_valid = false;
- /* Disable adaptive IFS mode so the generic funcs don't do anything */
- mac->adaptive_ifs = false;
- /* VF's have no MTA Registers - PF feature only */
- mac->mta_reg_count = 128;
- /* VF's have no access to RAR entries */
- mac->rar_entry_count = 1;
-
- /* Function pointers */
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_vf;
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_vf;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_vf;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_vf;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
- /* set mac address */
- mac->ops.rar_set = e1000_rar_set_vf;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
-
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_vf - Inits function pointers
- * @hw: pointer to the HW structure
- **/
-void e1000_init_function_pointers_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_vf");
-
- hw->mac.ops.init_params = e1000_init_mac_params_vf;
- hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
- hw->phy.ops.init_params = e1000_init_phy_params_vf;
- hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
-}
-
-/**
- * e1000_acquire_vf - Acquire rights to access PHY or NVM.
- * @hw: pointer to the HW structure
- *
- * There is no PHY or NVM so we want all attempts to acquire these to fail.
- * In addition, the MAC registers to access PHY/NVM don't exist so we don't
- * even want any SW to attempt to use them.
- **/
-STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- UNREFERENCED_1PARAMETER(hw);
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_release_vf - Release PHY or NVM
- * @hw: pointer to the HW structure
- *
- * There is no PHY or NVM so we want all attempts to acquire these to fail.
- * In addition, the MAC registers to access PHY/NVM don't exist so we don't
- * even want any SW to attempt to use them.
- **/
-STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- UNREFERENCED_1PARAMETER(hw);
- return;
-}
-
-/**
- * e1000_setup_link_vf - Sets up link.
- * @hw: pointer to the HW structure
- *
- * Virtual functions cannot change link.
- **/
-STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_setup_link_vf");
- UNREFERENCED_1PARAMETER(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_bus_info_pcie_vf - Gets the bus info.
- * @hw: pointer to the HW structure
- *
- * Virtual functions are not really on their own bus.
- **/
-STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- DEBUGFUNC("e1000_get_bus_info_pcie_vf");
-
- /* Do not set type PCI-E because we don't want disable master to run */
- bus->type = e1000_bus_type_reserved;
- bus->speed = e1000_bus_speed_2500;
-
- return 0;
-}
-
-/**
- * e1000_get_link_up_info_vf - Gets link info.
- * @hw: pointer to the HW structure
- * @speed: pointer to 16 bit value to store link speed.
- * @duplex: pointer to 16 bit value to store duplex.
- *
- * Since we cannot read the PHY and get accurate link info, we must rely upon
- * the status register's data which is often stale and inaccurate.
- **/
-STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 status;
-
- DEBUGFUNC("e1000_get_link_up_info_vf");
-
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_hw_vf - Resets the HW
- * @hw: pointer to the HW structure
- *
- * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
- * This is all the reset we can perform on a VF.
- **/
-STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 timeout = E1000_VF_INIT_TIMEOUT;
- s32 ret_val = -E1000_ERR_MAC_INIT;
- u32 ctrl, msgbuf[3];
- u8 *addr = (u8 *)(&msgbuf[1]);
-
- DEBUGFUNC("e1000_reset_hw_vf");
-
- DEBUGOUT("Issuing a function level reset to MAC\n");
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- /* we cannot reset while the RSTI / RSTD bits are asserted */
- while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
- timeout--;
- usec_delay(5);
- }
-
- if (timeout) {
- /* mailbox timeout can now become active */
- mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
-
- msgbuf[0] = E1000_VF_RESET;
- mbx->ops.write_posted(hw, msgbuf, 1, 0);
-
- msec_delay(10);
-
- /* set our "perm_addr" based on info provided by PF */
- ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
- if (!ret_val) {
- if (msgbuf[0] == (E1000_VF_RESET |
- E1000_VT_MSGTYPE_ACK))
- memcpy(hw->mac.perm_addr, addr, 6);
- else
- ret_val = -E1000_ERR_MAC_INIT;
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_vf - Inits the HW
- * @hw: pointer to the HW structure
- *
- * Not much to do here except clear the PF Reset indication if there is one.
- **/
-STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_hw_vf");
-
- /* attempt to set and restore our mac address */
- e1000_rar_set_vf(hw, hw->mac.addr, 0);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_rar_set_vf - set device MAC address
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index receive address array register
- **/
-STATIC void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
- u32 E1000_UNUSEDARG index)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf[3];
- u8 *msg_addr = (u8 *)(&msgbuf[1]);
- s32 ret_val;
-
- UNREFERENCED_1PARAMETER(index);
- memset(msgbuf, 0, 12);
- msgbuf[0] = E1000_VF_SET_MAC_ADDR;
- memcpy(msg_addr, addr, 6);
- ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
-
- if (!ret_val)
- ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
-
- msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
-
- /* if nacked the address was rejected, use "perm_addr" */
- if (!ret_val &&
- (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
- e1000_read_mac_addr_vf(hw);
-}
-
-/**
- * e1000_hash_mc_addr_vf - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value.
- **/
-STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- DEBUGFUNC("e1000_hash_mc_addr_generic");
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /*
- * The bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
- u32 *msg, u16 size)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 retmsg[E1000_VFMAILBOX_SIZE];
- s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
-
- if (!retval)
- mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
-}
-
-/**
- * e1000_update_mc_addr_list_vf - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates the Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 msgbuf[E1000_VFMAILBOX_SIZE];
- u16 *hash_list = (u16 *)&msgbuf[1];
- u32 hash_value;
- u32 i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_vf");
-
- /* Each entry in the list uses 1 16 bit word. We have 30
- * 16 bit words available in our HW msg buffer (minus 1 for the
- * msg type). That's 30 hash values if we pack 'em right. If
- * there are more than 30 MC addresses to add then punt the
- * extras for now and then add code to handle more than 30 later.
- * It would be unusual for a server to request that many multi-cast
- * addresses except for in large enterprise network environments.
- */
-
- DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
-
- if (mc_addr_count > 30) {
- msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
- mc_addr_count = 30;
- }
-
- msgbuf[0] = E1000_VF_SET_MULTICAST;
- msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
-
- for (i = 0; i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
- DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
- hash_list[i] = hash_value & 0x0FFF;
- mc_addr_list += ETH_ADDR_LEN;
- }
-
- e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
-}
-
-/**
- * e1000_vfta_set_vf - Set/Unset vlan filter table address
- * @hw: pointer to the HW structure
- * @vid: determines the vfta register and bit to set/unset
- * @set: if true then set bit, else clear bit
- **/
-void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
-{
- u32 msgbuf[2];
-
- msgbuf[0] = E1000_VF_SET_VLAN;
- msgbuf[1] = vid;
- /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
- if (set)
- msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
-
- e1000_write_msg_read_ack(hw, msgbuf, 2);
-}
-
-/** e1000_rlpml_set_vf - Set the maximum receive packet length
- * @hw: pointer to the HW structure
- * @max_size: value to assign to max frame size
- **/
-void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
-{
- u32 msgbuf[2];
-
- msgbuf[0] = E1000_VF_SET_LPE;
- msgbuf[1] = max_size;
-
- e1000_write_msg_read_ack(hw, msgbuf, 2);
-}
-
-/**
- * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
- * @hw: pointer to the HW structure
- * @uni: boolean indicating unicast promisc status
- * @multi: boolean indicating multicast promisc status
- **/
-s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf = E1000_VF_SET_PROMISC;
- s32 ret_val;
-
- switch (type) {
- case e1000_promisc_multicast:
- msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
- break;
- case e1000_promisc_enabled:
- msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
- case e1000_promisc_unicast:
- msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
- case e1000_promisc_disabled:
- break;
- default:
- return -E1000_ERR_MAC_INIT;
- }
-
- ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
-
- if (!ret_val)
- ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
-
- if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
- ret_val = -E1000_ERR_MAC_INIT;
-
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_vf - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
-{
- int i;
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_for_link_vf - Check for link for a virtual interface
- * @hw: pointer to the HW structure
- *
- * Checks to see if the underlying PF is still talking to the VF and
- * if it is then it reports the link state to the hardware, otherwise
- * it reports link down and returns an error.
- **/
-STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
- u32 in_msg = 0;
-
- DEBUGFUNC("e1000_check_for_link_vf");
-
- /*
- * We only want to run this if there has been a rst asserted.
- * in this case that could mean a link change, device reset,
- * or a virtual function reset
- */
-
- /* If we were hit with a reset or timeout drop the link */
- if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
- mac->get_link_status = true;
-
- if (!mac->get_link_status)
- goto out;
-
- /* if link status is down no point in checking to see if pf is up */
- if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
- goto out;
-
- /* if the read failed it could just be a mailbox collision, best wait
- * until we are called again and don't report an error */
- if (mbx->ops.read(hw, &in_msg, 1, 0))
- goto out;
-
- /* if incoming message isn't clear to send we are waiting on response */
- if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
- /* message is not CTS and is NACK we have lost CTS status */
- if (in_msg & E1000_VT_MSGTYPE_NACK)
- ret_val = -E1000_ERR_MAC_INIT;
- goto out;
- }
-
- /* at this point we know the PF is talking to us, check and see if
- * we are still accepting timeout or if we had a timeout failure.
- * if we failed then we will need to reinit */
- if (!mbx->timeout) {
- ret_val = -E1000_ERR_MAC_INIT;
- goto out;
- }
-
- /* if we passed all the tests above then the link is up and we no
- * longer need to check for link */
- mac->get_link_status = false;
-
-out:
- return ret_val;
-}
-
+++ /dev/null
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_VF_H_
-#define _E1000_VF_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82576_VF 0x10CA
-#define E1000_DEV_ID_I350_VF 0x1520
-
-#define E1000_VF_INIT_TIMEOUT 200 /* Num of retries to clear RSTI */
-
-/* Additional Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */
-#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
- (0x0C00C + ((_n) * 0x40)))
-#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
-#define E1000_SRRCTL_DROP_EN 0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
-
-/* Interrupt Defines */
-#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n) (0x01680 + ((_n) << 2))
-#define E1000_EICS 0x01520 /* Ext. Intr Cause Set -W0 */
-#define E1000_EIMS 0x01524 /* Ext. Intr Mask Set/Read -RW */
-#define E1000_EIMC 0x01528 /* Ext. Intr Mask Clear -WO */
-#define E1000_EIAC 0x0152C /* Ext. Intr Auto Clear -RW */
-#define E1000_EIAM 0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */
-#define E1000_IVAR0 0x01700 /* Intr Vector Alloc (array) -RW */
-#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes -RW */
-#define E1000_IVAR_VALID 0x80
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
- struct {
- u64 pkt_addr; /* Packet buffer address */
- u64 hdr_addr; /* Header buffer address */
- } read;
- struct {
- struct {
- union {
- u32 data;
- struct {
- /* RSS type, Packet type */
- u16 pkt_info;
- /* Split Header, header buffer len */
- u16 hdr_info;
- } hs_rss;
- } lo_dword;
- union {
- u32 rss; /* RSS Hash */
- struct {
- u16 ip_id; /* IP id */
- u16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- u32 status_error; /* ext status/error */
- u16 length; /* Packet length */
- u16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
- struct {
- u64 buffer_addr; /* Address of descriptor's data buf */
- u32 cmd_type_len;
- u32 olinfo_status;
- } read;
- struct {
- u64 rsvd; /* Reserved */
- u32 nxtseq_seed;
- u32 status;
- } wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
- u32 vlan_macip_lens;
- u32 seqnum_seed;
- u32 type_tucmd_mlhl;
- u32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
-
-enum e1000_mac_type {
- e1000_undefined = 0,
- e1000_vfadapt,
- e1000_vfadapt_i350,
- e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
-};
-
-struct e1000_vf_stats {
- u64 base_gprc;
- u64 base_gptc;
- u64 base_gorc;
- u64 base_gotc;
- u64 base_mprc;
- u64 base_gotlbc;
- u64 base_gptlbc;
- u64 base_gorlbc;
- u64 base_gprlbc;
-
- u32 last_gprc;
- u32 last_gptc;
- u32 last_gorc;
- u32 last_gotc;
- u32 last_mprc;
- u32 last_gotlbc;
- u32 last_gptlbc;
- u32 last_gorlbc;
- u32 last_gprlbc;
-
- u64 gprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 mprc;
- u64 gotlbc;
- u64 gptlbc;
- u64 gorlbc;
- u64 gprlbc;
-};
-
-#include "e1000_mbx.h"
-
-struct e1000_mac_operations {
- /* Function pointers for the MAC. */
- s32 (*init_params)(struct e1000_hw *);
- s32 (*check_for_link)(struct e1000_hw *);
- void (*clear_vfta)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- void (*write_vfta)(struct e1000_hw *, u32, u32);
- void (*rar_set)(struct e1000_hw *, u8*, u32);
- s32 (*read_mac_addr)(struct e1000_hw *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
- u8 addr[6];
- u8 perm_addr[6];
-
- enum e1000_mac_type type;
-
- u16 mta_reg_count;
- u16 rar_entry_count;
-
- bool get_link_status;
-};
-
-struct e1000_mbx_operations {
- s32 (*init_params)(struct e1000_hw *hw);
- s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*check_for_msg)(struct e1000_hw *, u16);
- s32 (*check_for_ack)(struct e1000_hw *, u16);
- s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
- u32 msgs_tx;
- u32 msgs_rx;
-
- u32 acks;
- u32 reqs;
- u32 rsts;
-};
-
-struct e1000_mbx_info {
- struct e1000_mbx_operations ops;
- struct e1000_mbx_stats stats;
- u32 timeout;
- u32 usec_delay;
- u16 size;
-};
-
-struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
-};
-
-struct e1000_hw {
- void *back;
-
- u8 *hw_addr;
- u8 *flash_address;
- unsigned long io_base;
-
- struct e1000_mac_info mac;
- struct e1000_mbx_info mbx;
-
- union {
- struct e1000_dev_spec_vf vf;
- } dev_spec;
-
- u16 device_id;
- u16 subsystem_vendor_id;
- u16 subsystem_device_id;
- u16 vendor_id;
-
- u8 revision_id;
-};
-
-enum e1000_promisc_type {
- e1000_promisc_disabled = 0, /* all promisc modes disabled */
- e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
- e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
- e1000_promisc_enabled = 3, /* both uni and multicast promisc */
- e1000_num_promisc_types
-};
-
-/* These functions must be implemented by drivers */
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
-#endif /* _E1000_VF_H_ */
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _E1000_ETHDEV_H_
-#define _E1000_ETHDEV_H_
-
-/* need update link, bit flag */
-#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
-#define E1000_FLAG_MAILBOX (uint32_t)(1 << 1)
-
-/*
- * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
- * driver.
- */
-#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */
-#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */
-#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */
-#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */
-#define E1000_RXD_ERR_CKSUM_BIT 29
-#define E1000_RXD_ERR_CKSUM_MSK 3
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */
-#define E1000_CTRL_EXT_EXTEND_VLAN (1<<26) /* EXTENDED VLAN */
-#define IGB_VFTA_SIZE 128
-
-#define IGB_MAX_RX_QUEUE_NUM 8
-#define IGB_MAX_RX_QUEUE_NUM_82576 16
-
-#define E1000_SYN_FILTER_ENABLE 0x00000001 /* syn filter enable field */
-#define E1000_SYN_FILTER_QUEUE 0x0000000E /* syn filter queue field */
-#define E1000_SYN_FILTER_QUEUE_SHIFT 1 /* syn filter queue field */
-#define E1000_RFCTL_SYNQFP 0x00080000 /* SYNQFP in RFCTL register */
-
-#define E1000_ETQF_ETHERTYPE 0x0000FFFF
-#define E1000_ETQF_QUEUE 0x00070000
-#define E1000_ETQF_QUEUE_SHIFT 16
-#define E1000_MAX_ETQF_FILTERS 8
-
-#define E1000_IMIR_DSTPORT 0x0000FFFF
-#define E1000_IMIR_PRIORITY 0xE0000000
-#define E1000_MAX_TTQF_FILTERS 8
-#define E1000_2TUPLE_MAX_PRI 7
-
-#define E1000_MAX_FLEX_FILTERS 8
-#define E1000_MAX_FHFT 4
-#define E1000_MAX_FHFT_EXT 4
-#define E1000_FHFT_SIZE_IN_DWD 64
-#define E1000_MAX_FLEX_FILTER_PRI 7
-#define E1000_MAX_FLEX_FILTER_LEN 128
-#define E1000_MAX_FLEX_FILTER_DWDS \
- (E1000_MAX_FLEX_FILTER_LEN / sizeof(uint32_t))
-#define E1000_FLEX_FILTERS_MASK_SIZE \
- (E1000_MAX_FLEX_FILTER_DWDS / 4)
-#define E1000_FHFT_QUEUEING_LEN 0x0000007F
-#define E1000_FHFT_QUEUEING_QUEUE 0x00000700
-#define E1000_FHFT_QUEUEING_PRIO 0x00070000
-#define E1000_FHFT_QUEUEING_OFFSET 0xFC
-#define E1000_FHFT_QUEUEING_QUEUE_SHIFT 8
-#define E1000_FHFT_QUEUEING_PRIO_SHIFT 16
-#define E1000_WUFC_FLEX_HQ 0x00004000
-
-#define E1000_SPQF_SRCPORT 0x0000FFFF
-
-#define E1000_MAX_FTQF_FILTERS 8
-#define E1000_FTQF_PROTOCOL_MASK 0x000000FF
-#define E1000_FTQF_5TUPLE_MASK_SHIFT 28
-#define E1000_FTQF_QUEUE_MASK 0x03ff0000
-#define E1000_FTQF_QUEUE_SHIFT 16
-#define E1000_FTQF_QUEUE_ENABLE 0x00000100
-
-#define IGB_RSS_OFFLOAD_ALL ( \
- ETH_RSS_IPV4 | \
- ETH_RSS_NONFRAG_IPV4_TCP | \
- ETH_RSS_NONFRAG_IPV4_UDP | \
- ETH_RSS_IPV6 | \
- ETH_RSS_NONFRAG_IPV6_TCP | \
- ETH_RSS_NONFRAG_IPV6_UDP | \
- ETH_RSS_IPV6_EX | \
- ETH_RSS_IPV6_TCP_EX | \
- ETH_RSS_IPV6_UDP_EX)
-
-/* structure for interrupt relative data */
-struct e1000_interrupt {
- uint32_t flags;
- uint32_t mask;
-};
-
-/* local vfta copy */
-struct e1000_vfta {
- uint32_t vfta[IGB_VFTA_SIZE];
-};
-
-/*
- * VF data which used by PF host only
- */
-#define E1000_MAX_VF_MC_ENTRIES 30
-struct e1000_vf_info {
- uint8_t vf_mac_addresses[ETHER_ADDR_LEN];
- uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES];
- uint16_t num_vf_mc_hashes;
- uint16_t default_vf_vlan_id;
- uint16_t vlans_enabled;
- uint16_t pf_qos;
- uint16_t vlan_count;
- uint16_t tx_rate;
-};
-
-TAILQ_HEAD(e1000_flex_filter_list, e1000_flex_filter);
-
-struct e1000_flex_filter_info {
- uint16_t len;
- uint32_t dwords[E1000_MAX_FLEX_FILTER_DWDS]; /* flex bytes in dword. */
- /* if mask bit is 1b, do not compare corresponding byte in dwords. */
- uint8_t mask[E1000_FLEX_FILTERS_MASK_SIZE];
- uint8_t priority;
-};
-
-/* Flex filter structure */
-struct e1000_flex_filter {
- TAILQ_ENTRY(e1000_flex_filter) entries;
- uint16_t index; /* index of flex filter */
- struct e1000_flex_filter_info filter_info;
- uint16_t queue; /* rx queue assigned to */
-};
-
-TAILQ_HEAD(e1000_5tuple_filter_list, e1000_5tuple_filter);
-TAILQ_HEAD(e1000_2tuple_filter_list, e1000_2tuple_filter);
-
-struct e1000_5tuple_filter_info {
- uint32_t dst_ip;
- uint32_t src_ip;
- uint16_t dst_port;
- uint16_t src_port;
- uint8_t proto; /* l4 protocol. */
- /* the packet matched above 5tuple and contain any set bit will hit this filter. */
- uint8_t tcp_flags;
- uint8_t priority; /* seven levels (001b-111b), 111b is highest,
- used when more than one filter matches. */
- uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */
- src_ip_mask:1, /* if mask is 1b, do not compare src ip. */
- dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
- src_port_mask:1, /* if mask is 1b, do not compare src port. */
- proto_mask:1; /* if mask is 1b, do not compare protocol. */
-};
-
-struct e1000_2tuple_filter_info {
- uint16_t dst_port;
- uint8_t proto; /* l4 protocol. */
- /* the packet matched above 2tuple and contain any set bit will hit this filter. */
- uint8_t tcp_flags;
- uint8_t priority; /* seven levels (001b-111b), 111b is highest,
- used when more than one filter matches. */
- uint8_t dst_ip_mask:1, /* if mask is 1b, do not compare dst ip. */
- src_ip_mask:1, /* if mask is 1b, do not compare src ip. */
- dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
- src_port_mask:1, /* if mask is 1b, do not compare src port. */
- proto_mask:1; /* if mask is 1b, do not compare protocol. */
-};
-
-/* 5tuple filter structure */
-struct e1000_5tuple_filter {
- TAILQ_ENTRY(e1000_5tuple_filter) entries;
- uint16_t index; /* the index of 5tuple filter */
- struct e1000_5tuple_filter_info filter_info;
- uint16_t queue; /* rx queue assigned to */
-};
-
-/* 2tuple filter structure */
-struct e1000_2tuple_filter {
- TAILQ_ENTRY(e1000_2tuple_filter) entries;
- uint16_t index; /* the index of 2tuple filter */
- struct e1000_2tuple_filter_info filter_info;
- uint16_t queue; /* rx queue assigned to */
-};
-
-/*
- * Structure to store filters' info.
- */
-struct e1000_filter_info {
- uint8_t ethertype_mask; /* Bit mask for every used ethertype filter */
- /* store used ethertype filters*/
- uint16_t ethertype_filters[E1000_MAX_ETQF_FILTERS];
- uint8_t flex_mask; /* Bit mask for every used flex filter */
- struct e1000_flex_filter_list flex_list;
- /* Bit mask for every used 5tuple filter */
- uint8_t fivetuple_mask;
- struct e1000_5tuple_filter_list fivetuple_list;
- /* Bit mask for every used 2tuple filter */
- uint8_t twotuple_mask;
- struct e1000_2tuple_filter_list twotuple_list;
-};
-
-/*
- * Structure to store private data for each driver instance (for each port).
- */
-struct e1000_adapter {
- struct e1000_hw hw;
- struct e1000_hw_stats stats;
- struct e1000_interrupt intr;
- struct e1000_vfta shadow_vfta;
- struct e1000_vf_info *vfdata;
- struct e1000_filter_info filter;
-};
-
-#define E1000_DEV_PRIVATE_TO_HW(adapter) \
- (&((struct e1000_adapter *)adapter)->hw)
-
-#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
- (&((struct e1000_adapter *)adapter)->stats)
-
-#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
- (&((struct e1000_adapter *)adapter)->intr)
-
-#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
- (&((struct e1000_adapter *)adapter)->shadow_vfta)
-
-#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \
- (&((struct e1000_adapter *)adapter)->vfdata)
-
-#define E1000_DEV_PRIVATE_TO_FILTER_INFO(adapter) \
- (&((struct e1000_adapter *)adapter)->filter)
-
-/*
- * RX/TX IGB function prototypes
- */
-void eth_igb_tx_queue_release(void *txq);
-void eth_igb_rx_queue_release(void *rxq);
-void igb_dev_clear_queues(struct rte_eth_dev *dev);
-
-int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
- uint16_t nb_rx_desc, unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mb_pool);
-
-uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev,
- uint16_t rx_queue_id);
-
-int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset);
-
-int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
- uint16_t nb_tx_desc, unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf);
-
-int eth_igb_rx_init(struct rte_eth_dev *dev);
-
-void eth_igb_tx_init(struct rte_eth_dev *dev);
-
-uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_scattered_pkts(void *rxq,
- struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
-
-int eth_igb_rss_hash_update(struct rte_eth_dev *dev,
- struct rte_eth_rss_conf *rss_conf);
-
-int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
- struct rte_eth_rss_conf *rss_conf);
-
-int eth_igbvf_rx_init(struct rte_eth_dev *dev);
-
-void eth_igbvf_tx_init(struct rte_eth_dev *dev);
-
-/*
- * misc function prototypes
- */
-void igb_pf_host_init(struct rte_eth_dev *eth_dev);
-
-void igb_pf_mbx_process(struct rte_eth_dev *eth_dev);
-
-int igb_pf_host_configure(struct rte_eth_dev *eth_dev);
-
-/*
- * RX/TX EM function prototypes
- */
-void eth_em_tx_queue_release(void *txq);
-void eth_em_rx_queue_release(void *rxq);
-
-void em_dev_clear_queues(struct rte_eth_dev *dev);
-
-int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
- uint16_t nb_rx_desc, unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mb_pool);
-
-uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev,
- uint16_t rx_queue_id);
-
-int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset);
-
-int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
- uint16_t nb_tx_desc, unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf);
-
-int eth_em_rx_init(struct rte_eth_dev *dev);
-
-void eth_em_tx_init(struct rte_eth_dev *dev);
-
-uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts);
-
-#endif /* _E1000_ETHDEV_H_ */
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _E1000_LOGS_H_
-#define _E1000_LOGS_H_
-
-#define PMD_INIT_LOG(level, fmt, args...) \
- rte_log(RTE_LOG_ ## level, RTE_LOGTYPE_PMD, \
- "PMD: %s(): " fmt "\n", __func__, ##args)
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_INIT
-#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>")
-#else
-#define PMD_INIT_FUNC_TRACE() do { } while (0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_RX
-#define PMD_RX_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_TX
-#define PMD_TX_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE
-#define PMD_TX_FREE_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_DRIVER
-#define PMD_DRV_LOG_RAW(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt, __func__, ## args)
-#else
-#define PMD_DRV_LOG_RAW(level, fmt, args...) do { } while (0)
-#endif
-
-#define PMD_DRV_LOG(level, fmt, args...) \
- PMD_DRV_LOG_RAW(level, fmt "\n", ## args)
-
-#endif /* _E1000_LOGS_H_ */
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-
-#include <rte_common.h>
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_eal.h>
-#include <rte_atomic.h>
-#include <rte_malloc.h>
-#include <rte_dev.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-#define EM_EIAC 0x000DC
-
-#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
-
-
-static int eth_em_configure(struct rte_eth_dev *dev);
-static int eth_em_start(struct rte_eth_dev *dev);
-static void eth_em_stop(struct rte_eth_dev *dev);
-static void eth_em_close(struct rte_eth_dev *dev);
-static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
-static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
-static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
-static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
-static int eth_em_link_update(struct rte_eth_dev *dev,
- int wait_to_complete);
-static void eth_em_stats_get(struct rte_eth_dev *dev,
- struct rte_eth_stats *rte_stats);
-static void eth_em_stats_reset(struct rte_eth_dev *dev);
-static void eth_em_infos_get(struct rte_eth_dev *dev,
- struct rte_eth_dev_info *dev_info);
-static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
- struct rte_eth_fc_conf *fc_conf);
-static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
- struct rte_eth_fc_conf *fc_conf);
-static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
-static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
-static int eth_em_interrupt_action(struct rte_eth_dev *dev);
-static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
- void *param);
-
-static int em_hw_init(struct e1000_hw *hw);
-static int em_hardware_init(struct e1000_hw *hw);
-static void em_hw_control_acquire(struct e1000_hw *hw);
-static void em_hw_control_release(struct e1000_hw *hw);
-static void em_init_manageability(struct e1000_hw *hw);
-static void em_release_manageability(struct e1000_hw *hw);
-
-static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
-
-static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
- uint16_t vlan_id, int on);
-static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
-static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
-static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
-static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
-static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
-
-/*
-static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
- uint16_t vlan_id, int on);
-*/
-static int eth_em_led_on(struct rte_eth_dev *dev);
-static int eth_em_led_off(struct rte_eth_dev *dev);
-
-static void em_intr_disable(struct e1000_hw *hw);
-static int em_get_rx_buffer_size(struct e1000_hw *hw);
-static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
- uint32_t index, uint32_t pool);
-static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
-
-#define EM_FC_PAUSE_TIME 0x0680
-#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
-#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
-
-static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
-
-/*
- * The set of PCI devices this driver supports
- */
-static const struct rte_pci_id pci_id_em_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-static const struct eth_dev_ops eth_em_ops = {
- .dev_configure = eth_em_configure,
- .dev_start = eth_em_start,
- .dev_stop = eth_em_stop,
- .dev_close = eth_em_close,
- .promiscuous_enable = eth_em_promiscuous_enable,
- .promiscuous_disable = eth_em_promiscuous_disable,
- .allmulticast_enable = eth_em_allmulticast_enable,
- .allmulticast_disable = eth_em_allmulticast_disable,
- .link_update = eth_em_link_update,
- .stats_get = eth_em_stats_get,
- .stats_reset = eth_em_stats_reset,
- .dev_infos_get = eth_em_infos_get,
- .mtu_set = eth_em_mtu_set,
- .vlan_filter_set = eth_em_vlan_filter_set,
- .vlan_offload_set = eth_em_vlan_offload_set,
- .rx_queue_setup = eth_em_rx_queue_setup,
- .rx_queue_release = eth_em_rx_queue_release,
- .rx_queue_count = eth_em_rx_queue_count,
- .rx_descriptor_done = eth_em_rx_descriptor_done,
- .tx_queue_setup = eth_em_tx_queue_setup,
- .tx_queue_release = eth_em_tx_queue_release,
- .dev_led_on = eth_em_led_on,
- .dev_led_off = eth_em_led_off,
- .flow_ctrl_get = eth_em_flow_ctrl_get,
- .flow_ctrl_set = eth_em_flow_ctrl_set,
- .mac_addr_add = eth_em_rar_set,
- .mac_addr_remove = eth_em_rar_clear,
-};
-
-/**
- * Atomically reads the link status information from global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = link;
- struct rte_eth_link *src = &(dev->data->dev_link);
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-/**
- * Atomically writes the link status information into global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = &(dev->data->dev_link);
- struct rte_eth_link *src = link;
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-static int
-eth_em_dev_init(struct rte_eth_dev *eth_dev)
-{
- struct rte_pci_device *pci_dev;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
-
- pci_dev = eth_dev->pci_dev;
- eth_dev->dev_ops = ð_em_ops;
- eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
- eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
-
- /* for secondary processes, we don't initialise any further as primary
- * has already done this work. Only check we don't need a different
- * RX function */
- if (rte_eal_process_type() != RTE_PROC_PRIMARY){
- if (eth_dev->data->scattered_rx)
- eth_dev->rx_pkt_burst =
- (eth_rx_burst_t)ð_em_recv_scattered_pkts;
- return 0;
- }
-
- hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
- hw->device_id = pci_dev->id.device_id;
-
- /* For ICH8 support we'll need to map the flash memory BAR */
-
- if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
- em_hw_init(hw) != 0) {
- PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
- "failed to init HW",
- eth_dev->data->port_id, pci_dev->id.vendor_id,
- pci_dev->id.device_id);
- return -(ENODEV);
- }
-
- /* Allocate memory for storing MAC addresses */
- eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
- hw->mac.rar_entry_count, 0);
- if (eth_dev->data->mac_addrs == NULL) {
- PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
- "store MAC addresses",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count);
- return -(ENOMEM);
- }
-
- /* Copy the permanent MAC address */
- ether_addr_copy((struct ether_addr *) hw->mac.addr,
- eth_dev->data->mac_addrs);
-
- /* initialize the vfta */
- memset(shadow_vfta, 0, sizeof(*shadow_vfta));
-
- PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
- eth_dev->data->port_id, pci_dev->id.vendor_id,
- pci_dev->id.device_id);
-
- rte_intr_callback_register(&(pci_dev->intr_handle),
- eth_em_interrupt_handler, (void *)eth_dev);
-
- return (0);
-}
-
-static struct eth_driver rte_em_pmd = {
- {
- .name = "rte_em_pmd",
- .id_table = pci_id_em_map,
- .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
- },
- .eth_dev_init = eth_em_dev_init,
- .dev_private_size = sizeof(struct e1000_adapter),
-};
-
-static int
-rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
- rte_eth_driver_register(&rte_em_pmd);
- return 0;
-}
-
-static int
-em_hw_init(struct e1000_hw *hw)
-{
- int diag;
-
- diag = hw->mac.ops.init_params(hw);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "MAC Initialization Error");
- return diag;
- }
- diag = hw->nvm.ops.init_params(hw);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "NVM Initialization Error");
- return diag;
- }
- diag = hw->phy.ops.init_params(hw);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "PHY Initialization Error");
- return diag;
- }
- (void) e1000_get_bus_info(hw);
-
- hw->mac.autoneg = 1;
- hw->phy.autoneg_wait_to_complete = 0;
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-
- e1000_init_script_state_82541(hw, TRUE);
- e1000_set_tbi_compatibility_82543(hw, TRUE);
-
- /* Copper options */
- if (hw->phy.media_type == e1000_media_type_copper) {
- hw->phy.mdix = 0; /* AUTO_ALL_MODES */
- hw->phy.disable_polarity_correction = 0;
- hw->phy.ms_type = e1000_ms_hw_default;
- }
-
- /*
- * Start from a known state, this is important in reading the nvm
- * and mac from that.
- */
- e1000_reset_hw(hw);
-
- /* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(hw) < 0) {
- /*
- * Some PCI-E parts fail the first check due to
- * the link being in sleep state, call it again,
- * if it fails a second time its a real issue.
- */
- diag = e1000_validate_nvm_checksum(hw);
- if (diag < 0) {
- PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
- goto error;
- }
- }
-
- /* Read the permanent MAC address out of the EEPROM */
- diag = e1000_read_mac_addr(hw);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
- goto error;
- }
-
- /* Now initialize the hardware */
- diag = em_hardware_init(hw);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "Hardware initialization failed");
- goto error;
- }
-
- hw->mac.get_link_status = 1;
-
- /* Indicate SOL/IDER usage */
- diag = e1000_check_reset_block(hw);
- if (diag < 0) {
- PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
- "SOL/IDER session");
- }
- return (0);
-
-error:
- em_hw_control_release(hw);
- return (diag);
-}
-
-static int
-eth_em_configure(struct rte_eth_dev *dev)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- PMD_INIT_FUNC_TRACE();
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
- PMD_INIT_FUNC_TRACE();
-
- return (0);
-}
-
-static void
-em_set_pba(struct e1000_hw *hw)
-{
- uint32_t pba;
-
- /*
- * Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- * Devices before the 82547 had a Packet Buffer of 64K.
- * After the 82547 the buffer was reduced to 40K.
- */
- switch (hw->mac.type) {
- case e1000_82547:
- case e1000_82547_rev_2:
- /* 82547: Total Packet Buffer is 40K */
- pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
- break;
- case e1000_82573: /* 82573: Total Packet Buffer is 32K */
- pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
- break;
- case e1000_82574:
- case e1000_82583:
- pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
- break;
- case e1000_ich8lan:
- pba = E1000_PBA_8K;
- break;
- case e1000_ich9lan:
- case e1000_ich10lan:
- pba = E1000_PBA_10K;
- break;
- case e1000_pchlan:
- case e1000_pch2lan:
- pba = E1000_PBA_26K;
- break;
- default:
- pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
- }
-
- E1000_WRITE_REG(hw, E1000_PBA, pba);
-}
-
-static int
-eth_em_start(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret, mask;
-
- PMD_INIT_FUNC_TRACE();
-
- eth_em_stop(dev);
-
- e1000_power_up_phy(hw);
-
- /* Set default PBA value */
- em_set_pba(hw);
-
- /* Put the address into the Receive Address Array */
- e1000_rar_set(hw, hw->mac.addr, 0);
-
- /*
- * With the 82571 adapter, RAR[0] may be overwritten
- * when the other port is reset, we make a duplicate
- * in RAR[14] for that eventuality, this assures
- * the interface continues to function.
- */
- if (hw->mac.type == e1000_82571) {
- e1000_set_laa_state_82571(hw, TRUE);
- e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
- }
-
- /* Initialize the hardware */
- if (em_hardware_init(hw)) {
- PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
- return (-EIO);
- }
-
- E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
-
- /* Configure for OS presence */
- em_init_manageability(hw);
-
- eth_em_tx_init(dev);
-
- ret = eth_em_rx_init(dev);
- if (ret) {
- PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
- em_dev_clear_queues(dev);
- return ret;
- }
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
- ETH_VLAN_EXTEND_MASK;
- eth_em_vlan_offload_set(dev, mask);
-
- /* Set Interrupt Throttling Rate to maximum allowed value. */
- E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
-
- /* Setup link speed and duplex */
- switch (dev->data->dev_conf.link_speed) {
- case ETH_LINK_SPEED_AUTONEG:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_100:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
- else if (dev->data->dev_conf.link_duplex ==
- ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_1000:
- if ((dev->data->dev_conf.link_duplex ==
- ETH_LINK_AUTONEG_DUPLEX) ||
- (dev->data->dev_conf.link_duplex ==
- ETH_LINK_FULL_DUPLEX))
- hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10000:
- default:
- goto error_invalid_config;
- }
- e1000_setup_link(hw);
-
- /* check if lsc interrupt feature is enabled */
- if (dev->data->dev_conf.intr_conf.lsc != 0) {
- ret = eth_em_interrupt_setup(dev);
- if (ret) {
- PMD_INIT_LOG(ERR, "Unable to setup interrupts");
- em_dev_clear_queues(dev);
- return ret;
- }
- }
-
- PMD_INIT_LOG(DEBUG, "<<");
-
- return (0);
-
-error_invalid_config:
- PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
- dev->data->dev_conf.link_speed,
- dev->data->dev_conf.link_duplex, dev->data->port_id);
- em_dev_clear_queues(dev);
- return (-EINVAL);
-}
-
-/*********************************************************************
- *
- * This routine disables all traffic on the adapter by issuing a
- * global reset on the MAC.
- *
- **********************************************************************/
-static void
-eth_em_stop(struct rte_eth_dev *dev)
-{
- struct rte_eth_link link;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- em_intr_disable(hw);
- e1000_reset_hw(hw);
- if (hw->mac.type >= e1000_82544)
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- /* Power down the phy. Needed to make the link go down */
- e1000_power_down_phy(hw);
-
- em_dev_clear_queues(dev);
-
- /* clear the recorded link status */
- memset(&link, 0, sizeof(link));
- rte_em_dev_atomic_write_link_status(dev, &link);
-}
-
-static void
-eth_em_close(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- eth_em_stop(dev);
- e1000_phy_hw_reset(hw);
- em_release_manageability(hw);
- em_hw_control_release(hw);
-}
-
-static int
-em_get_rx_buffer_size(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
-
- rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
- return rx_buf_size;
-}
-
-/*********************************************************************
- *
- * Initialize the hardware
- *
- **********************************************************************/
-static int
-em_hardware_init(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
- int diag;
-
- /* Issue a global reset */
- e1000_reset_hw(hw);
-
- /* Let the firmware know the OS is in control */
- em_hw_control_acquire(hw);
-
- /*
- * These parameters control the automatic generation (Tx) and
- * response (Rx) to Ethernet PAUSE frames.
- * - High water mark should allow for at least two standard size (1518)
- * frames to be received after sending an XOFF.
- * - Low water mark works best when it is very near the high water mark.
- * This allows the receiver to restart by sending XON when it has
- * drained a bit. Here we use an arbitrary value of 1500 which will
- * restart after one full frame is pulled from the buffer. There
- * could be several smaller frames in the buffer and if so they will
- * not trigger the XON until their total number reduces the buffer
- * by 1500.
- * - The pause time is fairly large at 1000 x 512ns = 512 usec.
- */
- rx_buf_size = em_get_rx_buffer_size(hw);
-
- hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
- hw->fc.low_water = hw->fc.high_water - 1500;
-
- if (hw->mac.type == e1000_80003es2lan)
- hw->fc.pause_time = UINT16_MAX;
- else
- hw->fc.pause_time = EM_FC_PAUSE_TIME;
-
- hw->fc.send_xon = 1;
-
- /* Set Flow control, use the tunable location if sane */
- if (em_fc_setting <= e1000_fc_full)
- hw->fc.requested_mode = em_fc_setting;
- else
- hw->fc.requested_mode = e1000_fc_none;
-
- /* Workaround: no TX flow ctrl for PCH */
- if (hw->mac.type == e1000_pchlan)
- hw->fc.requested_mode = e1000_fc_rx_pause;
-
- /* Override - settings for PCH2LAN, ya its magic :) */
- if (hw->mac.type == e1000_pch2lan) {
- hw->fc.high_water = 0x5C20;
- hw->fc.low_water = 0x5048;
- hw->fc.pause_time = 0x0650;
- hw->fc.refresh_time = 0x0400;
- }
-
- diag = e1000_init_hw(hw);
- if (diag < 0)
- return (diag);
- e1000_check_for_link(hw);
- return (0);
-}
-
-/* This function is based on em_update_stats_counters() in e1000/if_em.c */
-static void
-eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_hw_stats *stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
- int pause_frames;
-
- if(hw->phy.media_type == e1000_media_type_copper ||
- (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
- stats->sec += E1000_READ_REG(hw, E1000_SEC);
- }
-
- stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
- stats->mpc += E1000_READ_REG(hw, E1000_MPC);
- stats->scc += E1000_READ_REG(hw, E1000_SCC);
- stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
- stats->mcc += E1000_READ_REG(hw, E1000_MCC);
- stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
- stats->colc += E1000_READ_REG(hw, E1000_COLC);
- stats->dc += E1000_READ_REG(hw, E1000_DC);
- stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
- stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
- stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
-
- /*
- * For watchdog management we need to know if we have been
- * paused during the last interval, so capture that here.
- */
- pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
- stats->xoffrxc += pause_frames;
- stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
- stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
- stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
- stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
- stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
- stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
- stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
- stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
- stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
- stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
- stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
- stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
- /*
- * For the 64-bit byte counters the low dword must be read first.
- * Both registers clear on the read of the high dword.
- */
-
- stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
- stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
- stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
- stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
- stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
- stats->ruc += E1000_READ_REG(hw, E1000_RUC);
- stats->rfc += E1000_READ_REG(hw, E1000_RFC);
- stats->roc += E1000_READ_REG(hw, E1000_ROC);
- stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
- stats->tor += E1000_READ_REG(hw, E1000_TORH);
- stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
- stats->tpr += E1000_READ_REG(hw, E1000_TPR);
- stats->tpt += E1000_READ_REG(hw, E1000_TPT);
- stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
- stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
- stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
- stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
- stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
- stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
- stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
- stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
- /* Interrupt Counts */
-
- if (hw->mac.type >= e1000_82571) {
- stats->iac += E1000_READ_REG(hw, E1000_IAC);
- stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
- stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
- stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
- stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
- stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
- stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
- stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
- stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
- }
-
- if (hw->mac.type >= e1000_82543) {
- stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
- stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
- stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
- stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
- stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
- stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
- }
-
- if (rte_stats == NULL)
- return;
-
- /* Rx Errors */
- rte_stats->ibadcrc = stats->crcerrs;
- rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
- rte_stats->imissed = stats->mpc;
- rte_stats->ierrors = rte_stats->ibadcrc +
- rte_stats->ibadlen +
- rte_stats->imissed +
- stats->rxerrc + stats->algnerrc + stats->cexterr;
-
- /* Tx Errors */
- rte_stats->oerrors = stats->ecol + stats->latecol;
-
- rte_stats->ipackets = stats->gprc;
- rte_stats->opackets = stats->gptc;
- rte_stats->ibytes = stats->gorc;
- rte_stats->obytes = stats->gotc;
-
- /* XON/XOFF pause frames stats registers */
- rte_stats->tx_pause_xon = stats->xontxc;
- rte_stats->rx_pause_xon = stats->xonrxc;
- rte_stats->tx_pause_xoff = stats->xofftxc;
- rte_stats->rx_pause_xoff = stats->xoffrxc;
-}
-
-static void
-eth_em_stats_reset(struct rte_eth_dev *dev)
-{
- struct e1000_hw_stats *hw_stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
- /* HW registers are cleared on read */
- eth_em_stats_get(dev, NULL);
-
- /* Reset software totals */
- memset(hw_stats, 0, sizeof(*hw_stats));
-}
-
-static uint32_t
-em_get_max_pktlen(const struct e1000_hw *hw)
-{
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- case e1000_ich9lan:
- case e1000_ich10lan:
- case e1000_pch2lan:
- case e1000_82574:
- case e1000_80003es2lan: /* 9K Jumbo Frame size */
- return (0x2412);
- case e1000_pchlan:
- return (0x1000);
- /* Adapters that do not support jumbo frames */
- case e1000_82583:
- case e1000_ich8lan:
- return (ETHER_MAX_LEN);
- default:
- return (MAX_JUMBO_FRAME_SIZE);
- }
-}
-
-static void
-eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
- dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
- dev_info->max_mac_addrs = hw->mac.rar_entry_count;
-
- /*
- * Starting with 631xESB hw supports 2 TX/RX queues per port.
- * Unfortunatelly, all these nics have just one TX context.
- * So we have few choises for TX:
- * - Use just one TX queue.
- * - Allow cksum offload only for one TX queue.
- * - Don't allow TX cksum offload at all.
- * For now, option #1 was chosen.
- * To use second RX queue we have to use extended RX descriptor
- * (Multiple Receive Queues are mutually exclusive with UDP
- * fragmentation and are not supported when a legacy receive
- * descriptor format is used).
- * Which means separate RX routinies - as legacy nics (82540, 82545)
- * don't support extended RXD.
- * To avoid it we support just one RX queue for now (no RSS).
- */
-
- dev_info->max_rx_queues = 1;
- dev_info->max_tx_queues = 1;
-}
-
-/* return 0 means link status changed, -1 means not changed */
-static int
-eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link, old;
- int link_check, count;
-
- link_check = 0;
- hw->mac.get_link_status = 1;
-
- /* possible wait-to-complete in up to 9 seconds */
- for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
- /* Read the real link status */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- /* Do the work to read phy */
- e1000_check_for_link(hw);
- link_check = !hw->mac.get_link_status;
- break;
-
- case e1000_media_type_fiber:
- e1000_check_for_link(hw);
- link_check = (E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_LU);
- break;
-
- case e1000_media_type_internal_serdes:
- e1000_check_for_link(hw);
- link_check = hw->mac.serdes_has_link;
- break;
-
- default:
- break;
- }
- if (link_check || wait_to_complete == 0)
- break;
- rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
- }
- memset(&link, 0, sizeof(link));
- rte_em_dev_atomic_read_link_status(dev, &link);
- old = link;
-
- /* Now we check if a transition has happened */
- if (link_check && (link.link_status == 0)) {
- hw->mac.ops.get_link_up_info(hw, &link.link_speed,
- &link.link_duplex);
- link.link_status = 1;
- } else if (!link_check && (link.link_status == 1)) {
- link.link_speed = 0;
- link.link_duplex = 0;
- link.link_status = 0;
- }
- rte_em_dev_atomic_write_link_status(dev, &link);
-
- /* not changed */
- if (old.link_status == link.link_status)
- return -1;
-
- /* changed */
- return 0;
-}
-
-/*
- * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means
- * that the driver is loaded. For AMT version type f/w
- * this means that the network i/f is open.
- */
-static void
-em_hw_control_acquire(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext, swsm;
-
- /* Let firmware know the driver has taken over */
- if (hw->mac.type == e1000_82573) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
-
- } else {
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/*
- * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT versions of the
- * f/w this means that the network i/f is closed.
- */
-static void
-em_hw_control_release(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext, swsm;
-
- /* Let firmware taken over control of h/w */
- if (hw->mac.type == e1000_82573) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
- } else {
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features.
- */
-static void
-em_init_manageability(struct e1000_hw *hw)
-{
- if (e1000_enable_mng_pass_thru(hw)) {
- uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
- uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
- /* disable hardware interception of ARP */
- manc &= ~(E1000_MANC_ARP_EN);
-
- /* enable receiving management packets to the host */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h |= 1 << 5; /* Mng Port 623 */
- manc2h |= 1 << 6; /* Mng Port 664 */
- E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-/*
- * Give control back to hardware management
- * controller if there is one.
- */
-static void
-em_release_manageability(struct e1000_hw *hw)
-{
- uint32_t manc;
-
- if (e1000_enable_mng_pass_thru(hw)) {
- manc = E1000_READ_REG(hw, E1000_MANC);
-
- /* re-enable hardware interception of ARP */
- manc |= E1000_MANC_ARP_EN;
- manc &= ~E1000_MANC_EN_MNG2HOST;
-
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-static void
-eth_em_promiscuous_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_promiscuous_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
- if (dev->data->all_multicast == 1)
- rctl |= E1000_RCTL_MPE;
- else
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_allmulticast_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_allmulticast_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- if (dev->data->promiscuous == 1)
- return; /* must remain in all_multicast mode */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static int
-eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t vfta;
- uint32_t vid_idx;
- uint32_t vid_bit;
-
- vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK);
- vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
- if (on)
- vfta |= vid_bit;
- else
- vfta &= ~vid_bit;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-
- /* update local VFTA copy */
- shadow_vfta->vfta[vid_idx] = vfta;
-
- return 0;
-}
-
-static void
-em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* Filter Table Disable */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg &= ~E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-}
-
-static void
-em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t reg;
- int i;
-
- /* Filter Table Enable, CFI not used for packet acceptance */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
- /* restore vfta from local copy */
- for (i = 0; i < IGB_VFTA_SIZE; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
-}
-
-static void
-em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* VLAN Mode Disable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg &= ~E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
-}
-
-static void
-em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* VLAN Mode Enable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
-{
- if(mask & ETH_VLAN_STRIP_MASK){
- if (dev->data->dev_conf.rxmode.hw_vlan_strip)
- em_vlan_hw_strip_enable(dev);
- else
- em_vlan_hw_strip_disable(dev);
- }
-
- if(mask & ETH_VLAN_FILTER_MASK){
- if (dev->data->dev_conf.rxmode.hw_vlan_filter)
- em_vlan_hw_filter_enable(dev);
- else
- em_vlan_hw_filter_disable(dev);
- }
-}
-
-static void
-em_intr_disable(struct e1000_hw *hw)
-{
- E1000_WRITE_REG(hw, E1000_IMC, ~0);
-}
-
-/**
- * It enables the interrupt mask and then enable the interrupt.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_em_interrupt_setup(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
- rte_intr_enable(&(dev->pci_dev->intr_handle));
- return (0);
-}
-
-/*
- * It reads ICR and gets interrupt causes, check it and set a bit flag
- * to update link status.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_em_interrupt_get_status(struct rte_eth_dev *dev)
-{
- uint32_t icr;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- /* read-on-clear nic registers here */
- icr = E1000_READ_REG(hw, E1000_ICR);
- if (icr & E1000_ICR_LSC) {
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
- }
-
- return 0;
-}
-
-/*
- * It executes link_update after knowing an interrupt is prsent.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_em_interrupt_action(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
- uint32_t tctl, rctl;
- struct rte_eth_link link;
- int ret;
-
- if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
- return -1;
-
- intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
- rte_intr_enable(&(dev->pci_dev->intr_handle));
-
- /* set get_link_status to check register later */
- hw->mac.get_link_status = 1;
- ret = eth_em_link_update(dev, 0);
-
- /* check if link has changed */
- if (ret < 0)
- return 0;
-
- memset(&link, 0, sizeof(link));
- rte_em_dev_atomic_read_link_status(dev, &link);
- if (link.link_status) {
- PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
- dev->data->port_id, (unsigned)link.link_speed,
- link.link_duplex == ETH_LINK_FULL_DUPLEX ?
- "full-duplex" : "half-duplex");
- } else {
- PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
- }
- PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
- dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
- dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- if (link.link_status) {
- /* enable Tx/Rx */
- tctl |= E1000_TCTL_EN;
- rctl |= E1000_RCTL_EN;
- } else {
- /* disable Tx/Rx */
- tctl &= ~E1000_TCTL_EN;
- rctl &= ~E1000_RCTL_EN;
- }
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-/**
- * Interrupt handler which shall be registered at first.
- *
- * @param handle
- * Pointer to interrupt handle.
- * @param param
- * The address of parameter (struct rte_eth_dev *) regsitered before.
- *
- * @return
- * void
- */
-static void
-eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
- void *param)
-{
- struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
-
- eth_em_interrupt_get_status(dev);
- eth_em_interrupt_action(dev);
- _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
-}
-
-static int
-eth_em_led_on(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_em_led_off(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
- struct e1000_hw *hw;
- uint32_t ctrl;
- int tx_pause;
- int rx_pause;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- fc_conf->pause_time = hw->fc.pause_time;
- fc_conf->high_water = hw->fc.high_water;
- fc_conf->low_water = hw->fc.low_water;
- fc_conf->send_xon = hw->fc.send_xon;
- fc_conf->autoneg = hw->mac.autoneg;
-
- /*
- * Return rx_pause and tx_pause status according to actual setting of
- * the TFCE and RFCE bits in the CTRL register.
- */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- if (ctrl & E1000_CTRL_TFCE)
- tx_pause = 1;
- else
- tx_pause = 0;
-
- if (ctrl & E1000_CTRL_RFCE)
- rx_pause = 1;
- else
- rx_pause = 0;
-
- if (rx_pause && tx_pause)
- fc_conf->mode = RTE_FC_FULL;
- else if (rx_pause)
- fc_conf->mode = RTE_FC_RX_PAUSE;
- else if (tx_pause)
- fc_conf->mode = RTE_FC_TX_PAUSE;
- else
- fc_conf->mode = RTE_FC_NONE;
-
- return 0;
-}
-
-static int
-eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
- struct e1000_hw *hw;
- int err;
- enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
- e1000_fc_none,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full
- };
- uint32_t rx_buf_size;
- uint32_t max_high_water;
- uint32_t rctl;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- if (fc_conf->autoneg != hw->mac.autoneg)
- return -ENOTSUP;
- rx_buf_size = em_get_rx_buffer_size(hw);
- PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
-
- /* At least reserve one Ethernet frame for watermark */
- max_high_water = rx_buf_size - ETHER_MAX_LEN;
- if ((fc_conf->high_water > max_high_water) ||
- (fc_conf->high_water < fc_conf->low_water)) {
- PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
- PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
- return (-EINVAL);
- }
-
- hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
- hw->fc.pause_time = fc_conf->pause_time;
- hw->fc.high_water = fc_conf->high_water;
- hw->fc.low_water = fc_conf->low_water;
- hw->fc.send_xon = fc_conf->send_xon;
-
- err = e1000_setup_link_generic(hw);
- if (err == E1000_SUCCESS) {
-
- /* check if we want to forward MAC frames - driver doesn't have native
- * capability to do that, so we'll write the registers ourselves */
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
-
- /* set or clear MFLCN.PMCF bit depending on configuration */
- if (fc_conf->mac_ctrl_frame_fwd != 0)
- rctl |= E1000_RCTL_PMCF;
- else
- rctl &= ~E1000_RCTL_PMCF;
-
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
- }
-
- PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
- return (-EIO);
-}
-
-static void
-eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
- uint32_t index, __rte_unused uint32_t pool)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- e1000_rar_set(hw, mac_addr->addr_bytes, index);
-}
-
-static void
-eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
-{
- uint8_t addr[ETHER_ADDR_LEN];
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- memset(addr, 0, sizeof(addr));
-
- e1000_rar_set(hw, addr, index);
-}
-
-static int
-eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
-{
- struct rte_eth_dev_info dev_info;
- struct e1000_hw *hw;
- uint32_t frame_size;
- uint32_t rctl;
-
- eth_em_infos_get(dev, &dev_info);
- frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
-
- /* check that mtu is within the allowed range */
- if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
- return -EINVAL;
-
- /* refuse mtu that requires the support of scattered packets when this
- * feature has not been enabled before. */
- if (!dev->data->scattered_rx &&
- frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
- return -EINVAL;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
-
- /* switch to jumbo mode if needed */
- if (frame_size > ETHER_MAX_LEN) {
- dev->data->dev_conf.rxmode.jumbo_frame = 1;
- rctl |= E1000_RCTL_LPE;
- } else {
- dev->data->dev_conf.rxmode.jumbo_frame = 0;
- rctl &= ~E1000_RCTL_LPE;
- }
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /* update max frame size */
- dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
- return 0;
-}
-
-struct rte_driver em_pmd_drv = {
- .type = PMD_PDEV,
- .init = rte_em_pmd_init,
-};
-
-PMD_REGISTER_DRIVER(em_pmd_drv);
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_memory.h>
-#include <rte_memcpy.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_branch_prediction.h>
-#include <rte_ring.h>
-#include <rte_mempool.h>
-#include <rte_malloc.h>
-#include <rte_mbuf.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_prefetch.h>
-#include <rte_ip.h>
-#include <rte_udp.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_string_fns.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-#include "e1000/e1000_osdep.h"
-
-#define E1000_TXD_VLAN_SHIFT 16
-
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
- struct rte_mbuf *m;
-
- m = __rte_mbuf_raw_alloc(mp);
- __rte_mbuf_sanity_check_raw(m, 0);
- return (m);
-}
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb) \
- (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
- (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-/**
- * Structure associated with each descriptor of the RX ring of a RX queue.
- */
-struct em_rx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
-};
-
-/**
- * Structure associated with each descriptor of the TX ring of a TX queue.
- */
-struct em_tx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
- uint16_t next_id; /**< Index of next descriptor in ring. */
- uint16_t last_id; /**< Index of last scattered descriptor. */
-};
-
-/**
- * Structure associated with each RX queue.
- */
-struct em_rx_queue {
- struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
- volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
- uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
- volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
- volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
- struct em_rx_entry *sw_ring; /**< address of RX software ring. */
- struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
- struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
- uint16_t nb_rx_desc; /**< number of RX descriptors. */
- uint16_t rx_tail; /**< current value of RDT register. */
- uint16_t nb_rx_hold; /**< number of held free RX desc. */
- uint16_t rx_free_thresh; /**< max free RX desc to hold. */
- uint16_t queue_id; /**< RX queue index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
-};
-
-/**
- * Hardware context number
- */
-enum {
- EM_CTX_0 = 0, /**< CTX0 */
- EM_CTX_NUM = 1, /**< CTX NUM */
-};
-
-/** Offload features */
-union em_vlan_macip {
- uint32_t data;
- struct {
- uint16_t l3_len:9; /**< L3 (IP) Header Length. */
- uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
- uint16_t vlan_tci;
- /**< VLAN Tag Control Identifier (CPU order). */
- } f;
-};
-
-/*
- * Compare mask for vlan_macip_len.data,
- * should be in sync with em_vlan_macip.f layout.
- * */
-#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
-#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
-#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
-/** MAC+IP length. */
-#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
-
-/**
- * Structure to check if new context need be built
- */
-struct em_ctx_info {
- uint64_t flags; /**< ol_flags related to context build. */
- uint32_t cmp_mask; /**< compare mask */
- union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
-};
-
-/**
- * Structure associated with each TX queue.
- */
-struct em_tx_queue {
- volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
- uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
- struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
- volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
- uint16_t nb_tx_desc; /**< number of TX descriptors. */
- uint16_t tx_tail; /**< Current value of TDT register. */
- uint16_t tx_free_thresh;/**< minimum TX before freeing. */
- /**< Number of TX descriptors to use before RS bit is set. */
- uint16_t tx_rs_thresh;
- /** Number of TX descriptors used since RS bit was set. */
- uint16_t nb_tx_used;
- /** Index to last TX descriptor to have been cleaned. */
- uint16_t last_desc_cleaned;
- /** Total number of TX descriptors ready to be allocated. */
- uint16_t nb_tx_free;
- uint16_t queue_id; /**< TX queue index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- struct em_ctx_info ctx_cache;
- /**< Hardware context history.*/
-};
-
-#if 1
-#define RTE_PMD_USE_PREFETCH
-#endif
-
-#ifdef RTE_PMD_USE_PREFETCH
-#define rte_em_prefetch(p) rte_prefetch0(p)
-#else
-#define rte_em_prefetch(p) do {} while(0)
-#endif
-
-#ifdef RTE_PMD_PACKET_PREFETCH
-#define rte_packet_prefetch(p) rte_prefetch1(p)
-#else
-#define rte_packet_prefetch(p) do {} while(0)
-#endif
-
-#ifndef DEFAULT_TX_FREE_THRESH
-#define DEFAULT_TX_FREE_THRESH 32
-#endif /* DEFAULT_TX_FREE_THRESH */
-
-#ifndef DEFAULT_TX_RS_THRESH
-#define DEFAULT_TX_RS_THRESH 32
-#endif /* DEFAULT_TX_RS_THRESH */
-
-
-/*********************************************************************
- *
- * TX function
- *
- **********************************************************************/
-
-/*
- * Populates TX context descriptor.
- */
-static inline void
-em_set_xmit_ctx(struct em_tx_queue* txq,
- volatile struct e1000_context_desc *ctx_txd,
- uint64_t flags,
- union em_vlan_macip hdrlen)
-{
- uint32_t cmp_mask, cmd_len;
- uint16_t ipcse, l2len;
- struct e1000_context_desc ctx;
-
- cmp_mask = 0;
- cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
-
- l2len = hdrlen.f.l2_len;
- ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
-
- /* setup IPCS* fields */
- ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
- ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
- offsetof(struct ipv4_hdr, hdr_checksum));
-
- /*
- * When doing checksum or TCP segmentation with IPv6 headers,
- * IPCSE field should be set t0 0.
- */
- if (flags & PKT_TX_IP_CKSUM) {
- ctx.lower_setup.ip_fields.ipcse =
- (uint16_t)rte_cpu_to_le_16(ipcse - 1);
- cmd_len |= E1000_TXD_CMD_IP;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- } else {
- ctx.lower_setup.ip_fields.ipcse = 0;
- }
-
- /* setup TUCS* fields */
- ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
- ctx.upper_setup.tcp_fields.tucse = 0;
-
- switch (flags & PKT_TX_L4_MASK) {
- case PKT_TX_UDP_CKSUM:
- ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
- offsetof(struct udp_hdr, dgram_cksum));
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- case PKT_TX_TCP_CKSUM:
- ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
- offsetof(struct tcp_hdr, cksum));
- cmd_len |= E1000_TXD_CMD_TCP;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- default:
- ctx.upper_setup.tcp_fields.tucso = 0;
- }
-
- ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
- ctx.tcp_seg_setup.data = 0;
-
- *ctx_txd = ctx;
-
- txq->ctx_cache.flags = flags;
- txq->ctx_cache.cmp_mask = cmp_mask;
- txq->ctx_cache.hdrlen = hdrlen;
-}
-
-/*
- * Check which hardware context can be used. Use the existing match
- * or create a new context descriptor.
- */
-static inline uint32_t
-what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
- union em_vlan_macip hdrlen)
-{
- /* If match with the current context */
- if (likely (txq->ctx_cache.flags == flags &&
- ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
- txq->ctx_cache.cmp_mask) == 0))
- return (EM_CTX_0);
-
- /* Mismatch */
- return (EM_CTX_NUM);
-}
-
-/* Reset transmit descriptors after they have been used */
-static inline int
-em_xmit_cleanup(struct em_tx_queue *txq)
-{
- struct em_tx_entry *sw_ring = txq->sw_ring;
- volatile struct e1000_data_desc *txr = txq->tx_ring;
- uint16_t last_desc_cleaned = txq->last_desc_cleaned;
- uint16_t nb_tx_desc = txq->nb_tx_desc;
- uint16_t desc_to_clean_to;
- uint16_t nb_tx_to_clean;
-
- /* Determine the last descriptor needing to be cleaned */
- desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
- if (desc_to_clean_to >= nb_tx_desc)
- desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
-
- /* Check to make sure the last descriptor to clean is done */
- desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
- if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
- {
- PMD_TX_FREE_LOG(DEBUG,
- "TX descriptor %4u is not done"
- "(port=%d queue=%d)", desc_to_clean_to,
- txq->port_id, txq->queue_id);
- /* Failed to clean any descriptors, better luck next time */
- return -(1);
- }
-
- /* Figure out how many descriptors will be cleaned */
- if (last_desc_cleaned > desc_to_clean_to)
- nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
- desc_to_clean_to);
- else
- nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
- last_desc_cleaned);
-
- PMD_TX_FREE_LOG(DEBUG,
- "Cleaning %4u TX descriptors: %4u to %4u "
- "(port=%d queue=%d)", nb_tx_to_clean,
- last_desc_cleaned, desc_to_clean_to, txq->port_id,
- txq->queue_id);
-
- /*
- * The last descriptor to clean is done, so that means all the
- * descriptors from the last descriptor that was cleaned
- * up to the last descriptor with the RS bit set
- * are done. Only reset the threshold descriptor.
- */
- txr[desc_to_clean_to].upper.fields.status = 0;
-
- /* Update the txq to reflect the last descriptor that was cleaned */
- txq->last_desc_cleaned = desc_to_clean_to;
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
-
- /* No Error */
- return (0);
-}
-
-static inline uint32_t
-tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
-{
- static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
- static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
- uint32_t tmp;
-
- tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
- tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
- return (tmp);
-}
-
-uint16_t
-eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
-{
- struct em_tx_queue *txq;
- struct em_tx_entry *sw_ring;
- struct em_tx_entry *txe, *txn;
- volatile struct e1000_data_desc *txr;
- volatile struct e1000_data_desc *txd;
- struct rte_mbuf *tx_pkt;
- struct rte_mbuf *m_seg;
- uint64_t buf_dma_addr;
- uint32_t popts_spec;
- uint32_t cmd_type_len;
- uint16_t slen;
- uint64_t ol_flags;
- uint16_t tx_id;
- uint16_t tx_last;
- uint16_t nb_tx;
- uint16_t nb_used;
- uint64_t tx_ol_req;
- uint32_t ctx;
- uint32_t new_ctx;
- union em_vlan_macip hdrlen;
-
- txq = tx_queue;
- sw_ring = txq->sw_ring;
- txr = txq->tx_ring;
- tx_id = txq->tx_tail;
- txe = &sw_ring[tx_id];
-
- /* Determine if the descriptor ring needs to be cleaned. */
- if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
- em_xmit_cleanup(txq);
- }
-
- /* TX loop */
- for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
- new_ctx = 0;
- tx_pkt = *tx_pkts++;
-
- RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
- /*
- * Determine how many (if any) context descriptors
- * are needed for offload functionality.
- */
- ol_flags = tx_pkt->ol_flags;
-
- /* If hardware offload required */
- tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
- if (tx_ol_req) {
- hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
- hdrlen.f.l2_len = tx_pkt->l2_len;
- hdrlen.f.l3_len = tx_pkt->l3_len;
- /* If new context to be built or reuse the exist ctx. */
- ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
-
- /* Only allocate context descriptor if required*/
- new_ctx = (ctx == EM_CTX_NUM);
- }
-
- /*
- * Keep track of how many descriptors are used this loop
- * This will always be the number of segments + the number of
- * Context descriptors required to transmit the packet
- */
- nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
-
- /*
- * The number of descriptors that must be allocated for a
- * packet is the number of segments of that packet, plus 1
- * Context Descriptor for the hardware offload, if any.
- * Determine the last TX descriptor to allocate in the TX ring
- * for the packet, starting from the current position (tx_id)
- * in the ring.
- */
- tx_last = (uint16_t) (tx_id + nb_used - 1);
-
- /* Circular ring */
- if (tx_last >= txq->nb_tx_desc)
- tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
-
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
- " tx_first=%u tx_last=%u",
- (unsigned) txq->port_id,
- (unsigned) txq->queue_id,
- (unsigned) tx_pkt->pkt_len,
- (unsigned) tx_id,
- (unsigned) tx_last);
-
- /*
- * Make sure there are enough TX descriptors available to
- * transmit the entire packet.
- * nb_used better be less than or equal to txq->tx_rs_thresh
- */
- while (unlikely (nb_used > txq->nb_tx_free)) {
- PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
- "nb_used=%4u nb_free=%4u "
- "(port=%d queue=%d)",
- nb_used, txq->nb_tx_free,
- txq->port_id, txq->queue_id);
-
- if (em_xmit_cleanup(txq) != 0) {
- /* Could not clean any descriptors */
- if (nb_tx == 0)
- return (0);
- goto end_of_tx;
- }
- }
-
- /*
- * By now there are enough free TX descriptors to transmit
- * the packet.
- */
-
- /*
- * Set common flags of all TX Data Descriptors.
- *
- * The following bits must be set in all Data Descriptors:
- * - E1000_TXD_DTYP_DATA
- * - E1000_TXD_DTYP_DEXT
- *
- * The following bits must be set in the first Data Descriptor
- * and are ignored in the other ones:
- * - E1000_TXD_POPTS_IXSM
- * - E1000_TXD_POPTS_TXSM
- *
- * The following bits must be set in the last Data Descriptor
- * and are ignored in the other ones:
- * - E1000_TXD_CMD_VLE
- * - E1000_TXD_CMD_IFCS
- *
- * The following bits must only be set in the last Data
- * Descriptor:
- * - E1000_TXD_CMD_EOP
- *
- * The following bits can be set in any Data Descriptor, but
- * are only set in the last Data Descriptor:
- * - E1000_TXD_CMD_RS
- */
- cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
- E1000_TXD_CMD_IFCS;
- popts_spec = 0;
-
- /* Set VLAN Tag offload fields. */
- if (ol_flags & PKT_TX_VLAN_PKT) {
- cmd_type_len |= E1000_TXD_CMD_VLE;
- popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
- }
-
- if (tx_ol_req) {
- /*
- * Setup the TX Context Descriptor if required
- */
- if (new_ctx) {
- volatile struct e1000_context_desc *ctx_txd;
-
- ctx_txd = (volatile struct e1000_context_desc *)
- &txr[tx_id];
-
- txn = &sw_ring[txe->next_id];
- RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
-
- if (txe->mbuf != NULL) {
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = NULL;
- }
-
- em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
- hdrlen);
-
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- }
-
- /*
- * Setup the TX Data Descriptor,
- * This path will go through
- * whatever new/reuse the context descriptor
- */
- popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
- }
-
- m_seg = tx_pkt;
- do {
- txd = &txr[tx_id];
- txn = &sw_ring[txe->next_id];
-
- if (txe->mbuf != NULL)
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = m_seg;
-
- /*
- * Set up Transmit Data Descriptor.
- */
- slen = m_seg->data_len;
- buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
-
- txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
- txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
- txd->upper.data = rte_cpu_to_le_32(popts_spec);
-
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- m_seg = m_seg->next;
- } while (m_seg != NULL);
-
- /*
- * The last packet data descriptor needs End Of Packet (EOP)
- */
- cmd_type_len |= E1000_TXD_CMD_EOP;
- txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
-
- /* Set RS bit only on threshold packets' last descriptor */
- if (txq->nb_tx_used >= txq->tx_rs_thresh) {
- PMD_TX_FREE_LOG(DEBUG,
- "Setting RS bit on TXD id=%4u "
- "(port=%d queue=%d)",
- tx_last, txq->port_id, txq->queue_id);
-
- cmd_type_len |= E1000_TXD_CMD_RS;
-
- /* Update txq RS bit counters */
- txq->nb_tx_used = 0;
- }
- txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
- }
-end_of_tx:
- rte_wmb();
-
- /*
- * Set the Transmit Descriptor Tail (TDT)
- */
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
- (unsigned) txq->port_id, (unsigned) txq->queue_id,
- (unsigned) tx_id, (unsigned) nb_tx);
- E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
- txq->tx_tail = tx_id;
-
- return (nb_tx);
-}
-
-/*********************************************************************
- *
- * RX functions
- *
- **********************************************************************/
-
-static inline uint64_t
-rx_desc_status_to_pkt_flags(uint32_t rx_status)
-{
- uint64_t pkt_flags;
-
- /* Check if VLAN present */
- pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0);
-
- return pkt_flags;
-}
-
-static inline uint64_t
-rx_desc_error_to_pkt_flags(uint32_t rx_error)
-{
- uint64_t pkt_flags = 0;
-
- if (rx_error & E1000_RXD_ERR_IPE)
- pkt_flags |= PKT_RX_IP_CKSUM_BAD;
- if (rx_error & E1000_RXD_ERR_TCPE)
- pkt_flags |= PKT_RX_L4_CKSUM_BAD;
- return (pkt_flags);
-}
-
-uint16_t
-eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- volatile struct e1000_rx_desc *rx_ring;
- volatile struct e1000_rx_desc *rxdp;
- struct em_rx_queue *rxq;
- struct em_rx_entry *sw_ring;
- struct em_rx_entry *rxe;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- struct e1000_rx_desc rxd;
- uint64_t dma_addr;
- uint16_t pkt_len;
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint8_t status;
-
- rxq = rx_queue;
-
- nb_rx = 0;
- nb_hold = 0;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
- while (nb_rx < nb_pkts) {
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- status = rxdp->status;
- if (! (status & E1000_RXD_STAT_DD))
- break;
- rxd = *rxdp;
-
- /*
- * End of packet.
- *
- * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
- * likely to be invalid and to be dropped by the various
- * validation checks performed by the network stack.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy do not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
- "status=0x%x pkt_len=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) status,
- (unsigned) rte_le_to_cpu_16(rxd.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u",
- (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_em_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_em_prefetch(&rx_ring[rx_id]);
- rte_em_prefetch(&sw_ring[rx_id]);
- }
-
- /* Rearm RXD: attach new mbuf and reset status to zero. */
-
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->buffer_addr = dma_addr;
- rxdp->status = 0;
-
- /*
- * Initialize the returned mbuf.
- * 1) setup generic mbuf fields:
- * - number of segments,
- * - next segment,
- * - packet length,
- * - RX port identifier.
- * 2) integrate hardware offload data, if any:
- * - RSS flag & hash,
- * - IP checksum flag,
- * - VLAN TCI, if any,
- * - error flags.
- */
- pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
- rxq->crc_len);
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
- rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
- rxm->nb_segs = 1;
- rxm->next = NULL;
- rxm->pkt_len = pkt_len;
- rxm->data_len = pkt_len;
- rxm->port = rxq->port_id;
-
- rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
- rxm->ol_flags = rxm->ol_flags |
- rx_desc_error_to_pkt_flags(rxd.errors);
-
- /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
- rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = rxm;
- }
- rxq->rx_tail = rx_id;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-uint16_t
-eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- struct em_rx_queue *rxq;
- volatile struct e1000_rx_desc *rx_ring;
- volatile struct e1000_rx_desc *rxdp;
- struct em_rx_entry *sw_ring;
- struct em_rx_entry *rxe;
- struct rte_mbuf *first_seg;
- struct rte_mbuf *last_seg;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- struct e1000_rx_desc rxd;
- uint64_t dma; /* Physical address of mbuf data buffer */
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint16_t data_len;
- uint8_t status;
-
- rxq = rx_queue;
-
- nb_rx = 0;
- nb_hold = 0;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
-
- /*
- * Retrieve RX context of current packet, if any.
- */
- first_seg = rxq->pkt_first_seg;
- last_seg = rxq->pkt_last_seg;
-
- while (nb_rx < nb_pkts) {
- next_desc:
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- status = rxdp->status;
- if (! (status & E1000_RXD_STAT_DD))
- break;
- rxd = *rxdp;
-
- /*
- * Descriptor done.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy does not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
- "status=0x%x data_len=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) status,
- (unsigned) rte_le_to_cpu_16(rxd.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u", (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_em_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_em_prefetch(&rx_ring[rx_id]);
- rte_em_prefetch(&sw_ring[rx_id]);
- }
-
- /*
- * Update RX descriptor with the physical address of the new
- * data buffer of the new allocated mbuf.
- */
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->buffer_addr = dma;
- rxdp->status = 0;
-
- /*
- * Set data length & data buffer address of mbuf.
- */
- data_len = rte_le_to_cpu_16(rxd.length);
- rxm->data_len = data_len;
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
-
- /*
- * If this is the first buffer of the received packet,
- * set the pointer to the first mbuf of the packet and
- * initialize its context.
- * Otherwise, update the total length and the number of segments
- * of the current scattered packet, and update the pointer to
- * the last mbuf of the current packet.
- */
- if (first_seg == NULL) {
- first_seg = rxm;
- first_seg->pkt_len = data_len;
- first_seg->nb_segs = 1;
- } else {
- first_seg->pkt_len += data_len;
- first_seg->nb_segs++;
- last_seg->next = rxm;
- }
-
- /*
- * If this is not the last buffer of the received packet,
- * update the pointer to the last mbuf of the current scattered
- * packet and continue to parse the RX ring.
- */
- if (! (status & E1000_RXD_STAT_EOP)) {
- last_seg = rxm;
- goto next_desc;
- }
-
- /*
- * This is the last buffer of the received packet.
- * If the CRC is not stripped by the hardware:
- * - Subtract the CRC length from the total packet length.
- * - If the last buffer only contains the whole CRC or a part
- * of it, free the mbuf associated to the last buffer.
- * If part of the CRC is also contained in the previous
- * mbuf, subtract the length of that CRC part from the
- * data length of the previous mbuf.
- */
- rxm->next = NULL;
- if (unlikely(rxq->crc_len > 0)) {
- first_seg->pkt_len -= ETHER_CRC_LEN;
- if (data_len <= ETHER_CRC_LEN) {
- rte_pktmbuf_free_seg(rxm);
- first_seg->nb_segs--;
- last_seg->data_len = (uint16_t)
- (last_seg->data_len -
- (ETHER_CRC_LEN - data_len));
- last_seg->next = NULL;
- } else
- rxm->data_len =
- (uint16_t) (data_len - ETHER_CRC_LEN);
- }
-
- /*
- * Initialize the first mbuf of the returned packet:
- * - RX port identifier,
- * - hardware offload data, if any:
- * - IP checksum flag,
- * - error flags.
- */
- first_seg->port = rxq->port_id;
-
- first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
- first_seg->ol_flags = first_seg->ol_flags |
- rx_desc_error_to_pkt_flags(rxd.errors);
-
- /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
- rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
-
- /* Prefetch data of first segment, if configured to do so. */
- rte_packet_prefetch((char *)first_seg->buf_addr +
- first_seg->data_off);
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = first_seg;
-
- /*
- * Setup receipt context for a new packet.
- */
- first_seg = NULL;
- }
-
- /*
- * Record index of the next RX descriptor to probe.
- */
- rxq->rx_tail = rx_id;
-
- /*
- * Save receive context.
- */
- rxq->pkt_first_seg = first_seg;
- rxq->pkt_last_seg = last_seg;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-/*
- * Rings setup and release.
- *
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
- * This will also optimize cache line size effect.
- * H/W supports up to cache line size 128.
- */
-#define EM_ALIGN 128
-
-/*
- * Maximum number of Ring Descriptors.
- *
- * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
- * desscriptors should meet the following condition:
- * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
- */
-#define EM_MIN_RING_DESC 32
-#define EM_MAX_RING_DESC 4096
-
-#define EM_MAX_BUF_SIZE 16384
-#define EM_RCTL_FLXBUF_STEP 1024
-
-static const struct rte_memzone *
-ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
- uint16_t queue_id, uint32_t ring_size, int socket_id)
-{
- const struct rte_memzone *mz;
- char z_name[RTE_MEMZONE_NAMESIZE];
-
- snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
- dev->driver->pci_drv.name, ring_name, dev->data->port_id,
- queue_id);
-
- if ((mz = rte_memzone_lookup(z_name)) != 0)
- return (mz);
-
-#ifdef RTE_LIBRTE_XEN_DOM0
- return rte_memzone_reserve_bounded(z_name, ring_size,
- socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
-#else
- return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
-#endif
-}
-
-static void
-em_tx_queue_release_mbufs(struct em_tx_queue *txq)
-{
- unsigned i;
-
- if (txq->sw_ring != NULL) {
- for (i = 0; i != txq->nb_tx_desc; i++) {
- if (txq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
- txq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-em_tx_queue_release(struct em_tx_queue *txq)
-{
- if (txq != NULL) {
- em_tx_queue_release_mbufs(txq);
- rte_free(txq->sw_ring);
- rte_free(txq);
- }
-}
-
-void
-eth_em_tx_queue_release(void *txq)
-{
- em_tx_queue_release(txq);
-}
-
-/* (Re)set dynamic em_tx_queue fields to defaults */
-static void
-em_reset_tx_queue(struct em_tx_queue *txq)
-{
- uint16_t i, nb_desc, prev;
- static const struct e1000_data_desc txd_init = {
- .upper.fields = {.status = E1000_TXD_STAT_DD},
- };
-
- nb_desc = txq->nb_tx_desc;
-
- /* Initialize ring entries */
-
- prev = (uint16_t) (nb_desc - 1);
-
- for (i = 0; i < nb_desc; i++) {
- txq->tx_ring[i] = txd_init;
- txq->sw_ring[i].mbuf = NULL;
- txq->sw_ring[i].last_id = i;
- txq->sw_ring[prev].next_id = i;
- prev = i;
- }
-
- /*
- * Always allow 1 descriptor to be un-allocated to avoid
- * a H/W race condition
- */
- txq->nb_tx_free = (uint16_t)(nb_desc - 1);
- txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
- txq->nb_tx_used = 0;
- txq->tx_tail = 0;
-
- memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
-}
-
-int
-eth_em_tx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf)
-{
- const struct rte_memzone *tz;
- struct em_tx_queue *txq;
- struct e1000_hw *hw;
- uint32_t tsize;
- uint16_t tx_rs_thresh, tx_free_thresh;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of transmit descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of EM_ALIGN.
- */
- if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
- (nb_desc > EM_MAX_RING_DESC) ||
- (nb_desc < EM_MIN_RING_DESC)) {
- return -(EINVAL);
- }
-
- tx_free_thresh = tx_conf->tx_free_thresh;
- if (tx_free_thresh == 0)
- tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
- DEFAULT_TX_FREE_THRESH);
-
- tx_rs_thresh = tx_conf->tx_rs_thresh;
- if (tx_rs_thresh == 0)
- tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
- DEFAULT_TX_RS_THRESH);
-
- if (tx_free_thresh >= (nb_desc - 3)) {
- PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
- "number of TX descriptors minus 3. "
- "(tx_free_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_free_thresh,
- (int)dev->data->port_id, (int)queue_idx);
- return -(EINVAL);
- }
- if (tx_rs_thresh > tx_free_thresh) {
- PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
- "tx_free_thresh. (tx_free_thresh=%u "
- "tx_rs_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_free_thresh,
- (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return -(EINVAL);
- }
-
- /*
- * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
- * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
- * by the NIC and all descriptors are written back after the NIC
- * accumulates WTHRESH descriptors.
- */
- if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
- PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
- "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
- "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id, (int)queue_idx);
- return -(EINVAL);
- }
-
- /* Free memory prior to re-allocation if needed... */
- if (dev->data->tx_queues[queue_idx] != NULL) {
- em_tx_queue_release(dev->data->tx_queues[queue_idx]);
- dev->data->tx_queues[queue_idx] = NULL;
- }
-
- /*
- * Allocate TX ring hardware descriptors. A memzone large enough to
- * handle the maximum ring size is allocated in order to allow for
- * resizing in later calls to the queue setup function.
- */
- tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
- if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
- socket_id)) == NULL)
- return (-ENOMEM);
-
- /* Allocate the tx queue data structure. */
- if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
- RTE_CACHE_LINE_SIZE)) == NULL)
- return (-ENOMEM);
-
- /* Allocate software ring */
- if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
- sizeof(txq->sw_ring[0]) * nb_desc,
- RTE_CACHE_LINE_SIZE)) == NULL) {
- em_tx_queue_release(txq);
- return (-ENOMEM);
- }
-
- txq->nb_tx_desc = nb_desc;
- txq->tx_free_thresh = tx_free_thresh;
- txq->tx_rs_thresh = tx_rs_thresh;
- txq->pthresh = tx_conf->tx_thresh.pthresh;
- txq->hthresh = tx_conf->tx_thresh.hthresh;
- txq->wthresh = tx_conf->tx_thresh.wthresh;
- txq->queue_id = queue_idx;
- txq->port_id = dev->data->port_id;
-
- txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
- txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
-#else
- txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
-#endif
- txq->tx_ring = (struct e1000_data_desc *) tz->addr;
-
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
- txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
-
- em_reset_tx_queue(txq);
-
- dev->data->tx_queues[queue_idx] = txq;
- return (0);
-}
-
-static void
-em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
-{
- unsigned i;
-
- if (rxq->sw_ring != NULL) {
- for (i = 0; i != rxq->nb_rx_desc; i++) {
- if (rxq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
- rxq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-em_rx_queue_release(struct em_rx_queue *rxq)
-{
- if (rxq != NULL) {
- em_rx_queue_release_mbufs(rxq);
- rte_free(rxq->sw_ring);
- rte_free(rxq);
- }
-}
-
-void
-eth_em_rx_queue_release(void *rxq)
-{
- em_rx_queue_release(rxq);
-}
-
-/* Reset dynamic em_rx_queue fields back to defaults */
-static void
-em_reset_rx_queue(struct em_rx_queue *rxq)
-{
- rxq->rx_tail = 0;
- rxq->nb_rx_hold = 0;
- rxq->pkt_first_seg = NULL;
- rxq->pkt_last_seg = NULL;
-}
-
-int
-eth_em_rx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mp)
-{
- const struct rte_memzone *rz;
- struct em_rx_queue *rxq;
- struct e1000_hw *hw;
- uint32_t rsize;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of receive descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of EM_ALIGN.
- */
- if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
- (nb_desc > EM_MAX_RING_DESC) ||
- (nb_desc < EM_MIN_RING_DESC)) {
- return (-EINVAL);
- }
-
- /*
- * EM devices don't support drop_en functionality
- */
- if (rx_conf->rx_drop_en) {
- PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
- "device");
- return (-EINVAL);
- }
-
- /* Free memory prior to re-allocation if needed. */
- if (dev->data->rx_queues[queue_idx] != NULL) {
- em_rx_queue_release(dev->data->rx_queues[queue_idx]);
- dev->data->rx_queues[queue_idx] = NULL;
- }
-
- /* Allocate RX ring for max possible mumber of hardware descriptors. */
- rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
- if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
- socket_id)) == NULL)
- return (-ENOMEM);
-
- /* Allocate the RX queue data structure. */
- if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
- RTE_CACHE_LINE_SIZE)) == NULL)
- return (-ENOMEM);
-
- /* Allocate software ring. */
- if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
- sizeof (rxq->sw_ring[0]) * nb_desc,
- RTE_CACHE_LINE_SIZE)) == NULL) {
- em_rx_queue_release(rxq);
- return (-ENOMEM);
- }
-
- rxq->mb_pool = mp;
- rxq->nb_rx_desc = nb_desc;
- rxq->pthresh = rx_conf->rx_thresh.pthresh;
- rxq->hthresh = rx_conf->rx_thresh.hthresh;
- rxq->wthresh = rx_conf->rx_thresh.wthresh;
- rxq->rx_free_thresh = rx_conf->rx_free_thresh;
- rxq->queue_id = queue_idx;
- rxq->port_id = dev->data->port_id;
- rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
- 0 : ETHER_CRC_LEN);
-
- rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
- rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
- rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
-#else
- rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
-#endif
- rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
-
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
- rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
-
- dev->data->rx_queues[queue_idx] = rxq;
- em_reset_rx_queue(rxq);
-
- return (0);
-}
-
-uint32_t
-eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
-#define EM_RXQ_SCAN_INTERVAL 4
- volatile struct e1000_rx_desc *rxdp;
- struct em_rx_queue *rxq;
- uint32_t desc = 0;
-
- if (rx_queue_id >= dev->data->nb_rx_queues) {
- PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
- return 0;
- }
-
- rxq = dev->data->rx_queues[rx_queue_id];
- rxdp = &(rxq->rx_ring[rxq->rx_tail]);
-
- while ((desc < rxq->nb_rx_desc) &&
- (rxdp->status & E1000_RXD_STAT_DD)) {
- desc += EM_RXQ_SCAN_INTERVAL;
- rxdp += EM_RXQ_SCAN_INTERVAL;
- if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
- rxdp = &(rxq->rx_ring[rxq->rx_tail +
- desc - rxq->nb_rx_desc]);
- }
-
- return desc;
-}
-
-int
-eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
-{
- volatile struct e1000_rx_desc *rxdp;
- struct em_rx_queue *rxq = rx_queue;
- uint32_t desc;
-
- if (unlikely(offset >= rxq->nb_rx_desc))
- return 0;
- desc = rxq->rx_tail + offset;
- if (desc >= rxq->nb_rx_desc)
- desc -= rxq->nb_rx_desc;
-
- rxdp = &rxq->rx_ring[desc];
- return !!(rxdp->status & E1000_RXD_STAT_DD);
-}
-
-void
-em_dev_clear_queues(struct rte_eth_dev *dev)
-{
- uint16_t i;
- struct em_tx_queue *txq;
- struct em_rx_queue *rxq;
-
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- txq = dev->data->tx_queues[i];
- if (txq != NULL) {
- em_tx_queue_release_mbufs(txq);
- em_reset_tx_queue(txq);
- }
- }
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- if (rxq != NULL) {
- em_rx_queue_release_mbufs(rxq);
- em_reset_rx_queue(rxq);
- }
- }
-}
-
-/*
- * Takes as input/output parameter RX buffer size.
- * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
- */
-static uint32_t
-em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
-{
- /*
- * For BSIZE & BSEX all configurable sizes are:
- * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
- * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
- * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
- * 2048: rctl |= E1000_RCTL_SZ_2048;
- * 1024: rctl |= E1000_RCTL_SZ_1024;
- * 512: rctl |= E1000_RCTL_SZ_512;
- * 256: rctl |= E1000_RCTL_SZ_256;
- */
- static const struct {
- uint32_t bufsz;
- uint32_t rctl;
- } bufsz_to_rctl[] = {
- {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
- {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
- {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
- {2048, E1000_RCTL_SZ_2048},
- {1024, E1000_RCTL_SZ_1024},
- {512, E1000_RCTL_SZ_512},
- {256, E1000_RCTL_SZ_256},
- };
-
- int i;
- uint32_t rctl_bsize;
-
- rctl_bsize = *bufsz;
-
- /*
- * Starting from 82571 it is possible to specify RX buffer size
- * by RCTL.FLXBUF. When this field is different from zero, the
- * RX buffer size = RCTL.FLXBUF * 1K
- * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
- * It is working ok on real HW, but by some reason doesn't work
- * on VMware emulated 82574L.
- * So for now, always use BSIZE/BSEX to setup RX buffer size.
- * If you don't plan to use it on VMware emulated 82574L and
- * would like to specify RX buffer size in 1K granularity,
- * uncomment the following lines:
- * ***************************************************************
- * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
- * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
- * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
- * *bufsz = rctl_bsize;
- * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
- * E1000_RCTL_FLXBUF_MASK);
- * }
- * ***************************************************************
- */
-
- for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
- i++) {
- if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
- *bufsz = bufsz_to_rctl[i].bufsz;
- return (bufsz_to_rctl[i].rctl);
- }
- }
-
- /* Should never happen. */
- return (-EINVAL);
-}
-
-static int
-em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
-{
- struct em_rx_entry *rxe = rxq->sw_ring;
- uint64_t dma_addr;
- unsigned i;
- static const struct e1000_rx_desc rxd_init = {
- .buffer_addr = 0,
- };
-
- /* Initialize software ring entries */
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- volatile struct e1000_rx_desc *rxd;
- struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
-
- if (mbuf == NULL) {
- PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
- "queue_id=%hu", rxq->queue_id);
- return (-ENOMEM);
- }
-
- dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
-
- /* Clear HW ring memory */
- rxq->rx_ring[i] = rxd_init;
-
- rxd = &rxq->rx_ring[i];
- rxd->buffer_addr = dma_addr;
- rxe[i].mbuf = mbuf;
- }
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Enable receive unit.
- *
- **********************************************************************/
-int
-eth_em_rx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct em_rx_queue *rxq;
- uint32_t rctl;
- uint32_t rfctl;
- uint32_t rxcsum;
- uint32_t rctl_bsize;
- uint16_t i;
- int ret;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Make sure receives are disabled while setting
- * up the descriptor ring.
- */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
-
- /* Disable extended descriptor type. */
- rfctl &= ~E1000_RFCTL_EXTEN;
- /* Disable accelerated acknowledge */
- if (hw->mac.type == e1000_82574)
- rfctl |= E1000_RFCTL_ACK_DIS;
-
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
- /*
- * XXX TEMPORARY WORKAROUND: on some systems with 82573
- * long latencies are observed, like Lenovo X60. This
- * change eliminates the problem, but since having positive
- * values in RDTR is a known source of problems on other
- * platforms another solution is being sought.
- */
- if (hw->mac.type == e1000_82573)
- E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
-
- dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
-
- /* Determine RX bufsize. */
- rctl_bsize = EM_MAX_BUF_SIZE;
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint32_t buf_size;
-
- rxq = dev->data->rx_queues[i];
- buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
- RTE_PKTMBUF_HEADROOM;
- rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
- }
-
- rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
-
- /* Configure and enable each RX queue. */
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint64_t bus_addr;
- uint32_t rxdctl;
-
- rxq = dev->data->rx_queues[i];
-
- /* Allocate buffers for descriptor rings and setup queue */
- ret = em_alloc_rx_queue_mbufs(rxq);
- if (ret)
- return ret;
-
- /*
- * Reset crc_len in case it was changed after queue setup by a
- * call to configure
- */
- rxq->crc_len =
- (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
- 0 : ETHER_CRC_LEN);
-
- bus_addr = rxq->rx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_RDLEN(i),
- rxq->nb_rx_desc *
- sizeof(*rxq->rx_ring));
- E1000_WRITE_REG(hw, E1000_RDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
-
- E1000_WRITE_REG(hw, E1000_RDH(i), 0);
- E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
-
- rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
- rxdctl &= 0xFE000000;
- rxdctl |= rxq->pthresh & 0x3F;
- rxdctl |= (rxq->hthresh & 0x3F) << 8;
- rxdctl |= (rxq->wthresh & 0x3F) << 16;
- rxdctl |= E1000_RXDCTL_GRAN;
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
-
- /*
- * Due to EM devices not having any sort of hardware
- * limit for packet length, jumbo frame of any size
- * can be accepted, thus we have to enable scattered
- * rx if jumbo frames are enabled (or if buffer size
- * is too small to accommodate non-jumbo packets)
- * to avoid splitting packets that don't fit into
- * one buffer.
- */
- if (dev->data->dev_conf.rxmode.jumbo_frame ||
- rctl_bsize < ETHER_MAX_LEN) {
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst =
- (eth_rx_burst_t)eth_em_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
- }
-
- if (dev->data->dev_conf.rxmode.enable_scatter) {
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- /*
- * Setup the Checksum Register.
- * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
- */
- rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
-
- if (dev->data->dev_conf.rxmode.hw_ip_checksum)
- rxcsum |= E1000_RXCSUM_IPOFL;
- else
- rxcsum &= ~E1000_RXCSUM_IPOFL;
- E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
- /* No MRQ or RSS support for now */
-
- /* Set early receive threshold on appropriate hw */
- if ((hw->mac.type == e1000_ich9lan ||
- hw->mac.type == e1000_pch2lan ||
- hw->mac.type == e1000_ich10lan) &&
- dev->data->dev_conf.rxmode.jumbo_frame == 1) {
- u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
- E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
- E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
- }
-
- if (hw->mac.type == e1000_pch2lan) {
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
- e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
- else
- e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
- }
-
- /* Setup the Receive Control Register. */
- if (dev->data->dev_conf.rxmode.hw_strip_crc)
- rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
- else
- rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
-
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
- E1000_RCTL_RDMTS_HALF |
- (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- /* Make sure VLAN Filters are off. */
- rctl &= ~E1000_RCTL_VFE;
- /* Don't store bad packets. */
- rctl &= ~E1000_RCTL_SBP;
- /* Legacy descriptor type. */
- rctl &= ~E1000_RCTL_DTYP_MASK;
-
- /*
- * Configure support of jumbo frames, if any.
- */
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
- rctl |= E1000_RCTL_LPE;
- else
- rctl &= ~E1000_RCTL_LPE;
-
- /* Enable Receives. */
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Enable transmit unit.
- *
- **********************************************************************/
-void
-eth_em_tx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct em_tx_queue *txq;
- uint32_t tctl;
- uint32_t txdctl;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* Setup the Base and Length of the Tx Descriptor Rings. */
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- uint64_t bus_addr;
-
- txq = dev->data->tx_queues[i];
- bus_addr = txq->tx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_TDLEN(i),
- txq->nb_tx_desc *
- sizeof(*txq->tx_ring));
- E1000_WRITE_REG(hw, E1000_TDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
-
- /* Setup the HW Tx Head and Tail descriptor pointers. */
- E1000_WRITE_REG(hw, E1000_TDT(i), 0);
- E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
- /* Setup Transmit threshold registers. */
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
- /*
- * bit 22 is reserved, on some models should always be 0,
- * on others - always 1.
- */
- txdctl &= E1000_TXDCTL_COUNT_DESC;
- txdctl |= txq->pthresh & 0x3F;
- txdctl |= (txq->hthresh & 0x3F) << 8;
- txdctl |= (txq->wthresh & 0x3F) << 16;
- txdctl |= E1000_TXDCTL_GRAN;
- E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
- }
-
- /* Program the Transmit Control Register. */
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
- /* This write will effectively turn on the transmit unit. */
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-
-#include <rte_common.h>
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_eal.h>
-#include <rte_atomic.h>
-#include <rte_malloc.h>
-#include <rte_dev.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-/*
- * Default values for port configuration
- */
-#define IGB_DEFAULT_RX_FREE_THRESH 32
-#define IGB_DEFAULT_RX_PTHRESH 8
-#define IGB_DEFAULT_RX_HTHRESH 8
-#define IGB_DEFAULT_RX_WTHRESH 0
-
-#define IGB_DEFAULT_TX_PTHRESH 32
-#define IGB_DEFAULT_TX_HTHRESH 0
-#define IGB_DEFAULT_TX_WTHRESH 0
-
-/* Bit shift and mask */
-#define IGB_4_BIT_WIDTH (CHAR_BIT / 2)
-#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
-#define IGB_8_BIT_WIDTH CHAR_BIT
-#define IGB_8_BIT_MASK UINT8_MAX
-
-static int eth_igb_configure(struct rte_eth_dev *dev);
-static int eth_igb_start(struct rte_eth_dev *dev);
-static void eth_igb_stop(struct rte_eth_dev *dev);
-static void eth_igb_close(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
-static int eth_igb_link_update(struct rte_eth_dev *dev,
- int wait_to_complete);
-static void eth_igb_stats_get(struct rte_eth_dev *dev,
- struct rte_eth_stats *rte_stats);
-static void eth_igb_stats_reset(struct rte_eth_dev *dev);
-static void eth_igb_infos_get(struct rte_eth_dev *dev,
- struct rte_eth_dev_info *dev_info);
-static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
- struct rte_eth_dev_info *dev_info);
-static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
- struct rte_eth_fc_conf *fc_conf);
-static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
- struct rte_eth_fc_conf *fc_conf);
-static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
-static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
- void *param);
-static int igb_hardware_init(struct e1000_hw *hw);
-static void igb_hw_control_acquire(struct e1000_hw *hw);
-static void igb_hw_control_release(struct e1000_hw *hw);
-static void igb_init_manageability(struct e1000_hw *hw);
-static void igb_release_manageability(struct e1000_hw *hw);
-
-static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
-
-static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
- uint16_t vlan_id, int on);
-static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
-static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
-
-static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
-
-static int eth_igb_led_on(struct rte_eth_dev *dev);
-static int eth_igb_led_off(struct rte_eth_dev *dev);
-
-static void igb_intr_disable(struct e1000_hw *hw);
-static int igb_get_rx_buffer_size(struct e1000_hw *hw);
-static void eth_igb_rar_set(struct rte_eth_dev *dev,
- struct ether_addr *mac_addr,
- uint32_t index, uint32_t pool);
-static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
-
-static void igbvf_intr_disable(struct e1000_hw *hw);
-static int igbvf_dev_configure(struct rte_eth_dev *dev);
-static int igbvf_dev_start(struct rte_eth_dev *dev);
-static void igbvf_dev_stop(struct rte_eth_dev *dev);
-static void igbvf_dev_close(struct rte_eth_dev *dev);
-static int eth_igbvf_link_update(struct e1000_hw *hw);
-static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
-static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
-static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
- uint16_t vlan_id, int on);
-static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
-static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
-static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
- struct rte_eth_rss_reta_entry64 *reta_conf,
- uint16_t reta_size);
-static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
- struct rte_eth_rss_reta_entry64 *reta_conf,
- uint16_t reta_size);
-
-static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
- struct rte_eth_syn_filter *filter,
- bool add);
-static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
- struct rte_eth_syn_filter *filter);
-static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg);
-static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter);
-static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
- struct rte_eth_flex_filter *filter,
- bool add);
-static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
- struct rte_eth_flex_filter *filter);
-static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg);
-static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *filter,
- bool add);
-static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *filter);
-static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg);
-static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
- struct rte_eth_ethertype_filter *filter,
- bool add);
-static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg);
-static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
- struct rte_eth_ethertype_filter *filter);
-static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
- enum rte_filter_type filter_type,
- enum rte_filter_op filter_op,
- void *arg);
-
-/*
- * Define VF Stats MACRO for Non "cleared on read" register
- */
-#define UPDATE_VF_STAT(reg, last, cur) \
-{ \
- u32 latest = E1000_READ_REG(hw, reg); \
- cur += latest - last; \
- last = latest; \
-}
-
-
-#define IGB_FC_PAUSE_TIME 0x0680
-#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
-#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
-
-#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
-
-static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
-
-/*
- * The set of PCI devices this driver supports
- */
-static const struct rte_pci_id pci_id_igb_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-/*
- * The set of PCI devices this driver supports (for 82576&I350 VF)
- */
-static const struct rte_pci_id pci_id_igbvf_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-static const struct eth_dev_ops eth_igb_ops = {
- .dev_configure = eth_igb_configure,
- .dev_start = eth_igb_start,
- .dev_stop = eth_igb_stop,
- .dev_close = eth_igb_close,
- .promiscuous_enable = eth_igb_promiscuous_enable,
- .promiscuous_disable = eth_igb_promiscuous_disable,
- .allmulticast_enable = eth_igb_allmulticast_enable,
- .allmulticast_disable = eth_igb_allmulticast_disable,
- .link_update = eth_igb_link_update,
- .stats_get = eth_igb_stats_get,
- .stats_reset = eth_igb_stats_reset,
- .dev_infos_get = eth_igb_infos_get,
- .mtu_set = eth_igb_mtu_set,
- .vlan_filter_set = eth_igb_vlan_filter_set,
- .vlan_tpid_set = eth_igb_vlan_tpid_set,
- .vlan_offload_set = eth_igb_vlan_offload_set,
- .rx_queue_setup = eth_igb_rx_queue_setup,
- .rx_queue_release = eth_igb_rx_queue_release,
- .rx_queue_count = eth_igb_rx_queue_count,
- .rx_descriptor_done = eth_igb_rx_descriptor_done,
- .tx_queue_setup = eth_igb_tx_queue_setup,
- .tx_queue_release = eth_igb_tx_queue_release,
- .dev_led_on = eth_igb_led_on,
- .dev_led_off = eth_igb_led_off,
- .flow_ctrl_get = eth_igb_flow_ctrl_get,
- .flow_ctrl_set = eth_igb_flow_ctrl_set,
- .mac_addr_add = eth_igb_rar_set,
- .mac_addr_remove = eth_igb_rar_clear,
- .reta_update = eth_igb_rss_reta_update,
- .reta_query = eth_igb_rss_reta_query,
- .rss_hash_update = eth_igb_rss_hash_update,
- .rss_hash_conf_get = eth_igb_rss_hash_conf_get,
- .filter_ctrl = eth_igb_filter_ctrl,
-};
-
-/*
- * dev_ops for virtual function, bare necessities for basic vf
- * operation have been implemented
- */
-static const struct eth_dev_ops igbvf_eth_dev_ops = {
- .dev_configure = igbvf_dev_configure,
- .dev_start = igbvf_dev_start,
- .dev_stop = igbvf_dev_stop,
- .dev_close = igbvf_dev_close,
- .link_update = eth_igb_link_update,
- .stats_get = eth_igbvf_stats_get,
- .stats_reset = eth_igbvf_stats_reset,
- .vlan_filter_set = igbvf_vlan_filter_set,
- .dev_infos_get = eth_igbvf_infos_get,
- .rx_queue_setup = eth_igb_rx_queue_setup,
- .rx_queue_release = eth_igb_rx_queue_release,
- .tx_queue_setup = eth_igb_tx_queue_setup,
- .tx_queue_release = eth_igb_tx_queue_release,
-};
-
-/**
- * Atomically reads the link status information from global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = link;
- struct rte_eth_link *src = &(dev->data->dev_link);
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-/**
- * Atomically writes the link status information into global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = &(dev->data->dev_link);
- struct rte_eth_link *src = link;
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-static inline void
-igb_intr_enable(struct rte_eth_dev *dev)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
- E1000_WRITE_FLUSH(hw);
-}
-
-static void
-igb_intr_disable(struct e1000_hw *hw)
-{
- E1000_WRITE_REG(hw, E1000_IMC, ~0);
- E1000_WRITE_FLUSH(hw);
-}
-
-static inline int32_t
-igb_pf_reset_hw(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext;
- int32_t status;
-
- status = e1000_reset_hw(hw);
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- /* Set PF Reset Done bit so PF/VF Mail Ops can work */
- ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- return status;
-}
-
-static void
-igb_identify_hardware(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- hw->vendor_id = dev->pci_dev->id.vendor_id;
- hw->device_id = dev->pci_dev->id.device_id;
- hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
- hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
-
- e1000_set_mac_type(hw);
-
- /* need to check if it is a vf device below */
-}
-
-static int
-igb_reset_swfw_lock(struct e1000_hw *hw)
-{
- int ret_val;
-
- /*
- * Do mac ops initialization manually here, since we will need
- * some function pointers set by this call.
- */
- ret_val = e1000_init_mac_params(hw);
- if (ret_val)
- return ret_val;
-
- /*
- * SMBI lock should not fail in this early stage. If this is the case,
- * it is due to an improper exit of the application.
- * So force the release of the faulty lock.
- */
- if (e1000_get_hw_semaphore_generic(hw) < 0) {
- PMD_DRV_LOG(DEBUG, "SMBI lock released");
- }
- e1000_put_hw_semaphore_generic(hw);
-
- if (hw->mac.ops.acquire_swfw_sync != NULL) {
- uint16_t mask;
-
- /*
- * Phy lock should not fail in this early stage. If this is the case,
- * it is due to an improper exit of the application.
- * So force the release of the faulty lock.
- */
- mask = E1000_SWFW_PHY0_SM << hw->bus.func;
- if (hw->bus.func > E1000_FUNC_1)
- mask <<= 2;
- if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
- PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
- hw->bus.func);
- }
- hw->mac.ops.release_swfw_sync(hw, mask);
-
- /*
- * This one is more tricky since it is common to all ports; but
- * swfw_sync retries last long enough (1s) to be almost sure that if
- * lock can not be taken it is due to an improper lock of the
- * semaphore.
- */
- mask = E1000_SWFW_EEP_SM;
- if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
- PMD_DRV_LOG(DEBUG, "SWFW common locks released");
- }
- hw->mac.ops.release_swfw_sync(hw, mask);
- }
-
- return E1000_SUCCESS;
-}
-
-static int
-eth_igb_dev_init(struct rte_eth_dev *eth_dev)
-{
- int error = 0;
- struct rte_pci_device *pci_dev;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
- uint32_t ctrl_ext;
-
- pci_dev = eth_dev->pci_dev;
- eth_dev->dev_ops = ð_igb_ops;
- eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
- eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
-
- /* for secondary processes, we don't initialise any further as primary
- * has already done this work. Only check we don't need a different
- * RX function */
- if (rte_eal_process_type() != RTE_PROC_PRIMARY){
- if (eth_dev->data->scattered_rx)
- eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
- return 0;
- }
-
- hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
-
- igb_identify_hardware(eth_dev);
- if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
- error = -EIO;
- goto err_late;
- }
-
- e1000_get_bus_info(hw);
-
- /* Reset any pending lock */
- if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
- error = -EIO;
- goto err_late;
- }
-
- /* Finish initialization */
- if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
- error = -EIO;
- goto err_late;
- }
-
- hw->mac.autoneg = 1;
- hw->phy.autoneg_wait_to_complete = 0;
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-
- /* Copper options */
- if (hw->phy.media_type == e1000_media_type_copper) {
- hw->phy.mdix = 0; /* AUTO_ALL_MODES */
- hw->phy.disable_polarity_correction = 0;
- hw->phy.ms_type = e1000_ms_hw_default;
- }
-
- /*
- * Start from a known state, this is important in reading the nvm
- * and mac from that.
- */
- igb_pf_reset_hw(hw);
-
- /* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(hw) < 0) {
- /*
- * Some PCI-E parts fail the first check due to
- * the link being in sleep state, call it again,
- * if it fails a second time its a real issue.
- */
- if (e1000_validate_nvm_checksum(hw) < 0) {
- PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
- error = -EIO;
- goto err_late;
- }
- }
-
- /* Read the permanent MAC address out of the EEPROM */
- if (e1000_read_mac_addr(hw) != 0) {
- PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
- error = -EIO;
- goto err_late;
- }
-
- /* Allocate memory for storing MAC addresses */
- eth_dev->data->mac_addrs = rte_zmalloc("e1000",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
- if (eth_dev->data->mac_addrs == NULL) {
- PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
- "store MAC addresses",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count);
- error = -ENOMEM;
- goto err_late;
- }
-
- /* Copy the permanent MAC address */
- ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
-
- /* initialize the vfta */
- memset(shadow_vfta, 0, sizeof(*shadow_vfta));
-
- /* Now initialize the hardware */
- if (igb_hardware_init(hw) != 0) {
- PMD_INIT_LOG(ERR, "Hardware initialization failed");
- rte_free(eth_dev->data->mac_addrs);
- eth_dev->data->mac_addrs = NULL;
- error = -ENODEV;
- goto err_late;
- }
- hw->mac.get_link_status = 1;
-
- /* Indicate SOL/IDER usage */
- if (e1000_check_reset_block(hw) < 0) {
- PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
- "SOL/IDER session");
- }
-
- /* initialize PF if max_vfs not zero */
- igb_pf_host_init(eth_dev);
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- /* Set PF Reset Done bit so PF/VF Mail Ops can work */
- ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
- eth_dev->data->port_id, pci_dev->id.vendor_id,
- pci_dev->id.device_id);
-
- rte_intr_callback_register(&(pci_dev->intr_handle),
- eth_igb_interrupt_handler, (void *)eth_dev);
-
- /* enable uio intr after callback register */
- rte_intr_enable(&(pci_dev->intr_handle));
-
- /* enable support intr */
- igb_intr_enable(eth_dev);
-
- TAILQ_INIT(&filter_info->flex_list);
- filter_info->flex_mask = 0;
- TAILQ_INIT(&filter_info->twotuple_list);
- filter_info->twotuple_mask = 0;
- TAILQ_INIT(&filter_info->fivetuple_list);
- filter_info->fivetuple_mask = 0;
-
- return 0;
-
-err_late:
- igb_hw_control_release(hw);
-
- return (error);
-}
-
-/*
- * Virtual Function device init
- */
-static int
-eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
-{
- struct rte_pci_device *pci_dev;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- int diag;
-
- PMD_INIT_FUNC_TRACE();
-
- eth_dev->dev_ops = &igbvf_eth_dev_ops;
- eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
- eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
-
- /* for secondary processes, we don't initialise any further as primary
- * has already done this work. Only check we don't need a different
- * RX function */
- if (rte_eal_process_type() != RTE_PROC_PRIMARY){
- if (eth_dev->data->scattered_rx)
- eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
- return 0;
- }
-
- pci_dev = eth_dev->pci_dev;
-
- hw->device_id = pci_dev->id.device_id;
- hw->vendor_id = pci_dev->id.vendor_id;
- hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
-
- /* Initialize the shared code (base driver) */
- diag = e1000_setup_init_funcs(hw, TRUE);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
- diag);
- return -EIO;
- }
-
- /* init_mailbox_params */
- hw->mbx.ops.init_params(hw);
-
- /* Disable the interrupts for VF */
- igbvf_intr_disable(hw);
-
- diag = hw->mac.ops.reset_hw(hw);
-
- /* Allocate memory for storing MAC addresses */
- eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
- hw->mac.rar_entry_count, 0);
- if (eth_dev->data->mac_addrs == NULL) {
- PMD_INIT_LOG(ERR,
- "Failed to allocate %d bytes needed to store MAC "
- "addresses",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count);
- return -ENOMEM;
- }
-
- /* Copy the permanent MAC address */
- ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
- ð_dev->data->mac_addrs[0]);
-
- PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
- "mac.type=%s",
- eth_dev->data->port_id, pci_dev->id.vendor_id,
- pci_dev->id.device_id, "igb_mac_82576_vf");
-
- return 0;
-}
-
-static struct eth_driver rte_igb_pmd = {
- {
- .name = "rte_igb_pmd",
- .id_table = pci_id_igb_map,
- .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
- },
- .eth_dev_init = eth_igb_dev_init,
- .dev_private_size = sizeof(struct e1000_adapter),
-};
-
-/*
- * virtual function driver struct
- */
-static struct eth_driver rte_igbvf_pmd = {
- {
- .name = "rte_igbvf_pmd",
- .id_table = pci_id_igbvf_map,
- .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
- },
- .eth_dev_init = eth_igbvf_dev_init,
- .dev_private_size = sizeof(struct e1000_adapter),
-};
-
-static int
-rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
- rte_eth_driver_register(&rte_igb_pmd);
- return 0;
-}
-
-static void
-igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
- uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-/*
- * VF Driver initialization routine.
- * Invoked one at EAL init time.
- * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
- */
-static int
-rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
- PMD_INIT_FUNC_TRACE();
-
- rte_eth_driver_register(&rte_igbvf_pmd);
- return (0);
-}
-
-static int
-eth_igb_configure(struct rte_eth_dev *dev)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- PMD_INIT_FUNC_TRACE();
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
- PMD_INIT_FUNC_TRACE();
-
- return (0);
-}
-
-static int
-eth_igb_start(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret, i, mask;
- uint32_t ctrl_ext;
-
- PMD_INIT_FUNC_TRACE();
-
- /* Power up the phy. Needed to make the link go Up */
- e1000_power_up_phy(hw);
-
- /*
- * Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- */
- if (hw->mac.type == e1000_82575) {
- uint32_t pba;
-
- pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
- E1000_WRITE_REG(hw, E1000_PBA, pba);
- }
-
- /* Put the address into the Receive Address Array */
- e1000_rar_set(hw, hw->mac.addr, 0);
-
- /* Initialize the hardware */
- if (igb_hardware_init(hw)) {
- PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
- return (-EIO);
- }
-
- E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- /* Set PF Reset Done bit so PF/VF Mail Ops can work */
- ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- /* configure PF module if SRIOV enabled */
- igb_pf_host_configure(dev);
-
- /* Configure for OS presence */
- igb_init_manageability(hw);
-
- eth_igb_tx_init(dev);
-
- /* This can fail when allocating mbufs for descriptor rings */
- ret = eth_igb_rx_init(dev);
- if (ret) {
- PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
- igb_dev_clear_queues(dev);
- return ret;
- }
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- /*
- * VLAN Offload Settings
- */
- mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
- ETH_VLAN_EXTEND_MASK;
- eth_igb_vlan_offload_set(dev, mask);
-
- if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
- /* Enable VLAN filter since VMDq always use VLAN filter */
- igb_vmdq_vlan_hw_filter_enable(dev);
- }
-
- /*
- * Configure the Interrupt Moderation register (EITR) with the maximum
- * possible value (0xFFFF) to minimize "System Partial Write" issued by
- * spurious [DMA] memory updates of RX and TX ring descriptors.
- *
- * With a EITR granularity of 2 microseconds in the 82576, only 7/8
- * spurious memory updates per second should be expected.
- * ((65535 * 2) / 1000.1000 ~= 0.131 second).
- *
- * Because interrupts are not used at all, the MSI-X is not activated
- * and interrupt moderation is controlled by EITR[0].
- *
- * Note that having [almost] disabled memory updates of RX and TX ring
- * descriptors through the Interrupt Moderation mechanism, memory
- * updates of ring descriptors are now moderated by the configurable
- * value of Write-Back Threshold registers.
- */
- if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
- (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
- (hw->mac.type == e1000_i211)) {
- uint32_t ivar;
-
- /* Enable all RX & TX queues in the IVAR registers */
- ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
- for (i = 0; i < 8; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
-
- /* Configure EITR with the maximum possible value (0xFFFF) */
- E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
- }
-
- /* Setup link speed and duplex */
- switch (dev->data->dev_conf.link_speed) {
- case ETH_LINK_SPEED_AUTONEG:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_100:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_1000:
- if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
- (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
- hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10000:
- default:
- goto error_invalid_config;
- }
- e1000_setup_link(hw);
-
- /* check if lsc interrupt feature is enabled */
- if (dev->data->dev_conf.intr_conf.lsc != 0)
- ret = eth_igb_lsc_interrupt_setup(dev);
-
- /* resume enabled intr since hw reset */
- igb_intr_enable(dev);
-
- PMD_INIT_LOG(DEBUG, "<<");
-
- return (0);
-
-error_invalid_config:
- PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
- dev->data->dev_conf.link_speed,
- dev->data->dev_conf.link_duplex, dev->data->port_id);
- igb_dev_clear_queues(dev);
- return (-EINVAL);
-}
-
-/*********************************************************************
- *
- * This routine disables all traffic on the adapter by issuing a
- * global reset on the MAC.
- *
- **********************************************************************/
-static void
-eth_igb_stop(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct rte_eth_link link;
- struct e1000_flex_filter *p_flex;
- struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
- struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
-
- igb_intr_disable(hw);
- igb_pf_reset_hw(hw);
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- /* Set bit for Go Link disconnect */
- if (hw->mac.type >= e1000_82580) {
- uint32_t phpm_reg;
-
- phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
- phpm_reg |= E1000_82580_PM_GO_LINKD;
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
- }
-
- /* Power down the phy. Needed to make the link go Down */
- if (hw->phy.media_type == e1000_media_type_copper)
- e1000_power_down_phy(hw);
- else
- e1000_shutdown_fiber_serdes_link(hw);
-
- igb_dev_clear_queues(dev);
-
- /* clear the recorded link status */
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_write_link_status(dev, &link);
-
- /* Remove all flex filters of the device */
- while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
- TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
- rte_free(p_flex);
- }
- filter_info->flex_mask = 0;
-
- /* Remove all ntuple filters of the device */
- for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
- p_5tuple != NULL; p_5tuple = p_5tuple_next) {
- p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
- TAILQ_REMOVE(&filter_info->fivetuple_list,
- p_5tuple, entries);
- rte_free(p_5tuple);
- }
- filter_info->fivetuple_mask = 0;
- for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
- p_2tuple != NULL; p_2tuple = p_2tuple_next) {
- p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
- TAILQ_REMOVE(&filter_info->twotuple_list,
- p_2tuple, entries);
- rte_free(p_2tuple);
- }
- filter_info->twotuple_mask = 0;
-}
-
-static void
-eth_igb_close(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link;
-
- eth_igb_stop(dev);
- e1000_phy_hw_reset(hw);
- igb_release_manageability(hw);
- igb_hw_control_release(hw);
-
- /* Clear bit for Go Link disconnect */
- if (hw->mac.type >= e1000_82580) {
- uint32_t phpm_reg;
-
- phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
- phpm_reg &= ~E1000_82580_PM_GO_LINKD;
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
- }
-
- igb_dev_clear_queues(dev);
-
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_write_link_status(dev, &link);
-}
-
-static int
-igb_get_rx_buffer_size(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
- if (hw->mac.type == e1000_82576) {
- rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
- } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
- /* PBS needs to be translated according to a lookup table */
- rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
- rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
- rx_buf_size = (rx_buf_size << 10);
- } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
- rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
- } else {
- rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
- }
-
- return rx_buf_size;
-}
-
-/*********************************************************************
- *
- * Initialize the hardware
- *
- **********************************************************************/
-static int
-igb_hardware_init(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
- int diag;
-
- /* Let the firmware know the OS is in control */
- igb_hw_control_acquire(hw);
-
- /*
- * These parameters control the automatic generation (Tx) and
- * response (Rx) to Ethernet PAUSE frames.
- * - High water mark should allow for at least two standard size (1518)
- * frames to be received after sending an XOFF.
- * - Low water mark works best when it is very near the high water mark.
- * This allows the receiver to restart by sending XON when it has
- * drained a bit. Here we use an arbitrary value of 1500 which will
- * restart after one full frame is pulled from the buffer. There
- * could be several smaller frames in the buffer and if so they will
- * not trigger the XON until their total number reduces the buffer
- * by 1500.
- * - The pause time is fairly large at 1000 x 512ns = 512 usec.
- */
- rx_buf_size = igb_get_rx_buffer_size(hw);
-
- hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
- hw->fc.low_water = hw->fc.high_water - 1500;
- hw->fc.pause_time = IGB_FC_PAUSE_TIME;
- hw->fc.send_xon = 1;
-
- /* Set Flow control, use the tunable location if sane */
- if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
- hw->fc.requested_mode = igb_fc_setting;
- else
- hw->fc.requested_mode = e1000_fc_none;
-
- /* Issue a global reset */
- igb_pf_reset_hw(hw);
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- diag = e1000_init_hw(hw);
- if (diag < 0)
- return (diag);
-
- E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
- e1000_get_phy_info(hw);
- e1000_check_for_link(hw);
-
- return (0);
-}
-
-/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
-static void
-eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_hw_stats *stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
- int pause_frames;
-
- if(hw->phy.media_type == e1000_media_type_copper ||
- (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- stats->symerrs +=
- E1000_READ_REG(hw,E1000_SYMERRS);
- stats->sec += E1000_READ_REG(hw, E1000_SEC);
- }
-
- stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
- stats->mpc += E1000_READ_REG(hw, E1000_MPC);
- stats->scc += E1000_READ_REG(hw, E1000_SCC);
- stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
- stats->mcc += E1000_READ_REG(hw, E1000_MCC);
- stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
- stats->colc += E1000_READ_REG(hw, E1000_COLC);
- stats->dc += E1000_READ_REG(hw, E1000_DC);
- stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
- stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
- stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
- /*
- ** For watchdog management we need to know if we have been
- ** paused during the last interval, so capture that here.
- */
- pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
- stats->xoffrxc += pause_frames;
- stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
- stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
- stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
- stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
- stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
- stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
- stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
- stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
- stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
- stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
- stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
- stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
- /* For the 64-bit byte counters the low dword must be read first. */
- /* Both registers clear on the read of the high dword */
-
- stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
- stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
- stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
- stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
- stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
- stats->ruc += E1000_READ_REG(hw, E1000_RUC);
- stats->rfc += E1000_READ_REG(hw, E1000_RFC);
- stats->roc += E1000_READ_REG(hw, E1000_ROC);
- stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
- stats->tor += E1000_READ_REG(hw, E1000_TORH);
- stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
- stats->tpr += E1000_READ_REG(hw, E1000_TPR);
- stats->tpt += E1000_READ_REG(hw, E1000_TPT);
- stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
- stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
- stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
- stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
- stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
- stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
- stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
- stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
- /* Interrupt Counts */
-
- stats->iac += E1000_READ_REG(hw, E1000_IAC);
- stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
- stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
- stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
- stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
- stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
- stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
- stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
- stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
-
- /* Host to Card Statistics */
-
- stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
- stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
- stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
- stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
- stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
- stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
- stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
- stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
- stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
- stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
- stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
- stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
- stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
- stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
-
- stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
- stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
- stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
- stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
- stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
- stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
-
- if (rte_stats == NULL)
- return;
-
- /* Rx Errors */
- rte_stats->ibadcrc = stats->crcerrs;
- rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
- rte_stats->imissed = stats->mpc;
- rte_stats->ierrors = rte_stats->ibadcrc +
- rte_stats->ibadlen +
- rte_stats->imissed +
- stats->rxerrc + stats->algnerrc + stats->cexterr;
-
- /* Tx Errors */
- rte_stats->oerrors = stats->ecol + stats->latecol;
-
- /* XON/XOFF pause frames */
- rte_stats->tx_pause_xon = stats->xontxc;
- rte_stats->rx_pause_xon = stats->xonrxc;
- rte_stats->tx_pause_xoff = stats->xofftxc;
- rte_stats->rx_pause_xoff = stats->xoffrxc;
-
- rte_stats->ipackets = stats->gprc;
- rte_stats->opackets = stats->gptc;
- rte_stats->ibytes = stats->gorc;
- rte_stats->obytes = stats->gotc;
-}
-
-static void
-eth_igb_stats_reset(struct rte_eth_dev *dev)
-{
- struct e1000_hw_stats *hw_stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
- /* HW registers are cleared on read */
- eth_igb_stats_get(dev, NULL);
-
- /* Reset software totals */
- memset(hw_stats, 0, sizeof(*hw_stats));
-}
-
-static void
-eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
- /* Good Rx packets, include VF loopback */
- UPDATE_VF_STAT(E1000_VFGPRC,
- hw_stats->last_gprc, hw_stats->gprc);
-
- /* Good Rx octets, include VF loopback */
- UPDATE_VF_STAT(E1000_VFGORC,
- hw_stats->last_gorc, hw_stats->gorc);
-
- /* Good Tx packets, include VF loopback */
- UPDATE_VF_STAT(E1000_VFGPTC,
- hw_stats->last_gptc, hw_stats->gptc);
-
- /* Good Tx octets, include VF loopback */
- UPDATE_VF_STAT(E1000_VFGOTC,
- hw_stats->last_gotc, hw_stats->gotc);
-
- /* Rx Multicst packets */
- UPDATE_VF_STAT(E1000_VFMPRC,
- hw_stats->last_mprc, hw_stats->mprc);
-
- /* Good Rx loopback packets */
- UPDATE_VF_STAT(E1000_VFGPRLBC,
- hw_stats->last_gprlbc, hw_stats->gprlbc);
-
- /* Good Rx loopback octets */
- UPDATE_VF_STAT(E1000_VFGORLBC,
- hw_stats->last_gorlbc, hw_stats->gorlbc);
-
- /* Good Tx loopback packets */
- UPDATE_VF_STAT(E1000_VFGPTLBC,
- hw_stats->last_gptlbc, hw_stats->gptlbc);
-
- /* Good Tx loopback octets */
- UPDATE_VF_STAT(E1000_VFGOTLBC,
- hw_stats->last_gotlbc, hw_stats->gotlbc);
-
- if (rte_stats == NULL)
- return;
-
- rte_stats->ipackets = hw_stats->gprc;
- rte_stats->ibytes = hw_stats->gorc;
- rte_stats->opackets = hw_stats->gptc;
- rte_stats->obytes = hw_stats->gotc;
- rte_stats->imcasts = hw_stats->mprc;
- rte_stats->ilbpackets = hw_stats->gprlbc;
- rte_stats->ilbbytes = hw_stats->gorlbc;
- rte_stats->olbpackets = hw_stats->gptlbc;
- rte_stats->olbbytes = hw_stats->gotlbc;
-
-}
-
-static void
-eth_igbvf_stats_reset(struct rte_eth_dev *dev)
-{
- struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
- /* Sync HW register to the last stats */
- eth_igbvf_stats_get(dev, NULL);
-
- /* reset HW current stats*/
- memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
- offsetof(struct e1000_vf_stats, gprc));
-
-}
-
-static void
-eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
- dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
- dev_info->max_mac_addrs = hw->mac.rar_entry_count;
- dev_info->rx_offload_capa =
- DEV_RX_OFFLOAD_VLAN_STRIP |
- DEV_RX_OFFLOAD_IPV4_CKSUM |
- DEV_RX_OFFLOAD_UDP_CKSUM |
- DEV_RX_OFFLOAD_TCP_CKSUM;
- dev_info->tx_offload_capa =
- DEV_TX_OFFLOAD_VLAN_INSERT |
- DEV_TX_OFFLOAD_IPV4_CKSUM |
- DEV_TX_OFFLOAD_UDP_CKSUM |
- DEV_TX_OFFLOAD_TCP_CKSUM |
- DEV_TX_OFFLOAD_SCTP_CKSUM;
-
- switch (hw->mac.type) {
- case e1000_82575:
- dev_info->max_rx_queues = 4;
- dev_info->max_tx_queues = 4;
- dev_info->max_vmdq_pools = 0;
- break;
-
- case e1000_82576:
- dev_info->max_rx_queues = 16;
- dev_info->max_tx_queues = 16;
- dev_info->max_vmdq_pools = ETH_8_POOLS;
- dev_info->vmdq_queue_num = 16;
- break;
-
- case e1000_82580:
- dev_info->max_rx_queues = 8;
- dev_info->max_tx_queues = 8;
- dev_info->max_vmdq_pools = ETH_8_POOLS;
- dev_info->vmdq_queue_num = 8;
- break;
-
- case e1000_i350:
- dev_info->max_rx_queues = 8;
- dev_info->max_tx_queues = 8;
- dev_info->max_vmdq_pools = ETH_8_POOLS;
- dev_info->vmdq_queue_num = 8;
- break;
-
- case e1000_i354:
- dev_info->max_rx_queues = 8;
- dev_info->max_tx_queues = 8;
- break;
-
- case e1000_i210:
- dev_info->max_rx_queues = 4;
- dev_info->max_tx_queues = 4;
- dev_info->max_vmdq_pools = 0;
- break;
-
- case e1000_i211:
- dev_info->max_rx_queues = 2;
- dev_info->max_tx_queues = 2;
- dev_info->max_vmdq_pools = 0;
- break;
-
- default:
- /* Should not happen */
- break;
- }
- dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
- dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
-
- dev_info->default_rxconf = (struct rte_eth_rxconf) {
- .rx_thresh = {
- .pthresh = IGB_DEFAULT_RX_PTHRESH,
- .hthresh = IGB_DEFAULT_RX_HTHRESH,
- .wthresh = IGB_DEFAULT_RX_WTHRESH,
- },
- .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
- .rx_drop_en = 0,
- };
-
- dev_info->default_txconf = (struct rte_eth_txconf) {
- .tx_thresh = {
- .pthresh = IGB_DEFAULT_TX_PTHRESH,
- .hthresh = IGB_DEFAULT_TX_HTHRESH,
- .wthresh = IGB_DEFAULT_TX_WTHRESH,
- },
- .txq_flags = 0,
- };
-}
-
-static void
-eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
- dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
- dev_info->max_mac_addrs = hw->mac.rar_entry_count;
- dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
- DEV_RX_OFFLOAD_IPV4_CKSUM |
- DEV_RX_OFFLOAD_UDP_CKSUM |
- DEV_RX_OFFLOAD_TCP_CKSUM;
- dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
- DEV_TX_OFFLOAD_IPV4_CKSUM |
- DEV_TX_OFFLOAD_UDP_CKSUM |
- DEV_TX_OFFLOAD_TCP_CKSUM |
- DEV_TX_OFFLOAD_SCTP_CKSUM;
- switch (hw->mac.type) {
- case e1000_vfadapt:
- dev_info->max_rx_queues = 2;
- dev_info->max_tx_queues = 2;
- break;
- case e1000_vfadapt_i350:
- dev_info->max_rx_queues = 1;
- dev_info->max_tx_queues = 1;
- break;
- default:
- /* Should not happen */
- break;
- }
-
- dev_info->default_rxconf = (struct rte_eth_rxconf) {
- .rx_thresh = {
- .pthresh = IGB_DEFAULT_RX_PTHRESH,
- .hthresh = IGB_DEFAULT_RX_HTHRESH,
- .wthresh = IGB_DEFAULT_RX_WTHRESH,
- },
- .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
- .rx_drop_en = 0,
- };
-
- dev_info->default_txconf = (struct rte_eth_txconf) {
- .tx_thresh = {
- .pthresh = IGB_DEFAULT_TX_PTHRESH,
- .hthresh = IGB_DEFAULT_TX_HTHRESH,
- .wthresh = IGB_DEFAULT_TX_WTHRESH,
- },
- .txq_flags = 0,
- };
-}
-
-/* return 0 means link status changed, -1 means not changed */
-static int
-eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link, old;
- int link_check, count;
-
- link_check = 0;
- hw->mac.get_link_status = 1;
-
- /* possible wait-to-complete in up to 9 seconds */
- for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
- /* Read the real link status */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- /* Do the work to read phy */
- e1000_check_for_link(hw);
- link_check = !hw->mac.get_link_status;
- break;
-
- case e1000_media_type_fiber:
- e1000_check_for_link(hw);
- link_check = (E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_LU);
- break;
-
- case e1000_media_type_internal_serdes:
- e1000_check_for_link(hw);
- link_check = hw->mac.serdes_has_link;
- break;
-
- /* VF device is type_unknown */
- case e1000_media_type_unknown:
- eth_igbvf_link_update(hw);
- link_check = !hw->mac.get_link_status;
- break;
-
- default:
- break;
- }
- if (link_check || wait_to_complete == 0)
- break;
- rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
- }
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_read_link_status(dev, &link);
- old = link;
-
- /* Now we check if a transition has happened */
- if (link_check) {
- hw->mac.ops.get_link_up_info(hw, &link.link_speed,
- &link.link_duplex);
- link.link_status = 1;
- } else if (!link_check) {
- link.link_speed = 0;
- link.link_duplex = 0;
- link.link_status = 0;
- }
- rte_igb_dev_atomic_write_link_status(dev, &link);
-
- /* not changed */
- if (old.link_status == link.link_status)
- return -1;
-
- /* changed */
- return 0;
-}
-
-/*
- * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means
- * that the driver is loaded.
- */
-static void
-igb_hw_control_acquire(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext;
-
- /* Let firmware know the driver has taken over */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded.
- */
-static void
-igb_hw_control_release(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext;
-
- /* Let firmware taken over control of h/w */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features.
- */
-static void
-igb_init_manageability(struct e1000_hw *hw)
-{
- if (e1000_enable_mng_pass_thru(hw)) {
- uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
- uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
- /* disable hardware interception of ARP */
- manc &= ~(E1000_MANC_ARP_EN);
-
- /* enable receiving management packets to the host */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h |= 1 << 5; /* Mng Port 623 */
- manc2h |= 1 << 6; /* Mng Port 664 */
- E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-static void
-igb_release_manageability(struct e1000_hw *hw)
-{
- if (e1000_enable_mng_pass_thru(hw)) {
- uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
- manc |= E1000_MANC_ARP_EN;
- manc &= ~E1000_MANC_EN_MNG2HOST;
-
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-static void
-eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= (~E1000_RCTL_UPE);
- if (dev->data->all_multicast == 1)
- rctl |= E1000_RCTL_MPE;
- else
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- if (dev->data->promiscuous == 1)
- return; /* must remain in all_multicast mode */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static int
-eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t vfta;
- uint32_t vid_idx;
- uint32_t vid_bit;
-
- vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK);
- vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
- if (on)
- vfta |= vid_bit;
- else
- vfta &= ~vid_bit;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-
- /* update local VFTA copy */
- shadow_vfta->vfta[vid_idx] = vfta;
-
- return 0;
-}
-
-static void
-eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg = ETHER_TYPE_VLAN ;
-
- reg |= (tpid << 16);
- E1000_WRITE_REG(hw, E1000_VET, reg);
-}
-
-static void
-igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* Filter Table Disable */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg &= ~E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-}
-
-static void
-igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t reg;
- int i;
-
- /* Filter Table Enable, CFI not used for packet acceptance */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
- /* restore VFTA table */
- for (i = 0; i < IGB_VFTA_SIZE; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
-}
-
-static void
-igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* VLAN Mode Disable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg &= ~E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* VLAN Mode Enable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* CTRL_EXT: Extended VLAN */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* Update maximum packet length */
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
- E1000_WRITE_REG(hw, E1000_RLPML,
- dev->data->dev_conf.rxmode.max_rx_pkt_len +
- VLAN_TAG_SIZE);
-}
-
-static void
-igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* CTRL_EXT: Extended VLAN */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg |= E1000_CTRL_EXT_EXTEND_VLAN;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* Update maximum packet length */
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
- E1000_WRITE_REG(hw, E1000_RLPML,
- dev->data->dev_conf.rxmode.max_rx_pkt_len +
- 2 * VLAN_TAG_SIZE);
-}
-
-static void
-eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
-{
- if(mask & ETH_VLAN_STRIP_MASK){
- if (dev->data->dev_conf.rxmode.hw_vlan_strip)
- igb_vlan_hw_strip_enable(dev);
- else
- igb_vlan_hw_strip_disable(dev);
- }
-
- if(mask & ETH_VLAN_FILTER_MASK){
- if (dev->data->dev_conf.rxmode.hw_vlan_filter)
- igb_vlan_hw_filter_enable(dev);
- else
- igb_vlan_hw_filter_disable(dev);
- }
-
- if(mask & ETH_VLAN_EXTEND_MASK){
- if (dev->data->dev_conf.rxmode.hw_vlan_extend)
- igb_vlan_hw_extend_enable(dev);
- else
- igb_vlan_hw_extend_disable(dev);
- }
-}
-
-
-/**
- * It enables the interrupt mask and then enable the interrupt.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- intr->mask |= E1000_ICR_LSC;
-
- return 0;
-}
-
-/*
- * It reads ICR and gets interrupt causes, check it and set a bit flag
- * to update link status.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
-{
- uint32_t icr;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- igb_intr_disable(hw);
-
- /* read-on-clear nic registers here */
- icr = E1000_READ_REG(hw, E1000_ICR);
-
- intr->flags = 0;
- if (icr & E1000_ICR_LSC) {
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
- }
-
- if (icr & E1000_ICR_VMMB)
- intr->flags |= E1000_FLAG_MAILBOX;
-
- return 0;
-}
-
-/*
- * It executes link_update after knowing an interrupt is prsent.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_action(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
- uint32_t tctl, rctl;
- struct rte_eth_link link;
- int ret;
-
- if (intr->flags & E1000_FLAG_MAILBOX) {
- igb_pf_mbx_process(dev);
- intr->flags &= ~E1000_FLAG_MAILBOX;
- }
-
- igb_intr_enable(dev);
- rte_intr_enable(&(dev->pci_dev->intr_handle));
-
- if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
- intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
-
- /* set get_link_status to check register later */
- hw->mac.get_link_status = 1;
- ret = eth_igb_link_update(dev, 0);
-
- /* check if link has changed */
- if (ret < 0)
- return 0;
-
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_read_link_status(dev, &link);
- if (link.link_status) {
- PMD_INIT_LOG(INFO,
- " Port %d: Link Up - speed %u Mbps - %s",
- dev->data->port_id,
- (unsigned)link.link_speed,
- link.link_duplex == ETH_LINK_FULL_DUPLEX ?
- "full-duplex" : "half-duplex");
- } else {
- PMD_INIT_LOG(INFO, " Port %d: Link Down",
- dev->data->port_id);
- }
- PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
- dev->pci_dev->addr.domain,
- dev->pci_dev->addr.bus,
- dev->pci_dev->addr.devid,
- dev->pci_dev->addr.function);
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- if (link.link_status) {
- /* enable Tx/Rx */
- tctl |= E1000_TCTL_EN;
- rctl |= E1000_RCTL_EN;
- } else {
- /* disable Tx/Rx */
- tctl &= ~E1000_TCTL_EN;
- rctl &= ~E1000_RCTL_EN;
- }
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
- _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
- }
-
- return 0;
-}
-
-/**
- * Interrupt handler which shall be registered at first.
- *
- * @param handle
- * Pointer to interrupt handle.
- * @param param
- * The address of parameter (struct rte_eth_dev *) regsitered before.
- *
- * @return
- * void
- */
-static void
-eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
- void *param)
-{
- struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
-
- eth_igb_interrupt_get_status(dev);
- eth_igb_interrupt_action(dev);
-}
-
-static int
-eth_igb_led_on(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_led_off(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
- struct e1000_hw *hw;
- uint32_t ctrl;
- int tx_pause;
- int rx_pause;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- fc_conf->pause_time = hw->fc.pause_time;
- fc_conf->high_water = hw->fc.high_water;
- fc_conf->low_water = hw->fc.low_water;
- fc_conf->send_xon = hw->fc.send_xon;
- fc_conf->autoneg = hw->mac.autoneg;
-
- /*
- * Return rx_pause and tx_pause status according to actual setting of
- * the TFCE and RFCE bits in the CTRL register.
- */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- if (ctrl & E1000_CTRL_TFCE)
- tx_pause = 1;
- else
- tx_pause = 0;
-
- if (ctrl & E1000_CTRL_RFCE)
- rx_pause = 1;
- else
- rx_pause = 0;
-
- if (rx_pause && tx_pause)
- fc_conf->mode = RTE_FC_FULL;
- else if (rx_pause)
- fc_conf->mode = RTE_FC_RX_PAUSE;
- else if (tx_pause)
- fc_conf->mode = RTE_FC_TX_PAUSE;
- else
- fc_conf->mode = RTE_FC_NONE;
-
- return 0;
-}
-
-static int
-eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
- struct e1000_hw *hw;
- int err;
- enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
- e1000_fc_none,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full
- };
- uint32_t rx_buf_size;
- uint32_t max_high_water;
- uint32_t rctl;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- if (fc_conf->autoneg != hw->mac.autoneg)
- return -ENOTSUP;
- rx_buf_size = igb_get_rx_buffer_size(hw);
- PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
-
- /* At least reserve one Ethernet frame for watermark */
- max_high_water = rx_buf_size - ETHER_MAX_LEN;
- if ((fc_conf->high_water > max_high_water) ||
- (fc_conf->high_water < fc_conf->low_water)) {
- PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
- PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
- return (-EINVAL);
- }
-
- hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
- hw->fc.pause_time = fc_conf->pause_time;
- hw->fc.high_water = fc_conf->high_water;
- hw->fc.low_water = fc_conf->low_water;
- hw->fc.send_xon = fc_conf->send_xon;
-
- err = e1000_setup_link_generic(hw);
- if (err == E1000_SUCCESS) {
-
- /* check if we want to forward MAC frames - driver doesn't have native
- * capability to do that, so we'll write the registers ourselves */
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
-
- /* set or clear MFLCN.PMCF bit depending on configuration */
- if (fc_conf->mac_ctrl_frame_fwd != 0)
- rctl |= E1000_RCTL_PMCF;
- else
- rctl &= ~E1000_RCTL_PMCF;
-
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
- }
-
- PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
- return (-EIO);
-}
-
-#define E1000_RAH_POOLSEL_SHIFT (18)
-static void
-eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
- uint32_t index, __rte_unused uint32_t pool)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rah;
-
- e1000_rar_set(hw, mac_addr->addr_bytes, index);
- rah = E1000_READ_REG(hw, E1000_RAH(index));
- rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
- E1000_WRITE_REG(hw, E1000_RAH(index), rah);
-}
-
-static void
-eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
-{
- uint8_t addr[ETHER_ADDR_LEN];
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- memset(addr, 0, sizeof(addr));
-
- e1000_rar_set(hw, addr, index);
-}
-
-/*
- * Virtual Function operations
- */
-static void
-igbvf_intr_disable(struct e1000_hw *hw)
-{
- PMD_INIT_FUNC_TRACE();
-
- /* Clear interrupt mask to stop from interrupts being generated */
- E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
-
- E1000_WRITE_FLUSH(hw);
-}
-
-static void
-igbvf_stop_adapter(struct rte_eth_dev *dev)
-{
- u32 reg_val;
- u16 i;
- struct rte_eth_dev_info dev_info;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- memset(&dev_info, 0, sizeof(dev_info));
- eth_igbvf_infos_get(dev, &dev_info);
-
- /* Clear interrupt mask to stop from interrupts being generated */
- igbvf_intr_disable(hw);
-
- /* Clear any pending interrupts, flush previous writes */
- E1000_READ_REG(hw, E1000_EICR);
-
- /* Disable the transmit unit. Each queue must be disabled. */
- for (i = 0; i < dev_info.max_tx_queues; i++)
- E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
-
- /* Disable the receive unit by stopping each queue */
- for (i = 0; i < dev_info.max_rx_queues; i++) {
- reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
- reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
- while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
- ;
- }
-
- /* flush all queues disables */
- E1000_WRITE_FLUSH(hw);
- msec_delay(2);
-}
-
-static int eth_igbvf_link_update(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- struct e1000_mac_info *mac = &hw->mac;
- int ret_val = E1000_SUCCESS;
-
- PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
-
- /*
- * We only want to run this if there has been a rst asserted.
- * in this case that could mean a link change, device reset,
- * or a virtual function reset
- */
-
- /* If we were hit with a reset or timeout drop the link */
- if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
- mac->get_link_status = TRUE;
-
- if (!mac->get_link_status)
- goto out;
-
- /* if link status is down no point in checking to see if pf is up */
- if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
- goto out;
-
- /* if we passed all the tests above then the link is up and we no
- * longer need to check for link */
- mac->get_link_status = FALSE;
-
-out:
- return ret_val;
-}
-
-
-static int
-igbvf_dev_configure(struct rte_eth_dev *dev)
-{
- struct rte_eth_conf* conf = &dev->data->dev_conf;
-
- PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
- dev->data->port_id);
-
- /*
- * VF has no ability to enable/disable HW CRC
- * Keep the persistent behavior the same as Host PF
- */
-#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
- if (!conf->rxmode.hw_strip_crc) {
- PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip");
- conf->rxmode.hw_strip_crc = 1;
- }
-#else
- if (conf->rxmode.hw_strip_crc) {
- PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip");
- conf->rxmode.hw_strip_crc = 0;
- }
-#endif
-
- return 0;
-}
-
-static int
-igbvf_dev_start(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret;
-
- PMD_INIT_FUNC_TRACE();
-
- hw->mac.ops.reset_hw(hw);
-
- /* Set all vfta */
- igbvf_set_vfta_all(dev,1);
-
- eth_igbvf_tx_init(dev);
-
- /* This can fail when allocating mbufs for descriptor rings */
- ret = eth_igbvf_rx_init(dev);
- if (ret) {
- PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
- igb_dev_clear_queues(dev);
- return ret;
- }
-
- return 0;
-}
-
-static void
-igbvf_dev_stop(struct rte_eth_dev *dev)
-{
- PMD_INIT_FUNC_TRACE();
-
- igbvf_stop_adapter(dev);
-
- /*
- * Clear what we set, but we still keep shadow_vfta to
- * restore after device starts
- */
- igbvf_set_vfta_all(dev,0);
-
- igb_dev_clear_queues(dev);
-}
-
-static void
-igbvf_dev_close(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- PMD_INIT_FUNC_TRACE();
-
- e1000_reset_hw(hw);
-
- igbvf_dev_stop(dev);
-}
-
-static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- uint32_t msgbuf[2];
-
- /* After set vlan, vlan strip will also be enabled in igb driver*/
- msgbuf[0] = E1000_VF_SET_VLAN;
- msgbuf[1] = vid;
- /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
- if (on)
- msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
-
- return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
-}
-
-static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- int i = 0, j = 0, vfta = 0, mask = 1;
-
- for (i = 0; i < IGB_VFTA_SIZE; i++){
- vfta = shadow_vfta->vfta[i];
- if(vfta){
- mask = 1;
- for (j = 0; j < 32; j++){
- if(vfta & mask)
- igbvf_set_vfta(hw,
- (uint16_t)((i<<5)+j), on);
- mask<<=1;
- }
- }
- }
-
-}
-
-static int
-igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t vid_idx = 0;
- uint32_t vid_bit = 0;
- int ret = 0;
-
- PMD_INIT_FUNC_TRACE();
-
- /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
- ret = igbvf_set_vfta(hw, vlan_id, !!on);
- if(ret){
- PMD_INIT_LOG(ERR, "Unable to set VF vlan");
- return ret;
- }
- vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
- vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
-
- /*Save what we set and retore it after device reset*/
- if (on)
- shadow_vfta->vfta[vid_idx] |= vid_bit;
- else
- shadow_vfta->vfta[vid_idx] &= ~vid_bit;
-
- return 0;
-}
-
-static int
-eth_igb_rss_reta_update(struct rte_eth_dev *dev,
- struct rte_eth_rss_reta_entry64 *reta_conf,
- uint16_t reta_size)
-{
- uint8_t i, j, mask;
- uint32_t reta, r;
- uint16_t idx, shift;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- if (reta_size != ETH_RSS_RETA_SIZE_128) {
- PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
- "(%d) doesn't match the number hardware can supported "
- "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
- return -EINVAL;
- }
-
- for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
- idx = i / RTE_RETA_GROUP_SIZE;
- shift = i % RTE_RETA_GROUP_SIZE;
- mask = (uint8_t)((reta_conf[idx].mask >> shift) &
- IGB_4_BIT_MASK);
- if (!mask)
- continue;
- if (mask == IGB_4_BIT_MASK)
- r = 0;
- else
- r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
- for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
- if (mask & (0x1 << j))
- reta |= reta_conf[idx].reta[shift + j] <<
- (CHAR_BIT * j);
- else
- reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
- }
- E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
- }
-
- return 0;
-}
-
-static int
-eth_igb_rss_reta_query(struct rte_eth_dev *dev,
- struct rte_eth_rss_reta_entry64 *reta_conf,
- uint16_t reta_size)
-{
- uint8_t i, j, mask;
- uint32_t reta;
- uint16_t idx, shift;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- if (reta_size != ETH_RSS_RETA_SIZE_128) {
- PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
- "(%d) doesn't match the number hardware can supported "
- "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
- return -EINVAL;
- }
-
- for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
- idx = i / RTE_RETA_GROUP_SIZE;
- shift = i % RTE_RETA_GROUP_SIZE;
- mask = (uint8_t)((reta_conf[idx].mask >> shift) &
- IGB_4_BIT_MASK);
- if (!mask)
- continue;
- reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
- for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
- if (mask & (0x1 << j))
- reta_conf[idx].reta[shift + j] =
- ((reta >> (CHAR_BIT * j)) &
- IGB_8_BIT_MASK);
- }
- }
-
- return 0;
-}
-
-#define MAC_TYPE_FILTER_SUP(type) do {\
- if ((type) != e1000_82580 && (type) != e1000_i350 &&\
- (type) != e1000_82576)\
- return -ENOTSUP;\
-} while (0)
-
-static int
-eth_igb_syn_filter_set(struct rte_eth_dev *dev,
- struct rte_eth_syn_filter *filter,
- bool add)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t synqf, rfctl;
-
- if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
- return -EINVAL;
-
- synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
-
- if (add) {
- if (synqf & E1000_SYN_FILTER_ENABLE)
- return -EINVAL;
-
- synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
- E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
-
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
- if (filter->hig_pri)
- rfctl |= E1000_RFCTL_SYNQFP;
- else
- rfctl &= ~E1000_RFCTL_SYNQFP;
-
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
- } else {
- if (!(synqf & E1000_SYN_FILTER_ENABLE))
- return -ENOENT;
- synqf = 0;
- }
-
- E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
- E1000_WRITE_FLUSH(hw);
- return 0;
-}
-
-static int
-eth_igb_syn_filter_get(struct rte_eth_dev *dev,
- struct rte_eth_syn_filter *filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t synqf, rfctl;
-
- synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
- if (synqf & E1000_SYN_FILTER_ENABLE) {
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
- filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
- filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
- E1000_SYN_FILTER_QUEUE_SHIFT);
- return 0;
- }
-
- return -ENOENT;
-}
-
-static int
-eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret;
-
- MAC_TYPE_FILTER_SUP(hw->mac.type);
-
- if (filter_op == RTE_ETH_FILTER_NOP)
- return 0;
-
- if (arg == NULL) {
- PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
- filter_op);
- return -EINVAL;
- }
-
- switch (filter_op) {
- case RTE_ETH_FILTER_ADD:
- ret = eth_igb_syn_filter_set(dev,
- (struct rte_eth_syn_filter *)arg,
- TRUE);
- break;
- case RTE_ETH_FILTER_DELETE:
- ret = eth_igb_syn_filter_set(dev,
- (struct rte_eth_syn_filter *)arg,
- FALSE);
- break;
- case RTE_ETH_FILTER_GET:
- ret = eth_igb_syn_filter_get(dev,
- (struct rte_eth_syn_filter *)arg);
- break;
- default:
- PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
- ret = -EINVAL;
- break;
- }
-
- return ret;
-}
-
-#define MAC_TYPE_FILTER_SUP_EXT(type) do {\
- if ((type) != e1000_82580 && (type) != e1000_i350)\
- return -ENOSYS; \
-} while (0)
-
-/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
-static inline int
-ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
- struct e1000_2tuple_filter_info *filter_info)
-{
- if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
- return -EINVAL;
- if (filter->priority > E1000_2TUPLE_MAX_PRI)
- return -EINVAL; /* filter index is out of range. */
- if (filter->tcp_flags > TCP_FLAG_ALL)
- return -EINVAL; /* flags is invalid. */
-
- switch (filter->dst_port_mask) {
- case UINT16_MAX:
- filter_info->dst_port_mask = 0;
- filter_info->dst_port = filter->dst_port;
- break;
- case 0:
- filter_info->dst_port_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid dst_port mask.");
- return -EINVAL;
- }
-
- switch (filter->proto_mask) {
- case UINT8_MAX:
- filter_info->proto_mask = 0;
- filter_info->proto = filter->proto;
- break;
- case 0:
- filter_info->proto_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid protocol mask.");
- return -EINVAL;
- }
-
- filter_info->priority = (uint8_t)filter->priority;
- if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
- filter_info->tcp_flags = filter->tcp_flags;
- else
- filter_info->tcp_flags = 0;
-
- return 0;
-}
-
-static inline struct e1000_2tuple_filter *
-igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
- struct e1000_2tuple_filter_info *key)
-{
- struct e1000_2tuple_filter *it;
-
- TAILQ_FOREACH(it, filter_list, entries) {
- if (memcmp(key, &it->filter_info,
- sizeof(struct e1000_2tuple_filter_info)) == 0) {
- return it;
- }
- }
- return NULL;
-}
-
-/*
- * igb_add_2tuple_filter - add a 2tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be added.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_add_2tuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_2tuple_filter *filter;
- uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
- uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
- int i, ret;
-
- filter = rte_zmalloc("e1000_2tuple_filter",
- sizeof(struct e1000_2tuple_filter), 0);
- if (filter == NULL)
- return -ENOMEM;
-
- ret = ntuple_filter_to_2tuple(ntuple_filter,
- &filter->filter_info);
- if (ret < 0) {
- rte_free(filter);
- return ret;
- }
- if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
- &filter->filter_info) != NULL) {
- PMD_DRV_LOG(ERR, "filter exists.");
- rte_free(filter);
- return -EEXIST;
- }
- filter->queue = ntuple_filter->queue;
-
- /*
- * look for an unused 2tuple filter index,
- * and insert the filter to list.
- */
- for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
- if (!(filter_info->twotuple_mask & (1 << i))) {
- filter_info->twotuple_mask |= 1 << i;
- filter->index = i;
- TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
- filter,
- entries);
- break;
- }
- }
- if (i >= E1000_MAX_TTQF_FILTERS) {
- PMD_DRV_LOG(ERR, "2tuple filters are full.");
- rte_free(filter);
- return -ENOSYS;
- }
-
- imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
- if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
- imir |= E1000_IMIR_PORT_BP;
- else
- imir &= ~E1000_IMIR_PORT_BP;
-
- imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
-
- ttqf |= E1000_TTQF_QUEUE_ENABLE;
- ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
- ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
- if (filter->filter_info.proto_mask == 0)
- ttqf &= ~E1000_TTQF_MASK_ENABLE;
-
- /* tcp flags bits setting. */
- if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
- if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_URG;
- if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_ACK;
- if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_PSH;
- if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_RST;
- if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_SYN;
- if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_FIN;
- } else
- imir_ext |= E1000_IMIREXT_CTRL_BP;
- E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
- E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
- E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
- return 0;
-}
-
-/*
- * igb_remove_2tuple_filter - remove a 2tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be removed.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_remove_2tuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_2tuple_filter_info filter_2tuple;
- struct e1000_2tuple_filter *filter;
- int ret;
-
- memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
- ret = ntuple_filter_to_2tuple(ntuple_filter,
- &filter_2tuple);
- if (ret < 0)
- return ret;
-
- filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
- &filter_2tuple);
- if (filter == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- return -ENOENT;
- }
-
- filter_info->twotuple_mask &= ~(1 << filter->index);
- TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
- rte_free(filter);
-
- E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
- E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
- E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
- return 0;
-}
-
-static inline struct e1000_flex_filter *
-eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
- struct e1000_flex_filter_info *key)
-{
- struct e1000_flex_filter *it;
-
- TAILQ_FOREACH(it, filter_list, entries) {
- if (memcmp(key, &it->filter_info,
- sizeof(struct e1000_flex_filter_info)) == 0)
- return it;
- }
-
- return NULL;
-}
-
-static int
-eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
- struct rte_eth_flex_filter *filter,
- bool add)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_flex_filter *flex_filter, *it;
- uint32_t wufc, queueing, mask;
- uint32_t reg_off;
- uint8_t shift, i, j = 0;
-
- flex_filter = rte_zmalloc("e1000_flex_filter",
- sizeof(struct e1000_flex_filter), 0);
- if (flex_filter == NULL)
- return -ENOMEM;
-
- flex_filter->filter_info.len = filter->len;
- flex_filter->filter_info.priority = filter->priority;
- memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
- for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
- mask = 0;
- /* reverse bits in flex filter's mask*/
- for (shift = 0; shift < CHAR_BIT; shift++) {
- if (filter->mask[i] & (0x01 << shift))
- mask |= (0x80 >> shift);
- }
- flex_filter->filter_info.mask[i] = mask;
- }
-
- wufc = E1000_READ_REG(hw, E1000_WUFC);
- if (flex_filter->index < E1000_MAX_FHFT)
- reg_off = E1000_FHFT(flex_filter->index);
- else
- reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
-
- if (add) {
- if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
- &flex_filter->filter_info) != NULL) {
- PMD_DRV_LOG(ERR, "filter exists.");
- rte_free(flex_filter);
- return -EEXIST;
- }
- flex_filter->queue = filter->queue;
- /*
- * look for an unused flex filter index
- * and insert the filter into the list.
- */
- for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
- if (!(filter_info->flex_mask & (1 << i))) {
- filter_info->flex_mask |= 1 << i;
- flex_filter->index = i;
- TAILQ_INSERT_TAIL(&filter_info->flex_list,
- flex_filter,
- entries);
- break;
- }
- }
- if (i >= E1000_MAX_FLEX_FILTERS) {
- PMD_DRV_LOG(ERR, "flex filters are full.");
- rte_free(flex_filter);
- return -ENOSYS;
- }
-
- E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
- (E1000_WUFC_FLX0 << flex_filter->index));
- queueing = filter->len |
- (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
- (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
- E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
- queueing);
- for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
- E1000_WRITE_REG(hw, reg_off,
- flex_filter->filter_info.dwords[j]);
- reg_off += sizeof(uint32_t);
- E1000_WRITE_REG(hw, reg_off,
- flex_filter->filter_info.dwords[++j]);
- reg_off += sizeof(uint32_t);
- E1000_WRITE_REG(hw, reg_off,
- (uint32_t)flex_filter->filter_info.mask[i]);
- reg_off += sizeof(uint32_t) * 2;
- ++j;
- }
- } else {
- it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
- &flex_filter->filter_info);
- if (it == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- rte_free(flex_filter);
- return -ENOENT;
- }
-
- for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
- E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
- E1000_WRITE_REG(hw, E1000_WUFC, wufc &
- (~(E1000_WUFC_FLX0 << it->index)));
-
- filter_info->flex_mask &= ~(1 << it->index);
- TAILQ_REMOVE(&filter_info->flex_list, it, entries);
- rte_free(it);
- rte_free(flex_filter);
- }
-
- return 0;
-}
-
-static int
-eth_igb_get_flex_filter(struct rte_eth_dev *dev,
- struct rte_eth_flex_filter *filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_flex_filter flex_filter, *it;
- uint32_t wufc, queueing, wufc_en = 0;
-
- memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
- flex_filter.filter_info.len = filter->len;
- flex_filter.filter_info.priority = filter->priority;
- memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
- memcpy(flex_filter.filter_info.mask, filter->mask,
- RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
-
- it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
- &flex_filter.filter_info);
- if (it == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- return -ENOENT;
- }
-
- wufc = E1000_READ_REG(hw, E1000_WUFC);
- wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
-
- if ((wufc & wufc_en) == wufc_en) {
- uint32_t reg_off = 0;
- if (it->index < E1000_MAX_FHFT)
- reg_off = E1000_FHFT(it->index);
- else
- reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
-
- queueing = E1000_READ_REG(hw,
- reg_off + E1000_FHFT_QUEUEING_OFFSET);
- filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
- filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
- E1000_FHFT_QUEUEING_PRIO_SHIFT;
- filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
- E1000_FHFT_QUEUEING_QUEUE_SHIFT;
- return 0;
- }
- return -ENOENT;
-}
-
-static int
-eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_flex_filter *filter;
- int ret = 0;
-
- MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
-
- if (filter_op == RTE_ETH_FILTER_NOP)
- return ret;
-
- if (arg == NULL) {
- PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
- filter_op);
- return -EINVAL;
- }
-
- filter = (struct rte_eth_flex_filter *)arg;
- if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
- || filter->len % sizeof(uint64_t) != 0) {
- PMD_DRV_LOG(ERR, "filter's length is out of range");
- return -EINVAL;
- }
- if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
- PMD_DRV_LOG(ERR, "filter's priority is out of range");
- return -EINVAL;
- }
-
- switch (filter_op) {
- case RTE_ETH_FILTER_ADD:
- ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
- break;
- case RTE_ETH_FILTER_DELETE:
- ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
- break;
- case RTE_ETH_FILTER_GET:
- ret = eth_igb_get_flex_filter(dev, filter);
- break;
- default:
- PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
- ret = -EINVAL;
- break;
- }
-
- return ret;
-}
-
-/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
-static inline int
-ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
- struct e1000_5tuple_filter_info *filter_info)
-{
- if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
- return -EINVAL;
- if (filter->priority > E1000_2TUPLE_MAX_PRI)
- return -EINVAL; /* filter index is out of range. */
- if (filter->tcp_flags > TCP_FLAG_ALL)
- return -EINVAL; /* flags is invalid. */
-
- switch (filter->dst_ip_mask) {
- case UINT32_MAX:
- filter_info->dst_ip_mask = 0;
- filter_info->dst_ip = filter->dst_ip;
- break;
- case 0:
- filter_info->dst_ip_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
- return -EINVAL;
- }
-
- switch (filter->src_ip_mask) {
- case UINT32_MAX:
- filter_info->src_ip_mask = 0;
- filter_info->src_ip = filter->src_ip;
- break;
- case 0:
- filter_info->src_ip_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid src_ip mask.");
- return -EINVAL;
- }
-
- switch (filter->dst_port_mask) {
- case UINT16_MAX:
- filter_info->dst_port_mask = 0;
- filter_info->dst_port = filter->dst_port;
- break;
- case 0:
- filter_info->dst_port_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid dst_port mask.");
- return -EINVAL;
- }
-
- switch (filter->src_port_mask) {
- case UINT16_MAX:
- filter_info->src_port_mask = 0;
- filter_info->src_port = filter->src_port;
- break;
- case 0:
- filter_info->src_port_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid src_port mask.");
- return -EINVAL;
- }
-
- switch (filter->proto_mask) {
- case UINT8_MAX:
- filter_info->proto_mask = 0;
- filter_info->proto = filter->proto;
- break;
- case 0:
- filter_info->proto_mask = 1;
- break;
- default:
- PMD_DRV_LOG(ERR, "invalid protocol mask.");
- return -EINVAL;
- }
-
- filter_info->priority = (uint8_t)filter->priority;
- if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
- filter_info->tcp_flags = filter->tcp_flags;
- else
- filter_info->tcp_flags = 0;
-
- return 0;
-}
-
-static inline struct e1000_5tuple_filter *
-igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
- struct e1000_5tuple_filter_info *key)
-{
- struct e1000_5tuple_filter *it;
-
- TAILQ_FOREACH(it, filter_list, entries) {
- if (memcmp(key, &it->filter_info,
- sizeof(struct e1000_5tuple_filter_info)) == 0) {
- return it;
- }
- }
- return NULL;
-}
-
-/*
- * igb_add_5tuple_filter_82576 - add a 5tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be added.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_5tuple_filter *filter;
- uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
- uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
- uint8_t i;
- int ret;
-
- filter = rte_zmalloc("e1000_5tuple_filter",
- sizeof(struct e1000_5tuple_filter), 0);
- if (filter == NULL)
- return -ENOMEM;
-
- ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
- &filter->filter_info);
- if (ret < 0) {
- rte_free(filter);
- return ret;
- }
-
- if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
- &filter->filter_info) != NULL) {
- PMD_DRV_LOG(ERR, "filter exists.");
- rte_free(filter);
- return -EEXIST;
- }
- filter->queue = ntuple_filter->queue;
-
- /*
- * look for an unused 5tuple filter index,
- * and insert the filter to list.
- */
- for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
- if (!(filter_info->fivetuple_mask & (1 << i))) {
- filter_info->fivetuple_mask |= 1 << i;
- filter->index = i;
- TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
- filter,
- entries);
- break;
- }
- }
- if (i >= E1000_MAX_FTQF_FILTERS) {
- PMD_DRV_LOG(ERR, "5tuple filters are full.");
- rte_free(filter);
- return -ENOSYS;
- }
-
- ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
- if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
- ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
- if (filter->filter_info.dst_ip_mask == 0)
- ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
- if (filter->filter_info.src_port_mask == 0)
- ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
- if (filter->filter_info.proto_mask == 0)
- ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
- ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
- E1000_FTQF_QUEUE_MASK;
- ftqf |= E1000_FTQF_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
- E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
- E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
-
- spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
- E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
-
- imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
- if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
- imir |= E1000_IMIR_PORT_BP;
- else
- imir &= ~E1000_IMIR_PORT_BP;
- imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
-
- /* tcp flags bits setting. */
- if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
- if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_URG;
- if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_ACK;
- if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_PSH;
- if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_RST;
- if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_SYN;
- if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
- imir_ext |= E1000_IMIREXT_CTRL_FIN;
- } else
- imir_ext |= E1000_IMIREXT_CTRL_BP;
- E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
- E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
- return 0;
-}
-
-/*
- * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be removed.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_5tuple_filter_info filter_5tuple;
- struct e1000_5tuple_filter *filter;
- int ret;
-
- memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
- ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
- &filter_5tuple);
- if (ret < 0)
- return ret;
-
- filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
- &filter_5tuple);
- if (filter == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- return -ENOENT;
- }
-
- filter_info->fivetuple_mask &= ~(1 << filter->index);
- TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
- rte_free(filter);
-
- E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
- E1000_FTQF_VF_BP | E1000_FTQF_MASK);
- E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
- E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
- E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
- E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
- E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
- return 0;
-}
-
-static int
-eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
-{
- uint32_t rctl;
- struct e1000_hw *hw;
- struct rte_eth_dev_info dev_info;
- uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
- VLAN_TAG_SIZE);
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-#ifdef RTE_LIBRTE_82571_SUPPORT
- /* XXX: not bigger than max_rx_pktlen */
- if (hw->mac.type == e1000_82571)
- return -ENOTSUP;
-#endif
- eth_igb_infos_get(dev, &dev_info);
-
- /* check that mtu is within the allowed range */
- if ((mtu < ETHER_MIN_MTU) ||
- (frame_size > dev_info.max_rx_pktlen))
- return -EINVAL;
-
- /* refuse mtu that requires the support of scattered packets when this
- * feature has not been enabled before. */
- if (!dev->data->scattered_rx &&
- frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
- return -EINVAL;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
-
- /* switch to jumbo mode if needed */
- if (frame_size > ETHER_MAX_LEN) {
- dev->data->dev_conf.rxmode.jumbo_frame = 1;
- rctl |= E1000_RCTL_LPE;
- } else {
- dev->data->dev_conf.rxmode.jumbo_frame = 0;
- rctl &= ~E1000_RCTL_LPE;
- }
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /* update max frame size */
- dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
-
- E1000_WRITE_REG(hw, E1000_RLPML,
- dev->data->dev_conf.rxmode.max_rx_pkt_len);
-
- return 0;
-}
-
-/*
- * igb_add_del_ntuple_filter - add or delete a ntuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
- * add: if true, add filter, if false, remove filter
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter,
- bool add)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret;
-
- switch (ntuple_filter->flags) {
- case RTE_5TUPLE_FLAGS:
- case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
- if (hw->mac.type != e1000_82576)
- return -ENOTSUP;
- if (add)
- ret = igb_add_5tuple_filter_82576(dev,
- ntuple_filter);
- else
- ret = igb_remove_5tuple_filter_82576(dev,
- ntuple_filter);
- break;
- case RTE_2TUPLE_FLAGS:
- case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
- if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
- return -ENOTSUP;
- if (add)
- ret = igb_add_2tuple_filter(dev, ntuple_filter);
- else
- ret = igb_remove_2tuple_filter(dev, ntuple_filter);
- break;
- default:
- ret = -EINVAL;
- break;
- }
-
- return ret;
-}
-
-/*
- * igb_get_ntuple_filter - get a ntuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-igb_get_ntuple_filter(struct rte_eth_dev *dev,
- struct rte_eth_ntuple_filter *ntuple_filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- struct e1000_5tuple_filter_info filter_5tuple;
- struct e1000_2tuple_filter_info filter_2tuple;
- struct e1000_5tuple_filter *p_5tuple_filter;
- struct e1000_2tuple_filter *p_2tuple_filter;
- int ret;
-
- switch (ntuple_filter->flags) {
- case RTE_5TUPLE_FLAGS:
- case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
- if (hw->mac.type != e1000_82576)
- return -ENOTSUP;
- memset(&filter_5tuple,
- 0,
- sizeof(struct e1000_5tuple_filter_info));
- ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
- &filter_5tuple);
- if (ret < 0)
- return ret;
- p_5tuple_filter = igb_5tuple_filter_lookup_82576(
- &filter_info->fivetuple_list,
- &filter_5tuple);
- if (p_5tuple_filter == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- return -ENOENT;
- }
- ntuple_filter->queue = p_5tuple_filter->queue;
- break;
- case RTE_2TUPLE_FLAGS:
- case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
- if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
- return -ENOTSUP;
- memset(&filter_2tuple,
- 0,
- sizeof(struct e1000_2tuple_filter_info));
- ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
- if (ret < 0)
- return ret;
- p_2tuple_filter = igb_2tuple_filter_lookup(
- &filter_info->twotuple_list,
- &filter_2tuple);
- if (p_2tuple_filter == NULL) {
- PMD_DRV_LOG(ERR, "filter doesn't exist.");
- return -ENOENT;
- }
- ntuple_filter->queue = p_2tuple_filter->queue;
- break;
- default:
- ret = -EINVAL;
- break;
- }
-
- return 0;
-}
-
-/*
- * igb_ntuple_filter_handle - Handle operations for ntuple filter.
- * @dev: pointer to rte_eth_dev structure
- * @filter_op:operation will be taken.
- * @arg: a pointer to specific structure corresponding to the filter_op
- */
-static int
-igb_ntuple_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret;
-
- MAC_TYPE_FILTER_SUP(hw->mac.type);
-
- if (filter_op == RTE_ETH_FILTER_NOP)
- return 0;
-
- if (arg == NULL) {
- PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
- filter_op);
- return -EINVAL;
- }
-
- switch (filter_op) {
- case RTE_ETH_FILTER_ADD:
- ret = igb_add_del_ntuple_filter(dev,
- (struct rte_eth_ntuple_filter *)arg,
- TRUE);
- break;
- case RTE_ETH_FILTER_DELETE:
- ret = igb_add_del_ntuple_filter(dev,
- (struct rte_eth_ntuple_filter *)arg,
- FALSE);
- break;
- case RTE_ETH_FILTER_GET:
- ret = igb_get_ntuple_filter(dev,
- (struct rte_eth_ntuple_filter *)arg);
- break;
- default:
- PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
- ret = -EINVAL;
- break;
- }
- return ret;
-}
-
-static inline int
-igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
- uint16_t ethertype)
-{
- int i;
-
- for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
- if (filter_info->ethertype_filters[i] == ethertype &&
- (filter_info->ethertype_mask & (1 << i)))
- return i;
- }
- return -1;
-}
-
-static inline int
-igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
- uint16_t ethertype)
-{
- int i;
-
- for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
- if (!(filter_info->ethertype_mask & (1 << i))) {
- filter_info->ethertype_mask |= 1 << i;
- filter_info->ethertype_filters[i] = ethertype;
- return i;
- }
- }
- return -1;
-}
-
-static inline int
-igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
- uint8_t idx)
-{
- if (idx >= E1000_MAX_ETQF_FILTERS)
- return -1;
- filter_info->ethertype_mask &= ~(1 << idx);
- filter_info->ethertype_filters[idx] = 0;
- return idx;
-}
-
-
-static int
-igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
- struct rte_eth_ethertype_filter *filter,
- bool add)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- uint32_t etqf = 0;
- int ret;
-
- if (filter->ether_type == ETHER_TYPE_IPv4 ||
- filter->ether_type == ETHER_TYPE_IPv6) {
- PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
- " ethertype filter.", filter->ether_type);
- return -EINVAL;
- }
-
- if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
- PMD_DRV_LOG(ERR, "mac compare is unsupported.");
- return -EINVAL;
- }
- if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
- PMD_DRV_LOG(ERR, "drop option is unsupported.");
- return -EINVAL;
- }
-
- ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
- if (ret >= 0 && add) {
- PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
- filter->ether_type);
- return -EEXIST;
- }
- if (ret < 0 && !add) {
- PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
- filter->ether_type);
- return -ENOENT;
- }
-
- if (add) {
- ret = igb_ethertype_filter_insert(filter_info,
- filter->ether_type);
- if (ret < 0) {
- PMD_DRV_LOG(ERR, "ethertype filters are full.");
- return -ENOSYS;
- }
-
- etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
- etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
- etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
- } else {
- ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
- if (ret < 0)
- return -ENOSYS;
- }
- E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-static int
-igb_get_ethertype_filter(struct rte_eth_dev *dev,
- struct rte_eth_ethertype_filter *filter)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_filter_info *filter_info =
- E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
- uint32_t etqf;
- int ret;
-
- ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
- if (ret < 0) {
- PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
- filter->ether_type);
- return -ENOENT;
- }
-
- etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
- if (etqf & E1000_ETQF_FILTER_ENABLE) {
- filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
- filter->flags = 0;
- filter->queue = (etqf & E1000_ETQF_QUEUE) >>
- E1000_ETQF_QUEUE_SHIFT;
- return 0;
- }
-
- return -ENOENT;
-}
-
-/*
- * igb_ethertype_filter_handle - Handle operations for ethertype filter.
- * @dev: pointer to rte_eth_dev structure
- * @filter_op:operation will be taken.
- * @arg: a pointer to specific structure corresponding to the filter_op
- */
-static int
-igb_ethertype_filter_handle(struct rte_eth_dev *dev,
- enum rte_filter_op filter_op,
- void *arg)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret;
-
- MAC_TYPE_FILTER_SUP(hw->mac.type);
-
- if (filter_op == RTE_ETH_FILTER_NOP)
- return 0;
-
- if (arg == NULL) {
- PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
- filter_op);
- return -EINVAL;
- }
-
- switch (filter_op) {
- case RTE_ETH_FILTER_ADD:
- ret = igb_add_del_ethertype_filter(dev,
- (struct rte_eth_ethertype_filter *)arg,
- TRUE);
- break;
- case RTE_ETH_FILTER_DELETE:
- ret = igb_add_del_ethertype_filter(dev,
- (struct rte_eth_ethertype_filter *)arg,
- FALSE);
- break;
- case RTE_ETH_FILTER_GET:
- ret = igb_get_ethertype_filter(dev,
- (struct rte_eth_ethertype_filter *)arg);
- break;
- default:
- PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
- ret = -EINVAL;
- break;
- }
- return ret;
-}
-
-static int
-eth_igb_filter_ctrl(struct rte_eth_dev *dev,
- enum rte_filter_type filter_type,
- enum rte_filter_op filter_op,
- void *arg)
-{
- int ret = -EINVAL;
-
- switch (filter_type) {
- case RTE_ETH_FILTER_NTUPLE:
- ret = igb_ntuple_filter_handle(dev, filter_op, arg);
- break;
- case RTE_ETH_FILTER_ETHERTYPE:
- ret = igb_ethertype_filter_handle(dev, filter_op, arg);
- break;
- case RTE_ETH_FILTER_SYN:
- ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
- break;
- case RTE_ETH_FILTER_FLEXIBLE:
- ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
- break;
- default:
- PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
- filter_type);
- break;
- }
-
- return ret;
-}
-
-static struct rte_driver pmd_igb_drv = {
- .type = PMD_PDEV,
- .init = rte_igb_pmd_init,
-};
-
-static struct rte_driver pmd_igbvf_drv = {
- .type = PMD_PDEV,
- .init = rte_igbvf_pmd_init,
-};
-
-PMD_REGISTER_DRIVER(pmd_igb_drv);
-PMD_REGISTER_DRIVER(pmd_igbvf_drv);
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <unistd.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_eal.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memcpy.h>
-#include <rte_malloc.h>
-#include <rte_random.h>
-
-#include "e1000/e1000_defines.h"
-#include "e1000/e1000_regs.h"
-#include "e1000/e1000_hw.h"
-#include "e1000_ethdev.h"
-
-static inline uint16_t
-dev_num_vf(struct rte_eth_dev *eth_dev)
-{
- return eth_dev->pci_dev->max_vfs;
-}
-
-static inline
-int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
-{
- unsigned char vf_mac_addr[ETHER_ADDR_LEN];
- struct e1000_vf_info *vfinfo =
- *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
- uint16_t vfn;
-
- for (vfn = 0; vfn < vf_num; vfn++) {
- eth_random_addr(vf_mac_addr);
- /* keep the random address as default */
- memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
- ETHER_ADDR_LEN);
- }
-
- return 0;
-}
-
-static inline int
-igb_mb_intr_setup(struct rte_eth_dev *dev)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- intr->mask |= E1000_ICR_VMMB;
-
- return 0;
-}
-
-void igb_pf_host_init(struct rte_eth_dev *eth_dev)
-{
- struct e1000_vf_info **vfinfo =
- E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- uint16_t vf_num;
- uint8_t nb_queue;
-
- RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
- if (0 == (vf_num = dev_num_vf(eth_dev)))
- return;
-
- if (hw->mac.type == e1000_i350)
- nb_queue = 1;
- else if(hw->mac.type == e1000_82576)
- /* per datasheet, it should be 2, but 1 seems correct */
- nb_queue = 1;
- else
- return;
-
- *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
- if (*vfinfo == NULL)
- rte_panic("Cannot allocate memory for private VF data\n");
-
- RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
- RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
- RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
- RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
-
- igb_vf_perm_addr_gen(eth_dev, vf_num);
-
- /* set mb interrupt mask */
- igb_mb_intr_setup(eth_dev);
-
- return;
-}
-
-#define E1000_RAH_POOLSEL_SHIFT (18)
-int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
-{
- uint32_t vtctl;
- uint16_t vf_num;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- uint32_t vlanctrl;
- int i;
- uint32_t rah;
-
- if (0 == (vf_num = dev_num_vf(eth_dev)))
- return -1;
-
- /* enable VMDq and set the default pool for PF */
- vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
- vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
- vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
- << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
- vtctl |= E1000_VT_CTL_VM_REPL_EN;
- E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
-
- /* Enable pools reserved to PF only */
- E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
- E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
-
- /* PFDMA Tx General Switch Control Enables VMDQ loopback */
- if (hw->mac.type == e1000_i350)
- E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
- else
- E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
-
- /* clear VMDq map to perment rar 0 */
- rah = E1000_READ_REG(hw, E1000_RAH(0));
- rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
- E1000_WRITE_REG(hw, E1000_RAH(0), rah);
-
- /* clear VMDq map to scan rar 32 */
- rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
- rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
- E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
-
- /* set VMDq map to default PF pool */
- rah = E1000_READ_REG(hw, E1000_RAH(0));
- rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
- E1000_RAH_POOLSEL_SHIFT));
- E1000_WRITE_REG(hw, E1000_RAH(0), rah);
-
- /*
- * enable vlan filtering and allow all vlan tags through
- */
- vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
- vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
- E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
-
- /* VFTA - enable all vlan filters */
- for (i = 0; i < IGB_VFTA_SIZE; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
- }
-
- /* Enable/Disable MAC Anti-Spoofing */
- e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
-
- return 0;
-}
-
-static void
-set_rx_mode(struct rte_eth_dev *dev)
-{
- struct rte_eth_dev_data *dev_data =
- (struct rte_eth_dev_data*)dev->data->dev_private;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
- uint16_t vfn = dev_num_vf(dev);
-
- /* Check for Promiscuous and All Multicast modes */
- fctrl = E1000_READ_REG(hw, E1000_RCTL);
-
- /* set all bits that we expect to always be set */
- fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
- fctrl |= E1000_RCTL_BAM;;
-
- /* clear the bits we are changing the status of */
- fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
-
- if (dev_data->promiscuous) {
- fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
- } else {
- if (dev_data->all_multicast) {
- fctrl |= E1000_RCTL_MPE;
- vmolr |= E1000_VMOLR_MPME;
- } else {
- vmolr |= E1000_VMOLR_ROMPE;
- }
- }
-
- if ((hw->mac.type == e1000_82576) ||
- (hw->mac.type == e1000_i350)) {
- vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
- ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
- E1000_VMOLR_ROPE);
- E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
- }
-
- E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
-}
-
-static inline void
-igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_info *vfinfo =
- *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
- uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
-
- vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
- E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
- E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
-
- E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
-
- /* reset multicast table array for vf */
- vfinfo[vf].num_vf_mc_hashes = 0;
-
- /* reset rx mode */
- set_rx_mode(dev);
-}
-
-static inline void
-igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* enable transmit and receive for vf */
- reg = E1000_READ_REG(hw, E1000_VFTE);
- reg |= (reg | (1 << vf));
- E1000_WRITE_REG(hw, E1000_VFTE, reg);
-
- reg = E1000_READ_REG(hw, E1000_VFRE);
- reg |= (reg | (1 << vf));
- E1000_WRITE_REG(hw, E1000_VFRE, reg);
-
- igb_vf_reset_event(dev, vf);
-}
-
-static int
-igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_info *vfinfo =
- *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
- unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
- int rar_entry = hw->mac.rar_entry_count - (vf + 1);
- uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
- uint32_t rah;
-
- igb_vf_reset_msg(dev, vf);
-
- hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
- rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
- rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
- E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
-
- /* reply to reset with ack and vf mac address */
- msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
- rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
- e1000_write_mbx(hw, msgbuf, 3, vf);
-
- return 0;
-}
-
-static int
-igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_info *vfinfo =
- *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
- int rar_entry = hw->mac.rar_entry_count - (vf + 1);
- uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
-
- if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
- rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
- hw->mac.ops.rar_set(hw, new_mac, rar_entry);
- return 0;
- }
- return -1;
-}
-
-static int
-igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
-{
- int i;
- uint32_t vector_bit;
- uint32_t vector_reg;
- uint32_t mta_reg;
- int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
- E1000_VT_MSGINFO_SHIFT;
- uint16_t *hash_list = (uint16_t *)&msgbuf[1];
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_info *vfinfo =
- *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-
- /* only so many hash values supported */
- entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
-
- /*
- * salt away the number of multi cast addresses assigned
- * to this VF for later use to restore when the PF multi cast
- * list changes
- */
- vfinfo->num_vf_mc_hashes = (uint16_t)entries;
-
- /*
- * VFs are limited to using the MTA hash table for their multicast
- * addresses
- */
- for (i = 0; i < entries; i++) {
- vfinfo->vf_mc_hashes[i] = hash_list[i];
- }
-
- for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
- vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
- vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
- mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
- mta_reg |= (1 << vector_bit);
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
- }
-
- return 0;
-}
-
-static int
-igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
- int add, vid;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vf_info *vfinfo =
- *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
- uint32_t vid_idx, vid_bit, vfta;
-
- add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
- >> E1000_VT_MSGINFO_SHIFT;
- vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
-
- if (add)
- vfinfo[vf].vlan_count++;
- else if (vfinfo[vf].vlan_count)
- vfinfo[vf].vlan_count--;
-
- vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK);
- vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
- if (add)
- vfta |= vid_bit;
- else
- vfta &= ~vid_bit;
-
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-static int
-igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
- uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
- uint32_t vmolr;
-
- if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
- return -1;
-
- vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
-
- vmolr &= ~E1000_VMOLR_RLPML_MASK;
- vmolr |= rlpml;
-
- /* Enable Long Packet support */
- vmolr |= E1000_VMOLR_LPE;
-
- E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-static int
-igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
-{
- uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
- uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
- int32_t retval;
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
- if (retval) {
- PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
- return retval;
- }
-
- /* do nothing with the message already processed */
- if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
- return retval;
-
- /* flush the ack before we write any messages back */
- E1000_WRITE_FLUSH(hw);
-
- /* perform VF reset */
- if (msgbuf[0] == E1000_VF_RESET) {
- return igb_vf_reset(dev, vf, msgbuf);
- }
-
- /* check & process VF to PF mailbox message */
- switch ((msgbuf[0] & 0xFFFF)) {
- case E1000_VF_SET_MAC_ADDR:
- retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
- break;
- case E1000_VF_SET_MULTICAST:
- retval = igb_vf_set_multicast(dev, vf, msgbuf);
- break;
- case E1000_VF_SET_LPE:
- retval = igb_vf_set_rlpml(dev, vf, msgbuf);
- break;
- case E1000_VF_SET_VLAN:
- retval = igb_vf_set_vlan(dev, vf, msgbuf);
- break;
- default:
- PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
- (unsigned) msgbuf[0]);
- retval = E1000_ERR_MBX;
- break;
- }
-
- /* response the VF according to the message process result */
- if (retval)
- msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
- else
- msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
-
- msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
-
- e1000_write_mbx(hw, msgbuf, 1, vf);
-
- return retval;
-}
-
-static inline void
-igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
-{
- uint32_t msg = E1000_VT_MSGTYPE_NACK;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- e1000_write_mbx(hw, &msg, 1, vf);
-}
-
-void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
-{
- uint16_t vf;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-
- for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
- /* check & process vf function level reset */
- if (!e1000_check_for_rst(hw, vf))
- igb_vf_reset_event(eth_dev, vf);
-
- /* check & process vf mailbox messages */
- if (!e1000_check_for_msg(hw, vf))
- igb_rcv_msg_from_vf(eth_dev, vf);
-
- /* check & process acks from vf */
- if (!e1000_check_for_ack(hw, vf))
- igb_rcv_ack_from_vf(eth_dev, vf);
- }
-}
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_memory.h>
-#include <rte_memcpy.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_branch_prediction.h>
-#include <rte_ring.h>
-#include <rte_mempool.h>
-#include <rte_malloc.h>
-#include <rte_mbuf.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_prefetch.h>
-#include <rte_udp.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_string_fns.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-/* Bit Mask to indicate what bits required for building TX context */
-#define IGB_TX_OFFLOAD_MASK ( \
- PKT_TX_VLAN_PKT | \
- PKT_TX_IP_CKSUM | \
- PKT_TX_L4_MASK)
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
- struct rte_mbuf *m;
-
- m = __rte_mbuf_raw_alloc(mp);
- __rte_mbuf_sanity_check_raw(m, 0);
- return (m);
-}
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb) \
- (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
- (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-/**
- * Structure associated with each descriptor of the RX ring of a RX queue.
- */
-struct igb_rx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
-};
-
-/**
- * Structure associated with each descriptor of the TX ring of a TX queue.
- */
-struct igb_tx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
- uint16_t next_id; /**< Index of next descriptor in ring. */
- uint16_t last_id; /**< Index of last scattered descriptor. */
-};
-
-/**
- * Structure associated with each RX queue.
- */
-struct igb_rx_queue {
- struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
- volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
- uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
- volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
- volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
- struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
- struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
- struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
- uint16_t nb_rx_desc; /**< number of RX descriptors. */
- uint16_t rx_tail; /**< current value of RDT register. */
- uint16_t nb_rx_hold; /**< number of held free RX desc. */
- uint16_t rx_free_thresh; /**< max free RX desc to hold. */
- uint16_t queue_id; /**< RX queue index. */
- uint16_t reg_idx; /**< RX queue register index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
- uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
-};
-
-/**
- * Hardware context number
- */
-enum igb_advctx_num {
- IGB_CTX_0 = 0, /**< CTX0 */
- IGB_CTX_1 = 1, /**< CTX1 */
- IGB_CTX_NUM = 2, /**< CTX_NUM */
-};
-
-/** Offload features */
-union igb_vlan_macip {
- uint32_t data;
- struct {
- uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */
- uint16_t vlan_tci;
- /**< VLAN Tag Control Identifier (CPU order). */
- } f;
-};
-
-/*
- * Compare mask for vlan_macip_len.data,
- * should be in sync with igb_vlan_macip.f layout.
- * */
-#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
-#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
-#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
-/** MAC+IP length. */
-#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
-
-/**
- * Strucutre to check if new context need be built
- */
-struct igb_advctx_info {
- uint64_t flags; /**< ol_flags related to context build. */
- uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
- union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
-};
-
-/**
- * Structure associated with each TX queue.
- */
-struct igb_tx_queue {
- volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
- uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
- struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
- volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
- uint32_t txd_type; /**< Device-specific TXD type */
- uint16_t nb_tx_desc; /**< number of TX descriptors. */
- uint16_t tx_tail; /**< Current value of TDT register. */
- uint16_t tx_head;
- /**< Index of first used TX descriptor. */
- uint16_t queue_id; /**< TX queue index. */
- uint16_t reg_idx; /**< TX queue register index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- uint32_t ctx_curr;
- /**< Current used hardware descriptor. */
- uint32_t ctx_start;
- /**< Start context position for transmit queue. */
- struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
- /**< Hardware context history.*/
-};
-
-#if 1
-#define RTE_PMD_USE_PREFETCH
-#endif
-
-#ifdef RTE_PMD_USE_PREFETCH
-#define rte_igb_prefetch(p) rte_prefetch0(p)
-#else
-#define rte_igb_prefetch(p) do {} while(0)
-#endif
-
-#ifdef RTE_PMD_PACKET_PREFETCH
-#define rte_packet_prefetch(p) rte_prefetch1(p)
-#else
-#define rte_packet_prefetch(p) do {} while(0)
-#endif
-
-/*
- * Macro for VMDq feature for 1 GbE NIC.
- */
-#define E1000_VMOLR_SIZE (8)
-
-/*********************************************************************
- *
- * TX function
- *
- **********************************************************************/
-
-/*
- * Advanced context descriptor are almost same between igb/ixgbe
- * This is a separate function, looking for optimization opportunity here
- * Rework required to go with the pre-defined values.
- */
-
-static inline void
-igbe_set_xmit_ctx(struct igb_tx_queue* txq,
- volatile struct e1000_adv_tx_context_desc *ctx_txd,
- uint64_t ol_flags, uint32_t vlan_macip_lens)
-{
- uint32_t type_tucmd_mlhl;
- uint32_t mss_l4len_idx;
- uint32_t ctx_idx, ctx_curr;
- uint32_t cmp_mask;
-
- ctx_curr = txq->ctx_curr;
- ctx_idx = ctx_curr + txq->ctx_start;
-
- cmp_mask = 0;
- type_tucmd_mlhl = 0;
-
- if (ol_flags & PKT_TX_VLAN_PKT) {
- cmp_mask |= TX_VLAN_CMP_MASK;
- }
-
- if (ol_flags & PKT_TX_IP_CKSUM) {
- type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- }
-
- /* Specify which HW CTX to upload. */
- mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
- switch (ol_flags & PKT_TX_L4_MASK) {
- case PKT_TX_UDP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- case PKT_TX_TCP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- case PKT_TX_SCTP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- default:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- break;
- }
-
- txq->ctx_cache[ctx_curr].flags = ol_flags;
- txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
- txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
- vlan_macip_lens & cmp_mask;
-
- ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
- ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
- ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
- ctx_txd->seqnum_seed = 0;
-}
-
-/*
- * Check which hardware context can be used. Use the existing match
- * or create a new context descriptor.
- */
-static inline uint32_t
-what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
- uint32_t vlan_macip_lens)
-{
- /* If match with the current context */
- if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
- (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
- (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
- return txq->ctx_curr;
- }
-
- /* If match with the second context */
- txq->ctx_curr ^= 1;
- if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
- (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
- (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
- return txq->ctx_curr;
- }
-
- /* Mismatch, use the previous context */
- return (IGB_CTX_NUM);
-}
-
-static inline uint32_t
-tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
-{
- static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
- static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
- uint32_t tmp;
-
- tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
- tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
- return tmp;
-}
-
-static inline uint32_t
-tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
-{
- static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
- return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
-}
-
-uint16_t
-eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
-{
- struct igb_tx_queue *txq;
- struct igb_tx_entry *sw_ring;
- struct igb_tx_entry *txe, *txn;
- volatile union e1000_adv_tx_desc *txr;
- volatile union e1000_adv_tx_desc *txd;
- struct rte_mbuf *tx_pkt;
- struct rte_mbuf *m_seg;
- union igb_vlan_macip vlan_macip_lens;
- union {
- uint16_t u16;
- struct {
- uint16_t l3_len:9;
- uint16_t l2_len:7;
- };
- } l2_l3_len;
- uint64_t buf_dma_addr;
- uint32_t olinfo_status;
- uint32_t cmd_type_len;
- uint32_t pkt_len;
- uint16_t slen;
- uint64_t ol_flags;
- uint16_t tx_end;
- uint16_t tx_id;
- uint16_t tx_last;
- uint16_t nb_tx;
- uint64_t tx_ol_req;
- uint32_t new_ctx = 0;
- uint32_t ctx = 0;
-
- txq = tx_queue;
- sw_ring = txq->sw_ring;
- txr = txq->tx_ring;
- tx_id = txq->tx_tail;
- txe = &sw_ring[tx_id];
-
- for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
- tx_pkt = *tx_pkts++;
- pkt_len = tx_pkt->pkt_len;
-
- RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
- /*
- * The number of descriptors that must be allocated for a
- * packet is the number of segments of that packet, plus 1
- * Context Descriptor for the VLAN Tag Identifier, if any.
- * Determine the last TX descriptor to allocate in the TX ring
- * for the packet, starting from the current position (tx_id)
- * in the ring.
- */
- tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
-
- ol_flags = tx_pkt->ol_flags;
- l2_l3_len.l2_len = tx_pkt->l2_len;
- l2_l3_len.l3_len = tx_pkt->l3_len;
- vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci;
- vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16;
- tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
-
- /* If a Context Descriptor need be built . */
- if (tx_ol_req) {
- ctx = what_advctx_update(txq, tx_ol_req,
- vlan_macip_lens.data);
- /* Only allocate context descriptor if required*/
- new_ctx = (ctx == IGB_CTX_NUM);
- ctx = txq->ctx_curr;
- tx_last = (uint16_t) (tx_last + new_ctx);
- }
- if (tx_last >= txq->nb_tx_desc)
- tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
-
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
- " tx_first=%u tx_last=%u",
- (unsigned) txq->port_id,
- (unsigned) txq->queue_id,
- (unsigned) pkt_len,
- (unsigned) tx_id,
- (unsigned) tx_last);
-
- /*
- * Check if there are enough free descriptors in the TX ring
- * to transmit the next packet.
- * This operation is based on the two following rules:
- *
- * 1- Only check that the last needed TX descriptor can be
- * allocated (by construction, if that descriptor is free,
- * all intermediate ones are also free).
- *
- * For this purpose, the index of the last TX descriptor
- * used for a packet (the "last descriptor" of a packet)
- * is recorded in the TX entries (the last one included)
- * that are associated with all TX descriptors allocated
- * for that packet.
- *
- * 2- Avoid to allocate the last free TX descriptor of the
- * ring, in order to never set the TDT register with the
- * same value stored in parallel by the NIC in the TDH
- * register, which makes the TX engine of the NIC enter
- * in a deadlock situation.
- *
- * By extension, avoid to allocate a free descriptor that
- * belongs to the last set of free descriptors allocated
- * to the same packet previously transmitted.
- */
-
- /*
- * The "last descriptor" of the previously sent packet, if any,
- * which used the last descriptor to allocate.
- */
- tx_end = sw_ring[tx_last].last_id;
-
- /*
- * The next descriptor following that "last descriptor" in the
- * ring.
- */
- tx_end = sw_ring[tx_end].next_id;
-
- /*
- * The "last descriptor" associated with that next descriptor.
- */
- tx_end = sw_ring[tx_end].last_id;
-
- /*
- * Check that this descriptor is free.
- */
- if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
- if (nb_tx == 0)
- return (0);
- goto end_of_tx;
- }
-
- /*
- * Set common flags of all TX Data Descriptors.
- *
- * The following bits must be set in all Data Descriptors:
- * - E1000_ADVTXD_DTYP_DATA
- * - E1000_ADVTXD_DCMD_DEXT
- *
- * The following bits must be set in the first Data Descriptor
- * and are ignored in the other ones:
- * - E1000_ADVTXD_DCMD_IFCS
- * - E1000_ADVTXD_MAC_1588
- * - E1000_ADVTXD_DCMD_VLE
- *
- * The following bits must only be set in the last Data
- * Descriptor:
- * - E1000_TXD_CMD_EOP
- *
- * The following bits can be set in any Data Descriptor, but
- * are only set in the last Data Descriptor:
- * - E1000_TXD_CMD_RS
- */
- cmd_type_len = txq->txd_type |
- E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
- olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
-#if defined(RTE_LIBRTE_IEEE1588)
- if (ol_flags & PKT_TX_IEEE1588_TMST)
- cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
-#endif
- if (tx_ol_req) {
- /* Setup TX Advanced context descriptor if required */
- if (new_ctx) {
- volatile struct e1000_adv_tx_context_desc *
- ctx_txd;
-
- ctx_txd = (volatile struct
- e1000_adv_tx_context_desc *)
- &txr[tx_id];
-
- txn = &sw_ring[txe->next_id];
- RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
-
- if (txe->mbuf != NULL) {
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = NULL;
- }
-
- igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
- vlan_macip_lens.data);
-
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- }
-
- /* Setup the TX Advanced Data Descriptor */
- cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
- olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
- olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
- }
-
- m_seg = tx_pkt;
- do {
- txn = &sw_ring[txe->next_id];
- txd = &txr[tx_id];
-
- if (txe->mbuf != NULL)
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = m_seg;
-
- /*
- * Set up transmit descriptor.
- */
- slen = (uint16_t) m_seg->data_len;
- buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
- txd->read.buffer_addr =
- rte_cpu_to_le_64(buf_dma_addr);
- txd->read.cmd_type_len =
- rte_cpu_to_le_32(cmd_type_len | slen);
- txd->read.olinfo_status =
- rte_cpu_to_le_32(olinfo_status);
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- m_seg = m_seg->next;
- } while (m_seg != NULL);
-
- /*
- * The last packet data descriptor needs End Of Packet (EOP)
- * and Report Status (RS).
- */
- txd->read.cmd_type_len |=
- rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
- }
- end_of_tx:
- rte_wmb();
-
- /*
- * Set the Transmit Descriptor Tail (TDT).
- */
- E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
- (unsigned) txq->port_id, (unsigned) txq->queue_id,
- (unsigned) tx_id, (unsigned) nb_tx);
- txq->tx_tail = tx_id;
-
- return (nb_tx);
-}
-
-/*********************************************************************
- *
- * RX functions
- *
- **********************************************************************/
-static inline uint64_t
-rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
-{
- uint64_t pkt_flags;
-
- static uint64_t ip_pkt_types_map[16] = {
- 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
- PKT_RX_IPV6_HDR, 0, 0, 0,
- PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
- PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
- };
-
-#if defined(RTE_LIBRTE_IEEE1588)
- static uint32_t ip_pkt_etqf_map[8] = {
- 0, 0, 0, PKT_RX_IEEE1588_PTP,
- 0, 0, 0, 0,
- };
-
- pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
- ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
- ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#else
- pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
- ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#endif
- return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH);
-}
-
-static inline uint64_t
-rx_desc_status_to_pkt_flags(uint32_t rx_status)
-{
- uint64_t pkt_flags;
-
- /* Check if VLAN present */
- pkt_flags = (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
-
-#if defined(RTE_LIBRTE_IEEE1588)
- if (rx_status & E1000_RXD_STAT_TMST)
- pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
-#endif
- return pkt_flags;
-}
-
-static inline uint64_t
-rx_desc_error_to_pkt_flags(uint32_t rx_status)
-{
- /*
- * Bit 30: IPE, IPv4 checksum error
- * Bit 29: L4I, L4I integrity error
- */
-
- static uint64_t error_to_pkt_flags_map[4] = {
- 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
- PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
- };
- return error_to_pkt_flags_map[(rx_status >>
- E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
-}
-
-uint16_t
-eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- struct igb_rx_queue *rxq;
- volatile union e1000_adv_rx_desc *rx_ring;
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_entry *sw_ring;
- struct igb_rx_entry *rxe;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- union e1000_adv_rx_desc rxd;
- uint64_t dma_addr;
- uint32_t staterr;
- uint32_t hlen_type_rss;
- uint16_t pkt_len;
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint64_t pkt_flags;
-
- nb_rx = 0;
- nb_hold = 0;
- rxq = rx_queue;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
- while (nb_rx < nb_pkts) {
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- staterr = rxdp->wb.upper.status_error;
- if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
- break;
- rxd = *rxdp;
-
- /*
- * End of packet.
- *
- * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
- * likely to be invalid and to be dropped by the various
- * validation checks performed by the network stack.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy do not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
- "staterr=0x%x pkt_len=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) staterr,
- (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u", (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_igb_prefetch(&rx_ring[rx_id]);
- rte_igb_prefetch(&sw_ring[rx_id]);
- }
-
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->read.hdr_addr = dma_addr;
- rxdp->read.pkt_addr = dma_addr;
-
- /*
- * Initialize the returned mbuf.
- * 1) setup generic mbuf fields:
- * - number of segments,
- * - next segment,
- * - packet length,
- * - RX port identifier.
- * 2) integrate hardware offload data, if any:
- * - RSS flag & hash,
- * - IP checksum flag,
- * - VLAN TCI, if any,
- * - error flags.
- */
- pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
- rxq->crc_len);
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
- rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
- rxm->nb_segs = 1;
- rxm->next = NULL;
- rxm->pkt_len = pkt_len;
- rxm->data_len = pkt_len;
- rxm->port = rxq->port_id;
-
- rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
- hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
- /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
- rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
-
- pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
- pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
- pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
- rxm->ol_flags = pkt_flags;
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = rxm;
- }
- rxq->rx_tail = rx_id;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-uint16_t
-eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- struct igb_rx_queue *rxq;
- volatile union e1000_adv_rx_desc *rx_ring;
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_entry *sw_ring;
- struct igb_rx_entry *rxe;
- struct rte_mbuf *first_seg;
- struct rte_mbuf *last_seg;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- union e1000_adv_rx_desc rxd;
- uint64_t dma; /* Physical address of mbuf data buffer */
- uint32_t staterr;
- uint32_t hlen_type_rss;
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint16_t data_len;
- uint64_t pkt_flags;
-
- nb_rx = 0;
- nb_hold = 0;
- rxq = rx_queue;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
-
- /*
- * Retrieve RX context of current packet, if any.
- */
- first_seg = rxq->pkt_first_seg;
- last_seg = rxq->pkt_last_seg;
-
- while (nb_rx < nb_pkts) {
- next_desc:
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- staterr = rxdp->wb.upper.status_error;
- if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
- break;
- rxd = *rxdp;
-
- /*
- * Descriptor done.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy does not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
- "staterr=0x%x data_len=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) staterr,
- (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u", (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_igb_prefetch(&rx_ring[rx_id]);
- rte_igb_prefetch(&sw_ring[rx_id]);
- }
-
- /*
- * Update RX descriptor with the physical address of the new
- * data buffer of the new allocated mbuf.
- */
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->read.pkt_addr = dma;
- rxdp->read.hdr_addr = dma;
-
- /*
- * Set data length & data buffer address of mbuf.
- */
- data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
- rxm->data_len = data_len;
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
-
- /*
- * If this is the first buffer of the received packet,
- * set the pointer to the first mbuf of the packet and
- * initialize its context.
- * Otherwise, update the total length and the number of segments
- * of the current scattered packet, and update the pointer to
- * the last mbuf of the current packet.
- */
- if (first_seg == NULL) {
- first_seg = rxm;
- first_seg->pkt_len = data_len;
- first_seg->nb_segs = 1;
- } else {
- first_seg->pkt_len += data_len;
- first_seg->nb_segs++;
- last_seg->next = rxm;
- }
-
- /*
- * If this is not the last buffer of the received packet,
- * update the pointer to the last mbuf of the current scattered
- * packet and continue to parse the RX ring.
- */
- if (! (staterr & E1000_RXD_STAT_EOP)) {
- last_seg = rxm;
- goto next_desc;
- }
-
- /*
- * This is the last buffer of the received packet.
- * If the CRC is not stripped by the hardware:
- * - Subtract the CRC length from the total packet length.
- * - If the last buffer only contains the whole CRC or a part
- * of it, free the mbuf associated to the last buffer.
- * If part of the CRC is also contained in the previous
- * mbuf, subtract the length of that CRC part from the
- * data length of the previous mbuf.
- */
- rxm->next = NULL;
- if (unlikely(rxq->crc_len > 0)) {
- first_seg->pkt_len -= ETHER_CRC_LEN;
- if (data_len <= ETHER_CRC_LEN) {
- rte_pktmbuf_free_seg(rxm);
- first_seg->nb_segs--;
- last_seg->data_len = (uint16_t)
- (last_seg->data_len -
- (ETHER_CRC_LEN - data_len));
- last_seg->next = NULL;
- } else
- rxm->data_len =
- (uint16_t) (data_len - ETHER_CRC_LEN);
- }
-
- /*
- * Initialize the first mbuf of the returned packet:
- * - RX port identifier,
- * - hardware offload data, if any:
- * - RSS flag & hash,
- * - IP checksum flag,
- * - VLAN TCI, if any,
- * - error flags.
- */
- first_seg->port = rxq->port_id;
- first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
-
- /*
- * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
- * set in the pkt_flags field.
- */
- first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
- hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
- pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
- pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
- pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
- first_seg->ol_flags = pkt_flags;
-
- /* Prefetch data of first segment, if configured to do so. */
- rte_packet_prefetch((char *)first_seg->buf_addr +
- first_seg->data_off);
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = first_seg;
-
- /*
- * Setup receipt context for a new packet.
- */
- first_seg = NULL;
- }
-
- /*
- * Record index of the next RX descriptor to probe.
- */
- rxq->rx_tail = rx_id;
-
- /*
- * Save receive context.
- */
- rxq->pkt_first_seg = first_seg;
- rxq->pkt_last_seg = last_seg;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-/*
- * Rings setup and release.
- *
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
- * This will also optimize cache line size effect.
- * H/W supports up to cache line size 128.
- */
-#define IGB_ALIGN 128
-
-/*
- * Maximum number of Ring Descriptors.
- *
- * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
- * desscriptors should meet the following condition:
- * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
- */
-#define IGB_MIN_RING_DESC 32
-#define IGB_MAX_RING_DESC 4096
-
-static const struct rte_memzone *
-ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
- uint16_t queue_id, uint32_t ring_size, int socket_id)
-{
- char z_name[RTE_MEMZONE_NAMESIZE];
- const struct rte_memzone *mz;
-
- snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
- dev->driver->pci_drv.name, ring_name,
- dev->data->port_id, queue_id);
- mz = rte_memzone_lookup(z_name);
- if (mz)
- return mz;
-
-#ifdef RTE_LIBRTE_XEN_DOM0
- return rte_memzone_reserve_bounded(z_name, ring_size,
- socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
-#else
- return rte_memzone_reserve_aligned(z_name, ring_size,
- socket_id, 0, IGB_ALIGN);
-#endif
-}
-
-static void
-igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
-{
- unsigned i;
-
- if (txq->sw_ring != NULL) {
- for (i = 0; i < txq->nb_tx_desc; i++) {
- if (txq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
- txq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-igb_tx_queue_release(struct igb_tx_queue *txq)
-{
- if (txq != NULL) {
- igb_tx_queue_release_mbufs(txq);
- rte_free(txq->sw_ring);
- rte_free(txq);
- }
-}
-
-void
-eth_igb_tx_queue_release(void *txq)
-{
- igb_tx_queue_release(txq);
-}
-
-static void
-igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
-{
- txq->tx_head = 0;
- txq->tx_tail = 0;
- txq->ctx_curr = 0;
- memset((void*)&txq->ctx_cache, 0,
- IGB_CTX_NUM * sizeof(struct igb_advctx_info));
-}
-
-static void
-igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
-{
- static const union e1000_adv_tx_desc zeroed_desc = {{0}};
- struct igb_tx_entry *txe = txq->sw_ring;
- uint16_t i, prev;
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- /* Zero out HW ring memory */
- for (i = 0; i < txq->nb_tx_desc; i++) {
- txq->tx_ring[i] = zeroed_desc;
- }
-
- /* Initialize ring entries */
- prev = (uint16_t)(txq->nb_tx_desc - 1);
- for (i = 0; i < txq->nb_tx_desc; i++) {
- volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
-
- txd->wb.status = E1000_TXD_STAT_DD;
- txe[i].mbuf = NULL;
- txe[i].last_id = i;
- txe[prev].next_id = i;
- prev = i;
- }
-
- txq->txd_type = E1000_ADVTXD_DTYP_DATA;
- /* 82575 specific, each tx queue will use 2 hw contexts */
- if (hw->mac.type == e1000_82575)
- txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
-
- igb_reset_tx_queue_stat(txq);
-}
-
-int
-eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf)
-{
- const struct rte_memzone *tz;
- struct igb_tx_queue *txq;
- struct e1000_hw *hw;
- uint32_t size;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of transmit descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of IGB_ALIGN.
- */
- if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
- (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
- return -EINVAL;
- }
-
- /*
- * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
- * driver.
- */
- if (tx_conf->tx_free_thresh != 0)
- PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
- "used for the 1G driver.");
- if (tx_conf->tx_rs_thresh != 0)
- PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
- "used for the 1G driver.");
- if (tx_conf->tx_thresh.wthresh == 0)
- PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
- "consider setting the TX WTHRESH value to 4, 8, "
- "or 16.");
-
- /* Free memory prior to re-allocation if needed */
- if (dev->data->tx_queues[queue_idx] != NULL) {
- igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
- dev->data->tx_queues[queue_idx] = NULL;
- }
-
- /* First allocate the tx queue data structure */
- txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
- RTE_CACHE_LINE_SIZE);
- if (txq == NULL)
- return (-ENOMEM);
-
- /*
- * Allocate TX ring hardware descriptors. A memzone large enough to
- * handle the maximum ring size is allocated in order to allow for
- * resizing in later calls to the queue setup function.
- */
- size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
- tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
- size, socket_id);
- if (tz == NULL) {
- igb_tx_queue_release(txq);
- return (-ENOMEM);
- }
-
- txq->nb_tx_desc = nb_desc;
- txq->pthresh = tx_conf->tx_thresh.pthresh;
- txq->hthresh = tx_conf->tx_thresh.hthresh;
- txq->wthresh = tx_conf->tx_thresh.wthresh;
- if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
- txq->wthresh = 1;
- txq->queue_id = queue_idx;
- txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
- queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
- txq->port_id = dev->data->port_id;
-
- txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
- txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
-#else
- txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
-#endif
- txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
- /* Allocate software ring */
- txq->sw_ring = rte_zmalloc("txq->sw_ring",
- sizeof(struct igb_tx_entry) * nb_desc,
- RTE_CACHE_LINE_SIZE);
- if (txq->sw_ring == NULL) {
- igb_tx_queue_release(txq);
- return (-ENOMEM);
- }
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
- txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
-
- igb_reset_tx_queue(txq, dev);
- dev->tx_pkt_burst = eth_igb_xmit_pkts;
- dev->data->tx_queues[queue_idx] = txq;
-
- return (0);
-}
-
-static void
-igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
-{
- unsigned i;
-
- if (rxq->sw_ring != NULL) {
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- if (rxq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
- rxq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-igb_rx_queue_release(struct igb_rx_queue *rxq)
-{
- if (rxq != NULL) {
- igb_rx_queue_release_mbufs(rxq);
- rte_free(rxq->sw_ring);
- rte_free(rxq);
- }
-}
-
-void
-eth_igb_rx_queue_release(void *rxq)
-{
- igb_rx_queue_release(rxq);
-}
-
-static void
-igb_reset_rx_queue(struct igb_rx_queue *rxq)
-{
- static const union e1000_adv_rx_desc zeroed_desc = {{0}};
- unsigned i;
-
- /* Zero out HW ring memory */
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- rxq->rx_ring[i] = zeroed_desc;
- }
-
- rxq->rx_tail = 0;
- rxq->pkt_first_seg = NULL;
- rxq->pkt_last_seg = NULL;
-}
-
-int
-eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mp)
-{
- const struct rte_memzone *rz;
- struct igb_rx_queue *rxq;
- struct e1000_hw *hw;
- unsigned int size;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of receive descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of IGB_ALIGN.
- */
- if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
- (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
- return (-EINVAL);
- }
-
- /* Free memory prior to re-allocation if needed */
- if (dev->data->rx_queues[queue_idx] != NULL) {
- igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
- dev->data->rx_queues[queue_idx] = NULL;
- }
-
- /* First allocate the RX queue data structure. */
- rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
- RTE_CACHE_LINE_SIZE);
- if (rxq == NULL)
- return (-ENOMEM);
- rxq->mb_pool = mp;
- rxq->nb_rx_desc = nb_desc;
- rxq->pthresh = rx_conf->rx_thresh.pthresh;
- rxq->hthresh = rx_conf->rx_thresh.hthresh;
- rxq->wthresh = rx_conf->rx_thresh.wthresh;
- if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
- rxq->wthresh = 1;
- rxq->drop_en = rx_conf->rx_drop_en;
- rxq->rx_free_thresh = rx_conf->rx_free_thresh;
- rxq->queue_id = queue_idx;
- rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
- queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
- rxq->port_id = dev->data->port_id;
- rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
- ETHER_CRC_LEN);
-
- /*
- * Allocate RX ring hardware descriptors. A memzone large enough to
- * handle the maximum ring size is allocated in order to allow for
- * resizing in later calls to the queue setup function.
- */
- size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
- rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
- if (rz == NULL) {
- igb_rx_queue_release(rxq);
- return (-ENOMEM);
- }
- rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
- rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
- rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
-#else
- rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
-#endif
- rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
-
- /* Allocate software ring. */
- rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
- sizeof(struct igb_rx_entry) * nb_desc,
- RTE_CACHE_LINE_SIZE);
- if (rxq->sw_ring == NULL) {
- igb_rx_queue_release(rxq);
- return (-ENOMEM);
- }
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
- rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
-
- dev->data->rx_queues[queue_idx] = rxq;
- igb_reset_rx_queue(rxq);
-
- return 0;
-}
-
-uint32_t
-eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
-#define IGB_RXQ_SCAN_INTERVAL 4
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_queue *rxq;
- uint32_t desc = 0;
-
- if (rx_queue_id >= dev->data->nb_rx_queues) {
- PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
- return 0;
- }
-
- rxq = dev->data->rx_queues[rx_queue_id];
- rxdp = &(rxq->rx_ring[rxq->rx_tail]);
-
- while ((desc < rxq->nb_rx_desc) &&
- (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
- desc += IGB_RXQ_SCAN_INTERVAL;
- rxdp += IGB_RXQ_SCAN_INTERVAL;
- if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
- rxdp = &(rxq->rx_ring[rxq->rx_tail +
- desc - rxq->nb_rx_desc]);
- }
-
- return 0;
-}
-
-int
-eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
-{
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_queue *rxq = rx_queue;
- uint32_t desc;
-
- if (unlikely(offset >= rxq->nb_rx_desc))
- return 0;
- desc = rxq->rx_tail + offset;
- if (desc >= rxq->nb_rx_desc)
- desc -= rxq->nb_rx_desc;
-
- rxdp = &rxq->rx_ring[desc];
- return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
-}
-
-void
-igb_dev_clear_queues(struct rte_eth_dev *dev)
-{
- uint16_t i;
- struct igb_tx_queue *txq;
- struct igb_rx_queue *rxq;
-
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- txq = dev->data->tx_queues[i];
- if (txq != NULL) {
- igb_tx_queue_release_mbufs(txq);
- igb_reset_tx_queue(txq, dev);
- }
- }
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- if (rxq != NULL) {
- igb_rx_queue_release_mbufs(rxq);
- igb_reset_rx_queue(rxq);
- }
- }
-}
-
-/**
- * Receive Side Scaling (RSS).
- * See section 7.1.1.7 in the following document:
- * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
- *
- * Principles:
- * The source and destination IP addresses of the IP header and the source and
- * destination ports of TCP/UDP headers, if any, of received packets are hashed
- * against a configurable random key to compute a 32-bit RSS hash result.
- * The seven (7) LSBs of the 32-bit hash result are used as an index into a
- * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
- * RSS output index which is used as the RX queue index where to store the
- * received packets.
- * The following output is supplied in the RX write-back descriptor:
- * - 32-bit result of the Microsoft RSS hash function,
- * - 4-bit RSS type field.
- */
-
-/*
- * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
- * Used as the default key.
- */
-static uint8_t rss_intel_key[40] = {
- 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
- 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
- 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
- 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
- 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
-};
-
-static void
-igb_rss_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- uint32_t mrqc;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- mrqc = E1000_READ_REG(hw, E1000_MRQC);
- mrqc &= ~E1000_MRQC_ENABLE_MASK;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-static void
-igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
-{
- uint8_t *hash_key;
- uint32_t rss_key;
- uint32_t mrqc;
- uint64_t rss_hf;
- uint16_t i;
-
- hash_key = rss_conf->rss_key;
- if (hash_key != NULL) {
- /* Fill in RSS hash key */
- for (i = 0; i < 10; i++) {
- rss_key = hash_key[(i * 4)];
- rss_key |= hash_key[(i * 4) + 1] << 8;
- rss_key |= hash_key[(i * 4) + 2] << 16;
- rss_key |= hash_key[(i * 4) + 3] << 24;
- E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
- }
- }
-
- /* Set configured hashing protocols in MRQC register */
- rss_hf = rss_conf->rss_hf;
- mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
- if (rss_hf & ETH_RSS_IPV4)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
- if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
- if (rss_hf & ETH_RSS_IPV6)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
- if (rss_hf & ETH_RSS_IPV6_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
- if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
- if (rss_hf & ETH_RSS_IPV6_TCP_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
- if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
- if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
- if (rss_hf & ETH_RSS_IPV6_UDP_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-int
-eth_igb_rss_hash_update(struct rte_eth_dev *dev,
- struct rte_eth_rss_conf *rss_conf)
-{
- struct e1000_hw *hw;
- uint32_t mrqc;
- uint64_t rss_hf;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Before changing anything, first check that the update RSS operation
- * does not attempt to disable RSS, if RSS was enabled at
- * initialization time, or does not attempt to enable RSS, if RSS was
- * disabled at initialization time.
- */
- rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
- mrqc = E1000_READ_REG(hw, E1000_MRQC);
- if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
- if (rss_hf != 0) /* Enable RSS */
- return -(EINVAL);
- return 0; /* Nothing to do */
- }
- /* RSS enabled */
- if (rss_hf == 0) /* Disable RSS */
- return -(EINVAL);
- igb_hw_rss_hash_set(hw, rss_conf);
- return 0;
-}
-
-int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
- struct rte_eth_rss_conf *rss_conf)
-{
- struct e1000_hw *hw;
- uint8_t *hash_key;
- uint32_t rss_key;
- uint32_t mrqc;
- uint64_t rss_hf;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- hash_key = rss_conf->rss_key;
- if (hash_key != NULL) {
- /* Return RSS hash key */
- for (i = 0; i < 10; i++) {
- rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
- hash_key[(i * 4)] = rss_key & 0x000000FF;
- hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
- hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
- hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
- }
- }
-
- /* Get RSS functions configured in MRQC register */
- mrqc = E1000_READ_REG(hw, E1000_MRQC);
- if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
- rss_conf->rss_hf = 0;
- return 0;
- }
- rss_hf = 0;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
- rss_hf |= ETH_RSS_IPV4;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
- rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
- rss_hf |= ETH_RSS_IPV6;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
- rss_hf |= ETH_RSS_IPV6_EX;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
- rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
- rss_hf |= ETH_RSS_IPV6_TCP_EX;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
- rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
- rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
- if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
- rss_hf |= ETH_RSS_IPV6_UDP_EX;
- rss_conf->rss_hf = rss_hf;
- return 0;
-}
-
-static void
-igb_rss_configure(struct rte_eth_dev *dev)
-{
- struct rte_eth_rss_conf rss_conf;
- struct e1000_hw *hw;
- uint32_t shift;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* Fill in redirection table. */
- shift = (hw->mac.type == e1000_82575) ? 6 : 0;
- for (i = 0; i < 128; i++) {
- union e1000_reta {
- uint32_t dword;
- uint8_t bytes[4];
- } reta;
- uint8_t q_idx;
-
- q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
- i % dev->data->nb_rx_queues : 0);
- reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
- if ((i & 3) == 3)
- E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
- }
-
- /*
- * Configure the RSS key and the RSS protocols used to compute
- * the RSS hash of input packets.
- */
- rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
- if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
- igb_rss_disable(dev);
- return;
- }
- if (rss_conf.rss_key == NULL)
- rss_conf.rss_key = rss_intel_key; /* Default hash key */
- igb_hw_rss_hash_set(hw, &rss_conf);
-}
-
-/*
- * Check if the mac type support VMDq or not.
- * Return 1 if it supports, otherwise, return 0.
- */
-static int
-igb_is_vmdq_supported(const struct rte_eth_dev *dev)
-{
- const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- switch (hw->mac.type) {
- case e1000_82576:
- case e1000_82580:
- case e1000_i350:
- return 1;
- case e1000_82540:
- case e1000_82541:
- case e1000_82542:
- case e1000_82543:
- case e1000_82544:
- case e1000_82545:
- case e1000_82546:
- case e1000_82547:
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- case e1000_i210:
- case e1000_i211:
- default:
- PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
- return 0;
- }
-}
-
-static int
-igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
-{
- struct rte_eth_vmdq_rx_conf *cfg;
- struct e1000_hw *hw;
- uint32_t mrqc, vt_ctl, vmolr, rctl;
- int i;
-
- PMD_INIT_FUNC_TRACE();
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
-
- /* Check if mac type can support VMDq, return value of 0 means NOT support */
- if (igb_is_vmdq_supported(dev) == 0)
- return -1;
-
- igb_rss_disable(dev);
-
- /* RCTL: eanble VLAN filter */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /* MRQC: enable vmdq */
- mrqc = E1000_READ_REG(hw, E1000_MRQC);
- mrqc |= E1000_MRQC_ENABLE_VMDQ;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-
- /* VTCTL: pool selection according to VLAN tag */
- vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
- if (cfg->enable_default_pool)
- vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
- vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
- E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-
- for (i = 0; i < E1000_VMOLR_SIZE; i++) {
- vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
- vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
- E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
- E1000_VMOLR_MPME);
-
- if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
- vmolr |= E1000_VMOLR_AUPE;
- if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
- vmolr |= E1000_VMOLR_ROMPE;
- if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
- vmolr |= E1000_VMOLR_ROPE;
- if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
- vmolr |= E1000_VMOLR_BAM;
- if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
- vmolr |= E1000_VMOLR_MPME;
-
- E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
- }
-
- /*
- * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
- * Both 82576 and 82580 support it
- */
- if (hw->mac.type != e1000_i350) {
- for (i = 0; i < E1000_VMOLR_SIZE; i++) {
- vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
- vmolr |= E1000_VMOLR_STRVLAN;
- E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
- }
- }
-
- /* VFTA - enable all vlan filters */
- for (i = 0; i < IGB_VFTA_SIZE; i++)
- E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
-
- /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
- if (hw->mac.type != e1000_82580)
- E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
-
- /*
- * RAH/RAL - allow pools to read specific mac addresses
- * In this case, all pools should be able to read from mac addr 0
- */
- E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
- E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
-
- /* VLVF: set up filters for vlan tags as configured */
- for (i = 0; i < cfg->nb_pool_maps; i++) {
- /* set vlan id in VF register and set the valid bit */
- E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
- (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
- ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
- E1000_VLVF_POOLSEL_MASK)));
- }
-
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-
-/*********************************************************************
- *
- * Enable receive unit.
- *
- **********************************************************************/
-
-static int
-igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
-{
- struct igb_rx_entry *rxe = rxq->sw_ring;
- uint64_t dma_addr;
- unsigned i;
-
- /* Initialize software ring entries. */
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- volatile union e1000_adv_rx_desc *rxd;
- struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
-
- if (mbuf == NULL) {
- PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
- "queue_id=%hu", rxq->queue_id);
- return (-ENOMEM);
- }
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
- rxd = &rxq->rx_ring[i];
- rxd->read.hdr_addr = dma_addr;
- rxd->read.pkt_addr = dma_addr;
- rxe[i].mbuf = mbuf;
- }
-
- return 0;
-}
-
-#define E1000_MRQC_DEF_Q_SHIFT (3)
-static int
-igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t mrqc;
-
- if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
- /*
- * SRIOV active scheme
- * FIXME if support RSS together with VMDq & SRIOV
- */
- mrqc = E1000_MRQC_ENABLE_VMDQ;
- /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
- mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
- } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
- /*
- * SRIOV inactive scheme
- */
- switch (dev->data->dev_conf.rxmode.mq_mode) {
- case ETH_MQ_RX_RSS:
- igb_rss_configure(dev);
- break;
- case ETH_MQ_RX_VMDQ_ONLY:
- /*Configure general VMDQ only RX parameters*/
- igb_vmdq_rx_hw_configure(dev);
- break;
- case ETH_MQ_RX_NONE:
- /* if mq_mode is none, disable rss mode.*/
- default:
- igb_rss_disable(dev);
- break;
- }
- }
-
- return 0;
-}
-
-int
-eth_igb_rx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_rx_queue *rxq;
- uint32_t rctl;
- uint32_t rxcsum;
- uint32_t srrctl;
- uint16_t buf_size;
- uint16_t rctl_bsize;
- uint16_t i;
- int ret;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- srrctl = 0;
-
- /*
- * Make sure receives are disabled while setting
- * up the descriptor ring.
- */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
- /*
- * Configure support of jumbo frames, if any.
- */
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
- rctl |= E1000_RCTL_LPE;
-
- /*
- * Set maximum packet length by default, and might be updated
- * together with enabling/disabling dual VLAN.
- */
- E1000_WRITE_REG(hw, E1000_RLPML,
- dev->data->dev_conf.rxmode.max_rx_pkt_len +
- VLAN_TAG_SIZE);
- } else
- rctl &= ~E1000_RCTL_LPE;
-
- /* Configure and enable each RX queue. */
- rctl_bsize = 0;
- dev->rx_pkt_burst = eth_igb_recv_pkts;
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint64_t bus_addr;
- uint32_t rxdctl;
-
- rxq = dev->data->rx_queues[i];
-
- /* Allocate buffers for descriptor rings and set up queue */
- ret = igb_alloc_rx_queue_mbufs(rxq);
- if (ret)
- return ret;
-
- /*
- * Reset crc_len in case it was changed after queue setup by a
- * call to configure
- */
- rxq->crc_len =
- (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
- 0 : ETHER_CRC_LEN);
-
- bus_addr = rxq->rx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
- rxq->nb_rx_desc *
- sizeof(union e1000_adv_rx_desc));
- E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
-
- srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
- /*
- * Configure RX buffer size.
- */
- buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
- RTE_PKTMBUF_HEADROOM);
- if (buf_size >= 1024) {
- /*
- * Configure the BSIZEPACKET field of the SRRCTL
- * register of the queue.
- * Value is in 1 KB resolution, from 1 KB to 127 KB.
- * If this field is equal to 0b, then RCTL.BSIZE
- * determines the RX packet buffer size.
- */
- srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
- E1000_SRRCTL_BSIZEPKT_MASK);
- buf_size = (uint16_t) ((srrctl &
- E1000_SRRCTL_BSIZEPKT_MASK) <<
- E1000_SRRCTL_BSIZEPKT_SHIFT);
-
- /* It adds dual VLAN length for supporting dual VLAN */
- if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
- 2 * VLAN_TAG_SIZE) > buf_size){
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG,
- "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
- } else {
- /*
- * Use BSIZE field of the device RCTL register.
- */
- if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
- rctl_bsize = buf_size;
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- /* Set if packets are dropped when no descriptors available */
- if (rxq->drop_en)
- srrctl |= E1000_SRRCTL_DROP_EN;
-
- E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
-
- /* Enable this RX queue. */
- rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
- rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
- rxdctl &= 0xFFF00000;
- rxdctl |= (rxq->pthresh & 0x1F);
- rxdctl |= ((rxq->hthresh & 0x1F) << 8);
- rxdctl |= ((rxq->wthresh & 0x1F) << 16);
- E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
- }
-
- if (dev->data->dev_conf.rxmode.enable_scatter) {
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- /*
- * Setup BSIZE field of RCTL register, if needed.
- * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
- * register, since the code above configures the SRRCTL register of
- * the RX queue in such a case.
- * All configurable sizes are:
- * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
- * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
- * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
- * 2048: rctl |= E1000_RCTL_SZ_2048;
- * 1024: rctl |= E1000_RCTL_SZ_1024;
- * 512: rctl |= E1000_RCTL_SZ_512;
- * 256: rctl |= E1000_RCTL_SZ_256;
- */
- if (rctl_bsize > 0) {
- if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
- rctl |= E1000_RCTL_SZ_512;
- else /* 256 <= buf_size < 512 - use 256 */
- rctl |= E1000_RCTL_SZ_256;
- }
-
- /*
- * Configure RSS if device configured with multiple RX queues.
- */
- igb_dev_mq_rx_configure(dev);
-
- /* Update the rctl since igb_dev_mq_rx_configure may change its value */
- rctl |= E1000_READ_REG(hw, E1000_RCTL);
-
- /*
- * Setup the Checksum Register.
- * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
- */
- rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
- rxcsum |= E1000_RXCSUM_PCSD;
-
- /* Enable both L3/L4 rx checksum offload */
- if (dev->data->dev_conf.rxmode.hw_ip_checksum)
- rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- else
- rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
- /* Setup the Receive Control Register. */
- if (dev->data->dev_conf.rxmode.hw_strip_crc) {
- rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
-
- /* set STRCRC bit in all queues */
- if (hw->mac.type == e1000_i350 ||
- hw->mac.type == e1000_i210 ||
- hw->mac.type == e1000_i211 ||
- hw->mac.type == e1000_i354) {
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- uint32_t dvmolr = E1000_READ_REG(hw,
- E1000_DVMOLR(rxq->reg_idx));
- dvmolr |= E1000_DVMOLR_STRCRC;
- E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
- }
- }
- } else {
- rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
-
- /* clear STRCRC bit in all queues */
- if (hw->mac.type == e1000_i350 ||
- hw->mac.type == e1000_i210 ||
- hw->mac.type == e1000_i211 ||
- hw->mac.type == e1000_i354) {
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- uint32_t dvmolr = E1000_READ_REG(hw,
- E1000_DVMOLR(rxq->reg_idx));
- dvmolr &= ~E1000_DVMOLR_STRCRC;
- E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
- }
- }
- }
-
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
- E1000_RCTL_RDMTS_HALF |
- (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- /* Make sure VLAN Filters are off. */
- if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
- rctl &= ~E1000_RCTL_VFE;
- /* Don't store bad packets. */
- rctl &= ~E1000_RCTL_SBP;
-
- /* Enable Receives. */
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /*
- * Setup the HW Rx Head and Tail Descriptor Pointers.
- * This needs to be done after enable.
- */
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
- E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
- }
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Enable transmit unit.
- *
- **********************************************************************/
-void
-eth_igb_tx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_tx_queue *txq;
- uint32_t tctl;
- uint32_t txdctl;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* Setup the Base and Length of the Tx Descriptor Rings. */
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- uint64_t bus_addr;
- txq = dev->data->tx_queues[i];
- bus_addr = txq->tx_ring_phys_addr;
-
- E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
- txq->nb_tx_desc *
- sizeof(union e1000_adv_tx_desc));
- E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
-
- /* Setup the HW Tx Head and Tail descriptor pointers. */
- E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
- E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
-
- /* Setup Transmit threshold registers. */
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
- txdctl |= txq->pthresh & 0x1F;
- txdctl |= ((txq->hthresh & 0x1F) << 8);
- txdctl |= ((txq->wthresh & 0x1F) << 16);
- txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
- }
-
- /* Program the Transmit Control Register. */
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
- e1000_config_collision_dist(hw);
-
- /* This write will effectively turn on the transmit unit. */
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
-/*********************************************************************
- *
- * Enable VF receive unit.
- *
- **********************************************************************/
-int
-eth_igbvf_rx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_rx_queue *rxq;
- uint32_t srrctl;
- uint16_t buf_size;
- uint16_t rctl_bsize;
- uint16_t i;
- int ret;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* setup MTU */
- e1000_rlpml_set_vf(hw,
- (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
- VLAN_TAG_SIZE));
-
- /* Configure and enable each RX queue. */
- rctl_bsize = 0;
- dev->rx_pkt_burst = eth_igb_recv_pkts;
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint64_t bus_addr;
- uint32_t rxdctl;
-
- rxq = dev->data->rx_queues[i];
-
- /* Allocate buffers for descriptor rings and set up queue */
- ret = igb_alloc_rx_queue_mbufs(rxq);
- if (ret)
- return ret;
-
- bus_addr = rxq->rx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_RDLEN(i),
- rxq->nb_rx_desc *
- sizeof(union e1000_adv_rx_desc));
- E1000_WRITE_REG(hw, E1000_RDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
-
- srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
- /*
- * Configure RX buffer size.
- */
- buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
- RTE_PKTMBUF_HEADROOM);
- if (buf_size >= 1024) {
- /*
- * Configure the BSIZEPACKET field of the SRRCTL
- * register of the queue.
- * Value is in 1 KB resolution, from 1 KB to 127 KB.
- * If this field is equal to 0b, then RCTL.BSIZE
- * determines the RX packet buffer size.
- */
- srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
- E1000_SRRCTL_BSIZEPKT_MASK);
- buf_size = (uint16_t) ((srrctl &
- E1000_SRRCTL_BSIZEPKT_MASK) <<
- E1000_SRRCTL_BSIZEPKT_SHIFT);
-
- /* It adds dual VLAN length for supporting dual VLAN */
- if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
- 2 * VLAN_TAG_SIZE) > buf_size){
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG,
- "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
- } else {
- /*
- * Use BSIZE field of the device RCTL register.
- */
- if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
- rctl_bsize = buf_size;
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- /* Set if packets are dropped when no descriptors available */
- if (rxq->drop_en)
- srrctl |= E1000_SRRCTL_DROP_EN;
-
- E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
-
- /* Enable this RX queue. */
- rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
- rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
- rxdctl &= 0xFFF00000;
- rxdctl |= (rxq->pthresh & 0x1F);
- rxdctl |= ((rxq->hthresh & 0x1F) << 8);
- if (hw->mac.type == e1000_vfadapt) {
- /*
- * Workaround of 82576 VF Erratum
- * force set WTHRESH to 1
- * to avoid Write-Back not triggered sometimes
- */
- rxdctl |= 0x10000;
- PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
- }
- else
- rxdctl |= ((rxq->wthresh & 0x1F) << 16);
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
- }
-
- if (dev->data->dev_conf.rxmode.enable_scatter) {
- if (!dev->data->scattered_rx)
- PMD_INIT_LOG(DEBUG, "forcing scatter mode");
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- /*
- * Setup the HW Rx Head and Tail Descriptor Pointers.
- * This needs to be done after enable.
- */
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- E1000_WRITE_REG(hw, E1000_RDH(i), 0);
- E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
- }
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Enable VF transmit unit.
- *
- **********************************************************************/
-void
-eth_igbvf_tx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_tx_queue *txq;
- uint32_t txdctl;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* Setup the Base and Length of the Tx Descriptor Rings. */
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- uint64_t bus_addr;
-
- txq = dev->data->tx_queues[i];
- bus_addr = txq->tx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_TDLEN(i),
- txq->nb_tx_desc *
- sizeof(union e1000_adv_tx_desc));
- E1000_WRITE_REG(hw, E1000_TDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
-
- /* Setup the HW Tx Head and Tail descriptor pointers. */
- E1000_WRITE_REG(hw, E1000_TDT(i), 0);
- E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
- /* Setup Transmit threshold registers. */
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
- txdctl |= txq->pthresh & 0x1F;
- txdctl |= ((txq->hthresh & 0x1F) << 8);
- if (hw->mac.type == e1000_82576) {
- /*
- * Workaround of 82576 VF Erratum
- * force set WTHRESH to 1
- * to avoid Write-Back not triggered sometimes
- */
- txdctl |= 0x10000;
- PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
- }
- else
- txdctl |= ((txq->wthresh & 0x1F) << 16);
- txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
- }
-
-}
-
+++ /dev/null
-DPDK_2.0 {
-
- local: *;
-};